
A Novel Accelerometer-based Gesture Recognition System

by

Ahmad Akl

A thesis submitted in conformity with the requirements

for the degree of Master of Applied Science
Graduate Department of Electrical and Computer Engineering

University of Toronto

Copyright© 2010 by Ahmad Akl

Abstract

A Novel Accelerometer-based Gesture Recognition System

Ahmad Akl

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2010

Gesture Recognition provides an efficient human-computer interaction for interactive and

intelligent computing. In this work, we address the problem of gesture recognition us-

ing the theory of random projection and by formulating the recognition problem as an

`1-minimization problem. The gesture recognition uses a single 3-axis accelerometer for

data acquisition and comprises two main stages: a training stage and a testing stage.

For training, the system employs dynamic time warping as well as affinity propagation

to create exemplars for each gesture while for testing, the system projects all candidate

traces and also the unknown trace onto the same lower dimensional subspace for recogni-

tion. A dictionary of 18 gestures is defined and a database of over 3,700 traces is created

from 7 subjects on which the system is tested and evaluated. Simulation results reveal a

superior performance, in terms of accuracy and computational complexity, compared to

other systems in the literature.

ii

Dedication

To my sister Zeina

iii

Acknowledgements

I would like to thank all the people who have helped and inspired me during the pursuit

of my masters degree.

First, I would like to thank my supervisor, Prof. Shahrokh Valaee, for his guidance

during my research and study at the University of Toronto. Prof. Valaee was always

accessible and willing to help with my research making my research experience a smooth

and a rewarding one.

I also would like to thank all my lab mates at Wirlab (Wireless and Internet Research

Laboratory) for making the lab a friendly place to work. I, especially, would like to thank

Veria Nassab and Le Zhang for their incredible help and assistance. If it were not for

them, I don’t think that I would have been able to make it through.

My deepest gratitude and appreciation to my family for their unyielding love and

support throughout my life; this thesis would have simply been impossible without their

help. I am completely indebted to my father, for his overwhelming care and encour-

agement. Being the person he is, he strived all along to support the family and spared

no effort to provide the best life for me. As for my mother, I could not have asked for

more from her. No words can express my appreciation to her for her everlasting love and

her constant support whenever I encountered difficulties. Finally, I cannot leave out my

sister and brothers who have always been there for me with their prayers and advice.

My sincere appreciation to my wife Rebecca whose dedication, love, and persistent

confidence in me, have constantly taken the load off my shoulders. The past two years

would not have been the same without her.

Above all, thanks be to God for all the blessings in my life and for giving me this

opportunity to achieve a higher level of education. My life has become more bountiful.

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Gestures and Gesture Recognition . 2

1.3 Means of Acquisition . 4

1.3.1 Wiimote(Wii Remote) . 6

1.3.2 Example of Importance of a 3-axis Accelerometer 10

1.4 Scope and Objectives . 13

1.5 Methodology . 14

1.6 Contributions . 15

2 Background 18

2.1 Dynamic Time Warping . 18

2.1.1 Example of Dynamic Time Warping 21

2.2 Affinity Propagation . 22

2.2.1 Similarity Function . 22

2.2.2 Message Passing: Responsibility and Availability 23

2.2.3 Cluster Decisions . 24

2.3 Compressive Sensing . 25

2.3.1 Restricted Isometry Property (RIP) 26

2.4 Random Projection . 28

v

2.5 Hidden Markov Models . 30

2.5.1 Three Basic Problems for HMMs 33

2.5.2 Solutions to the Three Basic Problems of HMMs 34

2.5.3 Types of HMMs . 36

3 Gesture Recognition Systems 39

3.1 uWave . 39

3.2 System of Discrete HMMs . 42

3.3 Proposed Gesture Recognition System 43

3.3.1 Problem Setup . 43

3.3.2 Training Stage . 45

3.3.3 Testing Stage . 48

4 Implementation Results 56

4.1 Distance Calculation System . 56

4.2 Gesture Recognition System . 57

5 Conclusions and Future Work 65

5.1 Future Work . 67

Bibliography 68

vi

List of Tables

2.1 Computation of the similarity cost using DTW 22

3.1 uWave Quantization Table . 41

4.1 Performance of distance estimating system 57

vii

List of Figures

1.1 A sideview, a topview, and a bottomview of the wiimote 6

1.2 Wiimote with coordinate system labels 7

1.3 Acceleration waveforms defining the gesture of moving the hand in a clock-

wise circle . 8

1.4 Acceleration waveforms defining the simple gesture of moving the hand to

the right with the normal orientation of the wiimote 9

1.5 Acceleration waveforms defining the simple gesture of moving the hand to

the right with a 90o clockwise rotation of the wiimote 9

1.6 Acceleration waveforms defining the simple gesture of moving the hand to

the right with the wiimote pointing up 10

1.7 Acceleration waveforms for a person taking 10 steps 11

1.8 Equivalent acceleration waveform . 12

2.1 Two time sequences P and Q that are similar but out of phase 19

2.2 Aligning the two sequences by finding the optimum warping path 21

2.3 A four-state ergodic HMM . 36

2.4 A five-state left-right HMM . 37

3.1 Block diagram of the uWave System from [1] 40

3.2 Block diagram of the HMM-based System in [2] 42

3.3 General Overview of the Gesture Recognition System 45

viii

3.4 Block Diagram of Training Stage . 48

3.5 Block Diagram of Testing Stage . 49

4.1 The dictionary of 18 gestures . 58

4.2 System’s performance against the number of gestures using a Gaussian

random projection matrix compared to HMM 60

4.3 System’s performance against the number of gestures using a sparse ran-

dom projection matrix compared to HMM 61

4.4 Comparison of training computational cost between proposed system and

system of HMMs . 62

4.5 Comparison of testing computational cost between proposed system and

system of HMMs . 62

4.6 Cdfs of the system’s performance for N = 8, 10, 16, and 18 gestures using

a Gaussian random projection matrix . 63

ix

Chapter 1

Introduction

1.1 Motivation

A variety of spontaneous gestures, such as finger, hand, body, or head movements are

used to convey information in interactions among people. Gestures can hence be consid-

ered a natural communication channel with numerous aspects to be utilized in human-

computer interaction. Up to date, most of our interactions with computers are performed

with traditional keyboards, mouses, and remote controls designed mainly for stationary

interaction. With the help of the great technological advancement, gesture-based inter-

faces can serve as an alternate modality for controlling computers, e.g. to navigate in

office applications or to play some console games like Nintendo Wii [3]. Gesture-based

interfaces can enrich and diversify interaction options and provide easy means to interact

with the surrounding environment especially for handicapped people who are unable to

live their lives in a traditional way.

On the other hand, mobile devices, such as PDAs, mobile phones, and other portable

personal electronic devices provide new possibilities for interacting with various applica-

tions, if equipped with the necessary devices especially with the proliferation of low-cost

MEMS (Micro-Electro-Mechanical Systems) technology. The majority of the new gen-

1

Chapter 1. Introduction 2

eration of smart phones, PDAs, and personal electronic devices are embedded with an

accelerometer for various applications. Small wireless devices containing accelerometers

could be integrated into clothing, wristwatches, or other personal electronic devices to

provide a means for interacting with different environments. By defining some simple

gestures, these devices could be used to control home appliances for example, or the

simple up and down hand movement could be used to operate a garage door, or adjust

the light intensity in a room or an office.

1.2 Gestures and Gesture Recognition

Expressive and meaningful body motions involving physical movements of the hands,

arms, or face can be extremely useful for 1) conveying meaningful information, or 2)

interacting with the environment. This involves: 1) a posture: a static configuration

without the movement of the body part and 2) a gesture: a dynamic movement of the

body part. Generally, there exist many-to-one mappings from concepts to gestures and

vice versa. Hence gestures are ambiguous and incompletely specified. For example, the

concept “stop” can be indicated as a raised hand with the palm facing forward, or an

exaggerated waving of both hands over the head. Similar to speech and handwriting,

gestures vary between individuals, and even for the same individual between different

instances. Sometimes a gesture is also affected by the context of preceding as well as

following gestures. Moreover, gestures are often language- and culture-specific. They can

broadly be of the following types [4]:� hand and arm gestures : recognition of hand poses, sign languages, and entertain-

ment applications (allowing children to play and interact in virtual environments).� head and face gestures : Some examples are a) nodding or head shaking, b) direction

of eye gaze, c) raising the eyebrows, d) opening and closing the mouth, e) winking,

f) flaring the nostrils, e) looks of surprise, happiness, disgust, fear, sadness, and

Chapter 1. Introduction 3

many others represent head and face gestures.� body gestures : involvement of full body motion, as in a) tracking movements of two

people having a conversation, b) analyzing movements of a dancer against the music

being played and the rhythm, c) recognizing human gaits for medical rehabilitation

and athletic training.

Gesture recognition refers to the process of understanding and classifying meaningful

movements of the hands, arms, face, or sometimes head, however hand gestures are the

most expressive, natural, intuitive and thus, most frequently used. Gesture recognition

has become one of the hottest fields of research for its great significance in designing

artificially intelligent human-computer interfaces for various applications which range

from sign language through medical rehabilitation to virtual reality. More specifically,

gesture recognition can be extremely useful for:� Sign language recognition in order to develop aids for the hearing impaired. For

example, just as speech recognition can transcribe speech to text, some gestures

representing symbols through sign language can be transcribed into text.� Socially assistive robotics. By using proper sensors and devices, like accelerometers

and gyros, worn on the body of a patient and by reading the values from those

sensors, robots can assist in patient rehabilitation.� Developing alternative computer interfaces. Foregoing the traditional keyboard

and mouse setup to interact with a computer, gesture recognition can allow users

to accomplish frequent or common tasks using hand gestures to a camera.� Interactive game technology. Gestures can be used to control interactions within

video games providing players with an incredible sense of immersion in the totally

engrossing environment of the game.

Chapter 1. Introduction 4� Remote Controlling. Through the use of gesture recognition, various hand gestures

can be used to control different devices, like secondary devices in a car, TV set,

operating a garage door, and many others.

Gesture recognition consists of gesture spotting that implies determining the start and the

end points of a meaningful gesture trace from a continuous stream of input signals, and,

subsequently, segmenting the relevant gesture. This task is very difficult due to two main

reasons. First of all, the segmentation ambiguity in the sense that as the hand motion

switches from one gesture to another, there occur intermediate movements as well. These

transition motions are also likely to be segmented and matched with template traces, and

need to be eliminated by the model. The spatio-temporal variability is the second reason

since the same gesture may vary dynamically in duration and, very possibly in shape

even for the same gesturer.

1.3 Means of Acquisition

The first step in recognizing gestures is sensing the human body position, configuration

(angles and rotations), and movement (velocities or accelerations). This can be done

either by using sensing devices attached to the user which can take the form of magnetic

field-trackers, instrumental (colored) gloves, and body suits or by using cameras and

computer vision techniques [4]. Each sensing technology varies along several dimensions,

including accuracy, resolution, latency, range of motion, user comfort, and cost. Glove-

based gestural interfaces typically require the user to wear a cumbersome device and

carry a load of cables connecting the device to the computer. This hinders the ease

and naturalness of the user’s interaction with the computer. Vision-based techniques,

while overcoming this problem, need to contend with other problems related to occlusion

of parts of the user’s body. Most of the work on gesture recognition available in the

literature is based on computer vision techniques [5] [6] [7] [8] [9]. Vision-based techniques

Chapter 1. Introduction 5

vary among themselves in 1) the number of cameras used, 2) their speed and latency,

3) the structure of environment such as lighting and speed of movement, 4) any user

requirements such as any restrictions on clothing, 5) the low-level features used such as

edges, regions, silhouettes, moments, histograms, and others, and 6) whether 2D or 3D

is used [4]. Therefore, these limitations restrict the applications of vision-based systems

in smart environments. More specifically, suppose you are enjoying watching movies in

your home theatre with all the lights off. If you decide to change the volume of the TV

with a gesture, it turns out to be rather difficult to recognize your gesture under poor

lighting conditions using a vision-based system. Furthermore, it would be extremely

uncomfortable and unnatural if you have to be directly facing the camera to complete a

gesture.

A very promising alternative is to resort to other sensing techniques such as acceleration-

based techniques or electromyogram-based (EMG-based) techniques. Acceleration-based

gesture control is well-suited to distinguish noticeable, larger scale gestures with differ-

ent hand trajectories. However, it is not very effective when it comes to detecting more

subtle finger movements which is completely overcome by electromyogram-based tech-

niques since they are very sensitive to muscle activation and thus provide rich information

about finger movements. Yet, due to some inherent problems with EMG measurements

including separability and reproducibility of measurements, the size of discriminable hand

gesture set is limited to 4-8 gestures [10]. As a result, in this thesis and after examining

all the sensing devices and techniques in literature, a 3-axis accelerometer is the sensing

device utilized to acquire the data pertaining to gestures. Gesture recognition based on

data from an accelerometer is an emerging technique for gesture-based interaction after

the rapid development of the MEMS technology. Accelerometers are embedded in most

of the new generation personal electronic devices such as Apple iPhone [11], Nintendo wii

mote [12] which provide new possibilities for interaction in a wide range of applications,

such as home appliances, in offices, and in video games. In the sequel, we represent

Chapter 1. Introduction 6

Figure 1.1: A sideview, a topview, and a bottomview of the wiimote

vectors by bold lower case letters, e.g. r, matrices by bold upper case letters, e.g. R,

and sets by calligraphic upper case letters, R.

1.3.1 Wiimote(Wii Remote)

The wiimote, short for Wii Remote, is the primary controller for Nintendo Wii console [3].

Fig. 1.1 shows a sideview, a topview, and a bottomview of the wiimote. The wiimote

provides an inexpensive and robust packaging of several useful sensors, with the ability to

rapidly relay the information to the computer [12]. The Wiimote connects to a computer

wirelessly through Bluetooth technology. When both the 1 and 2 buttons are pressed

simultaneously, the Wiimote’s LEDs blink, indicating it is in discovery mode. A main

feature of the wiimote is its motion sensing capability, which allows the user to interact

with and manipulate items on screen via gesture recognition and the use of a 3-axis

linear accelerometer and optical sensor technology. The accelerometer is physically rated

to measure accelerations over a range of at least ±3g with 10% sensitivity [13] and reports

acceleration in the device’s x-, y-, and z-directions, expressed in the unit of gravity g.

Chapter 1. Introduction 7

Figure 1.2: Wiimote with coordinate system labels

This reported acceleration vector is composed of the wiimote’s actual acceleration a
′

and

the Earth’s gravity ag, so obtaining the actual acceleration of the movement requires

subtracting the gravity vector from the wiimote’s reported acceleration, i.e. a = a
′ −ag.

Due to its ease of use and familiarity in the world of human-computer interaction, the

wiimote is chosen in this thesis as the device to acquire the different gesture traces and

to relay the information to the computer. Accordingly, it is worth briefly describing how

the remote works and how exactly it senses the change in acceleration. Fig. 1.2 shows

a picture of the wiimote with labels to indicate the wiimote’s coordinate system and to

show how the acceleration changes in the shown directions [14]. For example, if you are

holding the wiimote naturally, i.e. +z pointing up, and you move the wiimote towards

the top right corner of the room you are in, then you would expect to observe a decrease

in the x- and the y-accelerations and an increase in the z-acceleration.

The embedded 3-axis accelerometer detects the changes in acceleration by measuring

the force exerted by a set of small proof masses inside of it with respect to its enclosure,

Chapter 1. Introduction 8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−1

−0.5

0

0.5

1

1.5

2

Time (sec)

A
cc

el
er

at
io

n
(x

g)

acceleration in x−direction
acceleration in y−direction
acceleration in z−direction

Figure 1.3: Acceleration waveforms defining the gesture of moving the hand in a clockwise
circle

and therefore measures linear acceleration in a free fall frame of reference. In other words,

if the Wiimote is in free fall, it will report zero acceleration. At rest and the normal

orientation, it will report an upward acceleration in the positive z-direction equal to the

acceleration due to gravity, g (approximately 9.8 m/s) but in the opposite direction.

Fig. 1.3 shows the acceleration waveforms for moving the hand in a clockwise circle.

The solid line represents the acceleration in the x-direction, the dashed line represents

the acceleration in the y-direction, and the solid-dot line represents the acceleration

in the z-direction. According to the way the accelerometer is manufactured, tilting the

accelerometer can result in different measurements for the same hand movement. Fig. 1.4

shows the acceleration waveforms representing a simple hand movement to the right. The

wiimote is held in a horizontal orientation as shown in Fig. 1.2. However, Fig. 1.5 shows

the acceleration waveforms representing the same hand movement to the right but with

the wiimote held up-side down. Notice how the constant acceleration of magnitude g

is now in the negative z-direction. In this scenario, the waveforms in the x- and the y-

directions are similar to a movement of the hand to the left. This can be a major source

Chapter 1. Introduction 9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−1

−0.5

0

0.5

1

1.5

time (sec)

no
rm

al
is

ed
 a

cc
el

er
at

io
n

(m
/s

2)

acceleration in x−direction
acceleration in y−direction
acceleration in z−direction

Figure 1.4: Acceleration waveforms defining the simple gesture of moving the hand to
the right with the normal orientation of the wiimote

0 0.1 0.2 0.3 0.4 0.5 0.6
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time (sec)

no
rm

al
is

ed
 a

cc
el

er
at

io
n

(m
/s

2)

acceleration in x−direction
acceleration in y−direction
acceleration in z−direction

Figure 1.5: Acceleration waveforms defining the simple gesture of moving the hand to
the right with a 90o clockwise rotation of the wiimote

Chapter 1. Introduction 10

0 0.1 0.2 0.3 0.4 0.5 0.6
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time (sec)

no
rm

al
is

ed
 a

cc
el

er
at

io
n

(m
/s

2)

acceleration in x−direction
acceleration in y−direction
acceleration in z−direction

Figure 1.6: Acceleration waveforms defining the simple gesture of moving the hand to
the right with the wiimote pointing up

of confusion. Yet, the acceleration in the z-direction can indicate that the wiimote is held

up-side down.

Fig. 1.6 shows the acceleration waveforms, again, representing the same hand move-

ment to the right but with the wiimote pointing up in a vertical orientation. In this case,

the constant acceleration of magnitude g is now in the negative y-direction. This high-

lights the fact that tilting the wiimote while performing a gesture can lead to different

measurements.

All the above waveforms address how serious the issue of tilting can be and how it

should definitely be taken into account while designing a gesture recognition system with

data acquired using a wiimote.

1.3.2 Example of Importance of a 3-axis Accelerometer

Again, the accelerometer is a device for measuring the acceleration of moving objects. Fig.

1.7 shows the raw acceleration waveforms acquired by a wiimote for a person walking a

distance of 22 ft. Theoretically, the speed can be obtained by integrating the acceleration

Chapter 1. Introduction 11

0 1 2 3 4 5 6 7 8 9
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (sec)

no
rm

al
is

ed
 a

cc
el

er
at

io
n

(m
/s

2)

X−acceleration
Y−acceleration
Z−acceleration

Figure 1.7: Acceleration waveforms for a person taking 10 steps

signals and further integrating the speed to obtain the distance. However, for indoor

environments, the acceleration is very small and therefore it is very challenging to separate

it from the noise due to the channel, offset drift, internal calibration, or even tilting.

Consequently, integrating the acceleration results in integrating the error and leads to

erroneous estimation of the distance. Alternatively, detecting the number of footsteps

taken to walk a distance can help in knowing the distance covered if the stride size is

known. In other words, the distance can be related to the number of steps and the step

size as follows

distance = stride size × number of steps (1.1)

When walking with an accelerometer, the acceleration in the conventional z-direction

fluctuates in a sinusoidal form as a result of the motion mechanism as shown in Fig.

1.7. Notice how clear the peaks are in the z-direction, and the acceleration waveforms

in the x-, and y-directions seem to carry some useful information too. It turns out that

adding the acceleration values in the three directions emphasizes the peaks and makes

them more significant as is depicted in Fig. 1.8. Each significant peak represents one

Chapter 1. Introduction 12

0 1 2 3 4 5 6 7 8 9
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

time (sec)

su
m

 o
f n

or
m

al
is

ed
 a

cc
el

er
at

io
ns

 (
m

/s
2)

Figure 1.8: Equivalent acceleration waveform

step, and accordingly the subject walked 10 steps in order to cover the distance of 22 ft.

To estimate the number of steps, a simple zero crossing algorithm is used since it

is obvious that the acceleration waveform crosses the zero line twice for each step. As

a result, the number of steps can be found by detecting the number of zero crossings

and dividing it by 2. As for the stride size, it is found empirically using the relationship

proposed in [15] and which states that

stride size = 4

√

Amax − Amin × K (1.2)

where� Amin is the minimum acceleration measured in the z-axis in a single stride.� Amax is the maximum acceleration measured in the z-axis in a single stride.� K is a constant for unit conversion, obtained by walking training

Some more accurate, but more complex models for calculating the number of steps and

step size are available in the literature [16] [17]. A simple distance calculating system

Chapter 1. Introduction 13

using a single 3-axis accelerometer is developed and simulated in Section 4.1 of Chapter

4. Simulations show the accelerometers can be of great significance and open the door

to numerous applications.

1.4 Scope and Objectives

The objective of this work is to create a novel system that can automatically recognize

hand gestures using a single 3-axis accelerometer and that utilizes the sparse nature

of the gesture sequence. The proposed system can be implemented for user-dependent

recognition, mixed-user recognition, and user-independent recognition. User-dependent

recognition refers to the process of training a system using data from a single subject

and using the system specifically for this subject only. Mixed-user recognition is more

general in the sense that more than one subject can be used to train the system under

the condition that the same subjects are involved in using the system. Finally, user-

independent recognition, as the name implies, refers to the process of recognizing the

input signals independently of the user. In other words, use of the system is not restricted

to those involved in training the system. The proposed system evolves to be greatly

competitive against the statistical models and the other existing gesture recognition

systems in terms of computational complexity and recognition accuracy.

Chapter 2 presents the relevant background material. The details of how dynamic

time warping and affinity propagation work are introduced. Then this chapter discusses

random projection and how it can serve as an excellent approximation of signals with

fewer samples. After that, the theory of Hidden Markov Models (HMMs) is presented

followed by a literature review of previous systems that have been developed to recognize

gestures using a single 3-axis accelerometer.

Chapter 3 introduces the proposed gesture recognition system. The system utilizes

dynamic time warping to overcome the problem of different durations of gesture traces

Chapter 1. Introduction 14

and to compute a cost of similarity between the different gesture traces. Affinity prop-

agation is then implemented to train the system and to create an exemplar or a set of

exemplars for each gesture. Finally, the candidate gesture traces are randomly projected

onto the same lower subspace to recognize an unknown gesture trace.

Chapter 4 presents a prototype implementation of the proposed system. The different

parameters are defined to simulate the system. Results are presented and compared to

other gesture recognition systems available in the literature that are based on a single

3-axis accelerometer. These include, continuous HMMs, uWave [1], and a system of

discrete HMMs in [2].

Finally, in Chapter 5 we end this work with our concluding remarks and provide

directions for future work.

1.5 Methodology

The first step in developing the gesture recognition system is to construct a dictionary

of gestures on which the system will operate. So for a system of N gestures, we collect

M traces for each gesture to create a database of the defined gestures. The database is

then split into a training dataset and a testing dataset.

Gesture data for the proposed system refers to the acceleration of the hand, measured

at different times t using a single 3-axis accelerometer. However, hand gestures inher-

ently suffer from temporal variations, and consequently, traces of the same gesture are of

different lengths which poses the first major challenge in developing a gesture recognition

system. In order to overcome this problem, dynamic time warping algorithm is used to

compute a cost of similarity between the different gesture traces. Affinity propagation

then operates on the costs of similarities to divide the training dataset into different

clusters each represented by an “exemplar”. This similarity cost computation and clus-

tering using affinity propagation represent the core of the training stage. Therefore, the

Chapter 1. Introduction 15

output of the training stage is a set of exemplars for the different gestures defined in the

database.

For testing, a user moves an accelerometer-equipped device to signal a particular

gesture from the database. The objective of the gesture recognition system is to find out

which gesture is intended by the user. To do that, the unknown trace is compared to the

exemplars induced by affinity propagation to select a subset of coordinate traces. Based

on the premise that the acquired gesture traces are sparse in nature, the candidate traces

and the unknown gesture trace are projected onto the same lower-dimensional subspace

in order to overcome the problem of different trace sizes. Projection is implemented

using two definitions of a projection matrix: a matrix whose entities are independent

realizations of Gaussian random variables and a matrix with sparse entities. Construction

of random projection matrices is explained in full details in Section 2.4. Such definitions

of the projection matrix are used since they satisfy the restricted isometry property

(RIP) necessary for recovery of original data. After projection is done, the recognition

problem is formulated as an `1 minimization problem whose solution gives the label of

the unknown trace.

1.6 Contributions

The main contribution of this work is the design of a novel gesture recognition system

based solely on data from a single 3-axis accelerometer. The proposed system is very

efficient in terms of recognition accuracy and computational complexity and is very com-

petitive with other systems in the literature.

The following lists the contributions of this work, and any publications that refer to

them:� Single 3-axis Accelerometer : The system operates on data from only a single 3-

axis accelerometer. Most of the systems in the literature combine data from an

Chapter 1. Introduction 16

accelerometer with data from other sensing devices like EMG sensors, or gyroscopes

in order to enhance the system’s performance. In addition, current systems that use

only a single 3-axis accelerometer have limited applications, like being only user-

dependent as is the case with uWave system, or have a small dictionary size. On

the other hand, our proposed system uses only a single 3-axis accelerometer and

functions competitively for any kind of recognition, user-dependent, mixed-user,

or user-independent. Furthermore, our dictionary size is the largest in published

studies to the best of our knowledge.� Dynamic Time Warping and Affinity Propagation: Our system uses dynamic time

warping to compute the cost of similarity between the different gesture traces fol-

lowed by affinity propagation to split the training data into different clusters. Affin-

ity propagation, being a very recent technique, has not been exploited in this field

and according to the literature, it outperforms all the other clustering techniques.

Besides, affinity propagation operates on a matrix of similarities between the ges-

ture traces which makes it very suitable to the system set up (Chapter 2 and

Chapter 3, [18], [19]).� Random Projection: In the testing stage, comparing the unknown trace to the set

of exemplars, found in the training stage, using dynamic time warping only does

not suffice. Yet, the problem of the different gesture traces still poses a problem

and hinders any further processing. Therefore, random projection proves to be an

efficient way of projecting all the candidate traces and at the same time, preserving

the similarities and the differences between the traces (Chapter 2 and Chapter

3, [18], [19]).� `1 Minimization Formulation : Formulating the recognition problem as an `1 min-

imization problem is based on the premise that the gesture traces are sparse in

nature. So, after the candidate traces are projected, the recognition problem is

Chapter 1. Introduction 17

transformed into an `1 minimization problem and its solution leads to the classifi-

cation of the unknown trace (Chapter 3, [18], [19]).

Chapter 2

Background

2.1 Dynamic Time Warping

The Euclidean distance is a very common metric used in many applications to represent

the degree of similarity between any two sequences p = {p1, . . . , pn} and q = {q1, . . . , qn}.

The cost of similarity based on the Euclidean distance metric is computed as

dEuclid(p, q) =

√

√

√

√

n
∑

i=1

(pi − qi)2 (2.1)

This kind of metric is applicable when the two sequences p and q are of the same length.

However, in case p and q are not of the same length then the Euclidean distance is not

applicable as a similarity measure. Instead, a more flexible method that can find the best

mapping from elements in p to those in q must be sought in order to find a similarity

cost between two sequences of different lengths.

Dynamic time warping (DTW) is an algorithm that measures the similarity between

two time sequences of different durations. DTW matches two time signals by computing

a temporal transformation causing the signals to be aligned. The alignment is optimal in

the sense that a cumulative distance measure between the aligned samples is minimized

18

Chapter 2. Background 19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−8

−6

−4

−2

0

2

4

6

Time (sec)

M
ag

ni
tu

de

P
Q

Figure 2.1: Two time sequences P and Q that are similar but out of phase

[20].

Assume that the two sequences, p and q, are similar but are out of phase and are of

length n and m, respectively, where p = {p1, . . . , pn} and q = {q1, . . . , qm} as shown in

Fig 2.1. The objective is to compute the matching cost: DTW(p, q).

To align the two sequences using DTW, we construct an n × m matrix where the

(i, j)-th entry of the matrix indicates the distance d(pi, qj) between the two points pi and

qj , where d(pi, qj) = (pi− qj)
2. The cost of similarity between the two sequences is based

on a warping path W that defines a mapping between p and q. The kth element of W

is defined as wk which is a pointer to the k-th element on the path, usually represented

by the indices of the corresponding element. So, W is defined as

W = 〈w1, w2, . . . , wk, . . . , wL〉 (2.2)

such that,

max(m,n) ≤ L < n +m− 1 (2.3)

The warping path is subject to two main constraints [20]:

Chapter 2. Background 20

i. Boundary conditions: w1 = (1, 1) and wL = (n,m) and this entails that the warping

path starts and ends in diagonally opposite corners of the matrix.

ii. Continuity and Monotocity: Given wk = (a, b), and wk−1 = (a
′

, b
′

), then a
′ ≤ a ≤

a
′

+1 and b
′ ≤ b ≤ b

′

+1. This casts a restriction on the allowable steps in the path

to adjacent cells including diagonally adjacent cells, and forces the path’s indices

to be monotonically increasing.

There are exponentially many warping paths that satisfy the above constraints. How-

ever, we are seeking only the path that minimizes the warping cost. In other words,

DTW(p, q) = min{

√

√

√

√

L
∑

k=1

DTW(wk)} (2.4)

The monotonically increasing warping path that minimizes the similarity cost between p

and q is found by applying the dynamic programming formulation below, which defines

the cumulative cost Di,j as the cost d(pi, qj) in the current cell plus the minimum of the

cumulative cost of the adjacent elements,

Di,j = d(pi, qj) +min {Di,j−1, Di−1,j, Di−1,j−1} (2.5)

and consequently,

DTW(p, q) = Dn,m (2.6)

The resulting new matrix is depicted in Fig. 2.2 showing the optimum warping path

between the two sequences and demonstrating the constraints that the warping path is

satisfying.

Chapter 2. Background 21

Q

P

Figure 2.2: Aligning the two sequences by finding the optimum warping path

2.1.1 Example of Dynamic Time Warping

An example of how to use DTW to compute the similarity cost between two sequences

p and q of different lengths is given here. Let

p = [1 2 2 3 3 4 4]

q = [1 2 3 4]

where q is a compressed version of p. In this case, n = 7 and m = 4 and we start by

constructing a matrix which is 7×4 and placing p and q on each side of the matrix. The

(i, j)-th element of the matrix consists of the d(pi, qj) = (pi − qj)
2 as shown in the table

to the left below. After the matrix to the left is filled, a second matrix based on it is

constructed where each (i, j)-th element of the second matrix represents the cost in the

current cell of the matrix to the left plus the minimum cost from the adjacent cells in the

matrix to the right as per the formulation in(2.5). The cost between the two sequences

p and q is equal to the cost in the top right corner of the second matrix which is 0 in

this example.

Chapter 2. Background 22

4 9 4 1 0

→

28 10 2 0
4 9 4 1 0 19 6 1 0
3 4 1 0 1 10 2 0 1
3 4 1 0 1 6 1 0 1
2 1 0 1 4 2 0 1 5
2 1 0 1 4 1 0 1 5
1 0 1 4 9 0 1 5 14

1 2 3 4

Table 2.1: Computation of the similarity cost using DTW

2.2 Affinity Propagation

Clustering data based on a measure of similarity is a critical step in engineering systems.

A common approach is to use data to learn a set of centers such that the sum of squared

errors between data points and their nearest centers is small. When the centers are

selected from actual data points, they are called exemplars. A new technique for data

clustering is the Affinity Propagation (AP) algorithm [21]. AP is an algorithm that

simultaneously considers all data points as potential exemplars and recursively transmits

real-valued messages until a good set of exemplars and clusters emerges. An exemplar is

a term used to represent the center selected from the the actual data points. AP does

not require that the number of clusters be known prior to clustering, instead, the clusters

emerge naturally.

2.2.1 Similarity Function

AP algorithm takes an input function of similarities, s(i, j), where s(i, j) reflects how

well suited data point j is to be the exemplar of data point i. AP aims to maximize

the similarity s(i, j) for every data point i and its chosen exemplar j. For example,

the similarity function could be the negative Euclidean distance between data points.

Negative Euclidean distance is used so that a maximum similarity corresponds to the

closest data points.

In addition to the measure of similarity, AP takes as input a set of real numbers,

Chapter 2. Background 23

known as self-similarity s(i, i), or preference (p) for each data point. The preference (p)

influences the number of exemplars that are identified. Initializing a data point with a

larger or smaller self-similarity, respectively increases or decreases the likelihood of the

data point becoming an exemplar. If all the data points are initialized with the same

constant self-similarity, then all data points are equally likely to become exemplars. The

preference (p) also controls how many clusters are produced. By increasing and decreas-

ing this common self-similarity input, the number of clusters produced is increased and

decreased respectively. If all data points are assigned the median of the input similarities,

a moderate number of clusters is produced, and if they are assigned the minimum of the

input similarities, the smallest number of clusters is produced. This algorithm can gen-

erate better clusters, compared to other clustering techniques like K-means clustering,

because of its initialization-independent property [21].

2.2.2 Message Passing: Responsibility and Availability

Clustering is based on the exchange of two types of messages: the “responsibility” mes-

sage to decide which data points are exemplars and the “availability” message, to decide

which cluster a data point belongs to:� the responsibility message r(i, j) sent from data point i to candidate exemplar j,

reflects the accumulated evidence for how well-suited data point j is to serve as the

exemplar for i, taking into account other potential exemplars j
′

for data point i,

that is

r(i, j) = s(i, j)− max
j
′
s.t.j

′ 6=j

{

a(i, j
′

) + s(i, j
′

)
}

(2.7)

where i 6= j, and s(i, j) is the similarity between data point i and data point j and

a(i, j) is the availability message defined below.� the availability message a(i, j), sent from candidate exemplar j to data point i,

reflects the accumulated evidence for how appropriate it would be for data point i

Chapter 2. Background 24

to choose j as its exemplar, taking into account the support from other data points

that j should be an exemplar, that is

a(i, j) = min

0, r(j, j) +
∑

i
′
s.t.i

′ 6=i,j

max{0, r(i′, j)}

(2.8)� The self-responsibility, r(j, j) and self-availability, a(j, j) are two additional mes-

sages calculated for each data point, j. Both of these messages reflect accumu-

lated evidence that j is an exemplar, and they are used to find the clusters. The

self-responsibility bases exemplar suitability on input preference and the maximum

availability received from surrounding data points whereas the self-availability bases

exemplar suitability on the number and strength of positive received responsibili-

ties. Mathematically,

r(j, j) = s(j, j)− max
j
′
s.t.j

′ 6=i

{

a(j, j
′

) + s(j, j
′

)
}

(2.9)

a(j, j) =
∑

i
′
s.t.i

′ 6=j

max{0, r(i′, j)} (2.10)

2.2.3 Cluster Decisions

In AP algorithm, the exemplar of each data point i is found using the following equation,

exemplari = argmax
j

{a(i, j) + r(i, j)} (2.11)

This clustering procedure may be performed at any iteration of the algorithm, but final

clustering decisions should be made once the algorithm stabilizes. The algorithm can

be terminated once exemplar decisions become constant for some number of iterations,

indicating that the algorithm has converged. It should be noted that the algorithm

possesses another useful feature: it is possible to determine when a specific data point

Chapter 2. Background 25

has converged to exemplar status for a specific iteration. When a data point’s self-

responsibility plus self-availability becomes positive, that data point has become the

exemplar for its cluster.

2.3 Compressive Sensing

Compressive sensing [22] is a method that allows us to recover signals from far fewer

measurements than the traditional sampling methods. Assume that the received signal

can be represented as a d × 1 vector x = Ψs where Ψ is a d × d basis matrix and s

is a d × 1 sparse vector that has only ls � d non-zero elements. The locations of the

non-zero elements in s are unknown. Signal x is compressed using a k×d sensing matrix

Φ, which yields the measurement vector y of dimension k as follows

y = Φx = ΦΨs (2.12)

It has been shown that s can be recovered exactly if k satisfies the following inequality

k ≥ cls log (d/ls) (2.13)

where c is a constant and ls is the sparsity level [22].

The signal can be reconstructed by solving the following `1 norm minimization prob-

lem

min
s

‖s‖1

subject to y = ΦΨs (2.14)

Chapter 2. Background 26

2.3.1 Restricted Isometry Property (RIP)

To explain the concept of Restricted Isometry Property (RIP), we refer to the ap-

proach outlined in [23] by describing the concept of compressive sensing in terms of

encoder/decoder and approximation error. In the discrete compressive sensing problem,

we are interested in economically recording the information about a vector or a signal

x ∈ Rd. We allocate a budget of k nonadaptive questions to ask about x. Each question

takes the form of a linear functional applied to x. Thus, the information we extract from

x is given by

y = Φx, (2.15)

where Φ is a k × d matrix and y ∈ Rk. The matrix Φ maps Rd into Rk, where d� k.

To extract the information that y holds about x, we use a decoder ∆ that maps from

Rk back into Rd. The role of ∆ is to provide an approximation x̄ := ∆(y) = ∆(Φx) to

x. The mapping ∆ is typically nonlinear. The central question of compressive sensing

is: What are the good encoder-decoder pairs (Φ,∆)?

To measure the performance of an encoder-decoder pair (Φ,∆), we introduce a norm

‖ · ‖X in which we measure error. Then,

E(x,Φ,∆)X :=‖ x−∆(Φx) ‖X (2.16)

is the error of the encoder-decoder on x. More generally, if K is any closed and bounded

set contained in Rd, then the error of this encoder-decoder on K is given by

E(K,Φ,∆)X = sup
x∈K

E(x,Φ,∆)X . (2.17)

Thus, the error on the set K is determined by the largest error on K. To address the

question of what constitutes good encoder-decoder pairs, we introduce Ak,d := {(Φ,∆) :

Chapter 2. Background 27

Φ is k × d}. The best possible performance of an encoder-decoder on K is given by

Ek,d(K)X := inf
(Φ,∆)∈Ak,d

E(K,Φ,∆)X . (2.18)

This is the so-called “minimax” way of measuring optimality that is prevalent in approx-

imation theory, information-based complexity, and statistics [23].

The decoder ∆ is important in practical applications in compressive sensing and also

in the above formulation. Candès, Romberg, and Tao [24] showed that decoding can be

accomplished by the linear program

∆(y) := arg min
x:Φx=y

‖ x ‖`d
1

. (2.19)

Furthermore, Candès and Tao [25] introduced the isometry condition on matrices Φ

and established its important role in compressive sensing. Given a matrix Φ and any

set T of column indices with the number of elements nT , we denote by ΦT the k × nT

matrix composed of these columns. Similarly, for a vector x ∈ Rd, we denote by xT the

vector obtained by retaining only the entries in x corresponding to the column indices

T . We say that Φ satisfies the Restricted Isometry Property (RIP) of order m if there

exists a δm ∈ (0, 1) such that

(1− δm) ‖ xT ‖2
`d
2

≤‖ ΦT xT ‖2
`k
2

≤ (1 + δm) ‖ xT ‖2
`d
2

(2.20)

holds for all sets T with nT ≤ m. The condition (2.20) is equivalent to requiring that the

Grammian matrix ΦT
T ΦT has all of its eigenvalues in [1− δm, 1+ δm], where ΦT

T denotes

the transpose of ΦT .

The “good” matrices for compressive sensing should satisfy (2.20) for the largest

possible m. For example, Candès and Tao [25] show that whenever Φ satisfies the RIP

Chapter 2. Background 28

of order 3m with δ3m < 1, then

‖ x−∆(Φx) ‖`d
2

≤
C2σm(x)`d

1√
m

, (2.21)

where σm(x)`d
1

denotes the `1 error of the best m-term approximation, and the constant

C2 depends only on δ3m. The original proof of (2.21) is given in [26] and the proof for

this particular formulation is provided in [27].

The question before us now is how we can construct matrices Φ that satisfy the

RIP for the largest possible range of m. The most prominent matrices are the k × d

random matrices Φ whose entries φi,j are independent realizations of Gaussian random

variables [23]

φi,j ∼ N (0,
1

n
). (2.22)

One can also use matrices where the entries are independent realizations of ±1 Bernoulli

random variables [28]

φi,j =

+1√
n

with probability 1
2
,

−1√
n

with probability 1
2
,

(2.23)

or related distributions such as

φi,j =

+
√

3
n

with probability 1
6
,

0 with probability 2
3
,

−
√

3
n

with probability 1
6
.

(2.24)

2.4 Random Projection

Random Projection (RP) has recently emerged as a powerful technique for dimension-

ality reduction [29] [30]. In RP, the original d-dimensional data is projected onto a

k-dimensional (k � d) subspace using a k × d random matrix A whose columns have

Chapter 2. Background 29

unit lengths. Using matrix notation, let Xd×n be the original set of n d-dimensional

observations, then the projection problem can be formulated as,

XRP
k×n = Ak×dXd×n (2.25)

where XRP
k×n represents the projected data onto the lower k-dimensional subspace.The

concept of RP is inspired by the Johnson-Lindenstrauss theorem [31].

Strictly speaking, (2.25) is not a projection because the projection matrix A is gener-

ally not orthogonal and such a linear mapping can result in significant distortion to the

original data set. One solution is to orthogonalize A but this can be computationally

very expensive. Alternatively, we can resort to the fact that in a high-dimensional space,

the number of almost orthogonal directions is much larger than the number of orthogonal

directions [32]. Therefore, vectors having random directions can be sufficiently close to

orthogonal and thus can offer the necessary preservation of the original data set after

projection.

In case of RP, the matrix A is the general case of Φ in Sections 2.3 and 2.3.1. A

is a sampling operator for X, and is invertible if each x ∈ X is uniquely determined

by its sampled or projected data Ax; this means if for every u, v ∈ X, Au = Av then

u = v. In other words, A is a one-to-one mapping between XRP and X and this allows

a unique identification for each x ∈ X from Ax. However, practically, we want that a

small change in x only result in a small change in its sampled or projected data Ax.

Therefore, we consider a stricter condition given by

α ‖ u− v ‖2H ≤ ‖ Au−Av ‖2l2=
∑

n

|〈u− v, ψ2
n〉|2

≤ β ‖ u− v ‖2H (2.26)

where α and β are constants with α > 0 and β <∞, H is an ambient Hilbert space, and

ψn ∈ H is a sampling vector [33].

Chapter 2. Background 30

The sampling condition (2.26) on A is related to the important concept of restricted

isometry property (RIP) described in Section 2.3.1, and is interestingly the same as RIP

if X has sparse columns and the columns come from the same subspace [33] [34]. As

mentioned in Section 2.3.1, any distribution of zero mean and unit variance satisfies the

sampling condition in (2.26). As far as this thesis is concerned, Gaussian distributions

as well as a special case of the distribution in (2.24) given below

aij =
√
3 ·

+1 with probability 1
6

0 with probability 2
3

−1 with probability 1
6

(2.27)

will be investigated. The distribution (2.27) has been reported to result in further com-

putational savings since computations can be done using integer arithmetics [28].

2.5 Hidden Markov Models

Consider a system which may be described at any time as being in one of a set of N

distinct states, S1, S2, . . ., SN . At regularly spaced discrete times, the system undergoes

a change of state according to a set of probabilities associated with the state. We denote

the time instants associated with the sate changes as t = 1, 2, . . . , and we denote the

actual state at time t as qt. Generally, a full probabilistic description of such a system

would require specification of the current state (at time t), as well as all the predecessor

states. However, a system is first-order Markov if the conditional probability density of

the current state qt, given all present and past states, depends only on the most recent

state, represented in the following formulation:

P [qt = Sj|qt−1 = Si, qt−2 = Sk, · · ·] = P [qt = Sj |qt−1 = Si]. (2.28)

Chapter 2. Background 31

Furthermore, we only consider those systems in which the right-hand side of (2.28) is

independent of time, thereby leading to the set of state transition probabilities aij of the

form

aij = P [qt = Sj |qt−1 = Si], 1 ≤ i, j ≤ N (2.29)

with the state transition coefficients having the properties

aij ≥ 0

∑N

j=1 aij = 1
(2.30)

A Hidden Markov Model (HMM) is a double stochastic process governed by 1) an

underlying Markov chain with a finite number of states, and 2) a set of random functions

associated with each state. HMM has proven to be extremely efficient in modeling time-

series with spatial and temporal variability as well as handling undefined patterns. The

states in an HMM are connected by transitions. Each transition is associated with a pair

of probabilities:

(i) transition probability, the probability of transitioning from the current state to a

different state, and

(ii) output probability, the probability of producing an output symbol from a finite

alphabet given a state. An HMM is formally characterized by the following [35]:

i. N , the number of states in the model. Although the states are hidden, there

is frequently some physical significance associated with the states or the sets of

states in the model. States can be interconnected in different ways. Ergodic model

interconnection is the simplest of all, and it represents the interconnection in which

any states can be reached from any other state. The individual states are denoted

as S = {s1, s2, s3, . . . , sN}, and the state at time t is denoted by the random variable

qt.

ii. M , the number of distinct observation symbols per state, i.e. the discrete alphabet

Chapter 2. Background 32

size. The observation symbols, in other words, model the physical output of the

system. The individual symbols are denoted as V = {v1, v2, v3, . . . , vM}, and the

observation at time t is denoted by the random variable Ot.

iii. The state transition probability distribution A = {aij} where

aij = P (qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ N (2.31)

For the special case where any state can reach any other state in a single step, we

have aij > 0 for all i,j. For other types of HMMs, aij = 0 for one or more (i, j)

pairs.

iv. The observation symbol probability distribution in state j, B = {bj(k)}, where

bj(k) = P (vk at t|qt = Sj), 1 ≤ j ≤ N

1 ≤ k ≤M
(2.32)

v. The initial state distribution π = πi where

πi = P (q1 = Si) 1 ≤ i ≤ N (2.33)

Given appropriate values of N,M,A,B, and π, the HMM can be used as a generator

to give an observation sequence

O = O1O2 · · ·OT (2.34)

where each observation Ot is one of the symbols from V , and T is the number of obser-

vations in the sequence. The sequence O is generated as follows

1. Choose an initial state q1 = Si according to the initial state distribution π.

Chapter 2. Background 33

2. Set t = 1.

3. Choose Ot = vk according to the symbol probability distribution in state Si, i.e.

bi(k).

4. Transit to a new state qt+1 = Sj according to the state transition probability

distribution for state Si, i.e. aij .

5. Set t = t + 1; return to step 3 if t < T , otherwise terminate the procedure.

For convenience, an HMM is represented in a compact form as

λ = (A,B, π) (2.35)

to indicate the complete parameter set of the model.

2.5.1 Three Basic Problems for HMMs

Given the form of the HMM, there are three basic problems of interest that must be

solved for the model to be useful in real-world applications [35]. These problems are the

following:

Problem 1 : Given the observation sequence O = O1O2 · · ·OT , and a model λ =

(A,B, π), how do we efficiently compute P (O|λ), the probability of the observation

sequence, given the model?

Problem 2 : Given the observation sequence O = O1O2 · · ·OT , and the model λ, how

do we choose a corresponding state sequence Q = q1q2 · · · qT which is optimal is

some meaningful sense?

Problem 3 : How do we adjust the model parameter λ = (A,B, π) to maximize

P (O|λ)?

Chapter 2. Background 34

2.5.2 Solutions to the Three Basic Problems of HMMs

As far as this thesis is concerned, we are interested only in solving Problems 1 and 3.

Problem 1 is an evaluation problem, namely given a model and a sequence of observations,

how do we compute the probability that the observed sequence was produced by the

model. We can also view the problem as one of scoring how well a given model matches a

given observation sequence. The latter concept is extremely useful, especially in the case

when we are trying to choose among several competing models. The solution to Problem

1 allows us to choose the model which best matches the observations. As for Problem 3,

it is a one in which we attempt to optimize the model parameters so as to best describe

how a given observation sequence comes about. The observation sequence used to adjust

the model parameters is called a training sequence since it is used to train the HMM.

A. Solution to Problem 1

In Problem 1, we wish to calculate the probability of the observation sequence,

O = O1O2 · · ·OT , given the model λ, i.e. P (O|λ). The most straightforward way

of doing this is through enumerating every possible state sequence of length T .

Considering one such fixed state sequence

Q = q1q2 · · · qT (2.36)

where q1 is the initial state. The probability of the observation sequence O for the

state sequence of (2.36) is

P (O|Q, λ) =
T
∏

t=1

P (Ot|qt, λ) (2.37)

where we have assumed statistical independence of observations. Thus we get

P (O|Q, λ) = bq1(O1) · bq2(O2) · · · bqT (OT) (2.38)

Chapter 2. Background 35

The probability of such a state sequence Q can be written as

P (Q|λ) = πq1aq1q2aq2q3 · · · aqT−1qT (2.39)

The joint probability of O and Q, i.e. the probability that O and Q occur simulta-

neously, is simply the product of (2.38) and (2.39),

P (O,Q|λ) = P (O|Q, λ)P (Q, λ). (2.40)

The probability of O given the model is obtained by summing the joint probability

over all possible state sequences q giving

P (O|λ) =
∑

allQ

P (O|Q, λ)P (Q|λ)

=
∑

q1,q2,··· ,qT

πq1bq1(O1)aq1q2bq2(O2) · · ·aqT−1qT bqT (OT) (2.41)

Calculating P (O|λ) according to this direct definition in (2.41) involves on the

order of 2TNT calculations since at every t = 1, 2, · · · , T , there are N possible

states which can be reached, i.e. there are NT possible state sequences and for

each such state sequence about 2T calculations are required for the term in the

sum of (2.41). Clearly, a more efficient method is required to solve Problem 1. The

commonly used procedure is the Forward-Backward Procedure [36] [37].

B. Solution to Problem 3

Problem 3 is the most difficult problem among the three problems which is to

determine a method to adjust the model parameters (A,B, π) to maximize the

probability of the observation sequence given the model. Given any finite obser-

vation sequence as training data, there is no optimal way of estimating the model

parameters [35]. However, we can choose λ = (A,B, π) such that P (O|λ) is locally

Chapter 2. Background 36

maximized using an iterative procedure or using gradient techniques [38]. As far as

this thesis is concerned, local maximization of P (O|λ) and training of the HMM is

done using Expectation-Modification method [39].

2.5.3 Types of HMMs

An HMM can be of different types depending on how the states are connected and

depending on the application. The two most common types of HMMs are the ergodic

model and the left-right model.

i. Ergodic or fully-connected Model

This is the most general form of a HMM and is the case in which all the states are

connected. In other words, every state can be reached from every other state in a

finite number of steps. Fig. 2.3 depicts how an ergodic HMM looks like. Notice how

1 2

3 4

a

a

a

a

a

a

aa

a

a a

a

a

a
a

a

11

12

22

21

244231 13

34

43

4433

23

41

14

32

Figure 2.3: A four-state ergodic HMM

Chapter 2. Background 37

Figure 2.4: A five-state left-right HMM

this model has the property that every aij coefficient exists and is of course positive.

Hence, for ergodic model in Fig. 2.3, the state transition probability distribution

A would have the form

A =

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

(2.42)

ii. Left-right Model

The left-right HMM is good for modelling order-constrained time-series whose prop-

erties sequentially change over time. Fig. 2.4 depicts how a left-right HMM looks

like. The model gets its name from the property that as time increases the state

index increases or stays the same, and as a result, the states proceed from left to

right and thus the name. The fundamental property of all left-right HMMs is that

the state transition coefficients have the property

aij = 0, j < i (2.43)

which implies that no transitions are allowed to states whose indices are lower than

the current state. Moreover, the initial state probabilities have the property

πi =

0, i 6= 1

1, i = 1
(2.44)

Chapter 2. Background 38

In this case, the state transition probability distribution A of the left-right HMM

in Fig. 2.4 would have the form

A =

a11 a12 a13 0 0

0 a22 a23 a24 0

0 0 a33 a34 a35

0 0 0 a44 a45

0 0 0 0 a55

(2.45)

Chapter 3

Gesture Recognition Systems

The majority of the available literature on gesture or action recognition combines data

from a 3-axis accelerometer with data from another sensing device like a biaxial gyro-

scope [40] or EMG sensors [10] in order to improve the system’s performance and to

increase the recognition accuracy. An accelerometer-based gesture recognition system

using continuous Hidden Markov Models (HMMs) [41] has been developed. However,

the computational complexity of statistical or generative models like HMMs is directly

proportional to the number as well as the dimension of the feature vectors [41]. There-

fore, one of the major challenges with HMMs is estimating the optimal number of states

and thus determining the probability functions associated with the HMM. Besides, vari-

ations in gestures are not necessarily Gaussian and perhaps, other formulations may

turn out to be a better fit. The most recent gesture recognition system that is solely

accelerometer-based is the uWave [1].

3.1 uWave

uWave is a user-dependent system that supports personalized gesture recognition. Liu

et al. developed uWave system on the premise that human gestures can be characterized

by the time series of the forces measured by a handheld device [1]. Fig. 3.1 illustrates

39

Chapter 3. Gesture Recognition Systems 40

Figure 3.1: Block diagram of the uWave System from [1]

how uWave functions. The input to uWave is a time series of acceleration provided by

a 3-axis accelerometer. Each time sample is a vector of three elements, corresponding to

the acceleration along the three axes. uWave starts by quantizing the acceleration values

into discrete values. Quantization of Library templates is also done. The quantized input

time series is then compared to the library templates by dynamic time warping (DTW)

and then the time series are recognized as the gesture whose template yields the lowest

cost. The recognition results, confirmed by the user as correct or incorrect, can be used

to adapt the existing templates to accommodate gesture variation over time.

uWave quantization consists of two steps. In the first step, the time series of the

acceleration is temporally compressed by an averaging window of 50ms that moves at

a 30ms step. This significantly reduces the length of the time series for DTW. The

rationale behind the averaging window is that intrinsic acceleration produced by hand

movement does not change erratically; and rapid changes in acceleration are often caused

by noise and minor hand shaking or tilting. In the second step, the acceleration data

is converted into one of 33 levels, as summarized in Table 3.1. uWave implements a

non-linear quantization because most of the samples are between -g and +g and very few

Chapter 3. Gesture Recognition Systems 41

go beyond +2g or below -2g.

Acceleration Data
Converted Value

(a)

a > 2g 16
g < a < 2g 11 – 15 (five levels linearly)
0 < a < g 1 – 10 (ten levels linearly)
a = 0 0

−g < a < 0 -1 – -10 (ten levels linearly)
−2g < a < −g -11 – -15 (five levels linearly)

a < −2g -16

Table 3.1: uWave Quantization Table

The core of the uWave is DTW since it is very effective in coping with limited training

data and small vocabulary gestures. However, for a larger vocabulary, HMM-based

methods are the chosen techniques since they are more scalable and can create better

models from a large set of training data.

Liu et al. claim that there are considerable variations between gesture samples by

the same user collected over different days. Ideally, uWave should adapt its templates

to accommodate such time variations. Two simple schemes are proposed to adapt the

templates: uWave keeps two templates generated on two different days for each gesture.

It matches gesture input with both templates of each gesture and takes the smaller

matching cost of the two as the matching cost between the input and the gesture. In the

first scheme, if both templates for a gesture in the library are at least one day old and

the input gesture is correctly recognized, the older one is replaced by the newly correctly

recognized input gesture. This is referred to as Positive Update. The second scheme

differs from the first one in that the older template is replaced with the input gesture

when it is incorrectly recognized. This scheme is referred to as Negative Update. Positive

update only requires the user to notify uWave when recognition result is incorrect whereas

negative update requires the user to point out the correct gesture when a recognition error

happens.

uWave is evaluated with a gesture vocabulary identified by a Nokia research [42].

Chapter 3. Gesture Recognition Systems 42

uWave achieves an accuracy of 98.6% and 93.5% with and without template adaptation,

respectively, for user-dependent recognition. However, uWave’s database adaptation re-

sembles continuous training and in some cases, removing an older template every other

day might lead to replacing a very good representative of a gesture, which is best avoided.

Although uWave proves to perform incredibly efficiently in terms of computational cost

as well as recognition accuracy when compared to other systems and other statistical

methods, being user-dependent limits the applications of uWave. Besides, researchers

on accelerometer-based gesture recognition are envisaging a universal system that, given

a dictionary of gestures, can recognize different gesture repetitions with a competitive

accuracy and with minimal dependence on the user.

3.2 System of Discrete HMMs

Another system that is solely dependent on a single 3-axis accelerometer is the HMM-

based system in [2]. The system implements a discrete HMM since the authors claim that

a discrete HMM delivers reliable results for patterns with spatial and temporal variations.

Fig. 3.2 depicts a block diagram of the system.

Figure 3.2: Block diagram of the HMM-based System in [2]

The system implements a preprocessing stage which constitutes two filters, an “idle

state” and a “directional equivalence” filter. Schlömer et al. claim that two filters

serve the purpose of reducing and simplifying the incoming acceleration data before it is

forwarded for quantization and training of an HMM. The first filter is a simple threshold

filter eliminating all vectors which do not contribute to the characteristic of a gesture in

a significant way, i.e. all a for which |a| < ∆. For this system, the value of ∆ is found

Chapter 3. Gesture Recognition Systems 43

empirically to be equal to 1.2g where g represents the acceleration due to gravity. The

second filter eliminates all the vectors that are roughly equivalent to their predecessors

and thus keeping only those that contribute to the characteristics of the gesture. In other

words, vectors are eliminated if their components, c ∈ {x, y, z} at time t is very close to

the vector’s component at time t - 1, i.e. if |at − at−1| ≤ ε. For this system, ε is set to

0.2.

After the data is filtered, the system implements k-means in order to quantize the

data according to a number of vectors set a priori. After vector quantization, an HMM is

trained for each gesture. The system is developed for a gesture dictionary of five gestures,

comprising a square, a circle, gesture representing roll, letter Z, and gesture representing

bouncing off ground a tennis ball. For classification, a Bayesian classifier is used. The

system yields an accuracy of 89.7% for both mixed-user and user-dependent recognitions.

3.3 Proposed Gesture Recognition System

3.3.1 Problem Setup

Suppose that a system consists of N hand gestures and for each gesture M traces are

stored in a database. Gesture complexity ranges from very simple ones, as simple as

the hand moving either to the right or to the left or up or down, to more complex ones

such as gestures representing letters or numbers. The acceleration of the hand is used

as the data to represent a gesture rather than the hand position. The acceleration of

the hand is measured at different times t using a single 3-axis accelerometer. Therefore,

a trace of a gesture is basically a three column matrix representing the acceleration of

the hand in the x-, y-, and z-directions. However, hand gestures inherently suffer from

temporal variations. In other words, they differ from one person to another and even

the same person cannot perfectly replicate the same gesture. This means that gesture

traces can differ in duration depending on the user and the speed of the hand movement.

Chapter 3. Gesture Recognition Systems 44

Consequently, traces of the same gesture are of different lengths which poses the first

major challenge in developing a gesture recognition system.

Mathematically, the gesture recognition problem can be formulated as follows: The

system consists of N gestures, each having M traces, tabulated as the following sets,

G1 = {G1,1,G1,2, . . . ,G1,M},

G2 = {G2,1,G2,2, . . . ,G2,M},
...

GN = {GN,1,GN,2, . . . ,GN,M}.

(3.1)

Each Gi,j is a li,j×3 matrix, where each column represents the acceleration in the x-, y-,

or z-direction. Notice that li,j is different even for traces of the same gesture Gi since

traces of the same gesture can have different durations and thus different number of rows.

The gesture database (3.1) is produced in an off-line procedure and stored for later use,

which constitutes the training stage. In a test stage, a user moves his/her accelerometer-

equipped device, such as a smart phone or a wiimote, to signal a particular gesture from

the above database in (3.1). The accelerometer readings are formed into an ly×3 matrix

Y. Again, note that ly may not be equal to any li,j. The objective of a gesture recognition

system is to find out which gesture is intended by the user.

Fig. 3.3 depicts the general overview of the proposed gesture recognition system.

Notice that the block diagram implicitly represents a two-stage system: the first stage

being the training stage is represented by the top part of the block diagram, whereas

the second stage being the testing stage is represented by the bottom part of the block

diagram.

The training stage comprises two parts. A sliding window, which acts as a moving

average filter, is applied to the acquired data to remove any noise that might have been

accumulated, which is due to internal sampling, or accelerometer calibration or sensitivity,

or hand shaking during gesture acquisition. The smoothing step is followed by a clustering

Chapter 3. Gesture Recognition Systems 45

Figure 3.3: General Overview of the Gesture Recognition System

process which is broken into two sub-blocks. The first clustering sub-block deals with

the unequal durations of the gesture traces Gi,j. This sub-block uses DTW to compute

a measure of similarity between vectors of unequal lengths. The measure of similarity

is then used in the AP sub-block to decompose the training data into multiple clusters.

Clustering in essence represents the core of the training stage. Members of the same

cluster should share the same characteristics; coming from the same gesture is the most

desirable one. Each cluster is represented by one of its members called an “exemplar”. So,

the output of the clustering stage, and in turn the training stage, is a set of exemplars

E each representing a cluster of gesture traces. The details of each sub-block will be

discussed in the following section.

3.3.2 Training Stage

Recall that gesture traces suffer from inherent temporal variations, and therefore the

conventional Euclidean distance is not applicable as a similarity measure between the

gesture traces. Consequently, in our gesture recognition system, we resort to dynamic

time warping to compute the similarities between the different gesture traces.

In the proposed 3-axis accelerometer gesture recognition system, since each gesture

Chapter 3. Gesture Recognition Systems 46

trace is defined by three acceleration waveforms, the similarity cost between gesture trace

Gi of size n×3 and gesture trace Gj of size m×3 is computed as:

DTW(Gi,Gj) =
√

D2
n,m(x) +D2

n,m(y) +D2
n,m(z) (3.2)

where Dn,m(x), Dn,m(y), Dn,m(z) are the DTW costs computed between the traces in

the x, y, and z axes respectively.

Importing the definitions of the similarity and the availability messages from Section

2.2 and applying them to our proposed gesture recognition system, the “responsibility”

message assists in deciding which traces are exemplars, and the “availability” message

assists in deciding which cluster a trace belongs to. The responsibility message is given

by

r(i, j) = s(i, j)− max
j
′
s.t.j

′ 6=j

{

a(i, j
′

) + s(i, j
′

)
}

(3.3)

where i 6= j, and s(i, j) is the pairwise similarity that indicates how well the trace Gj is

suited to be the exemplar for the trace Gi and is defined as

s(i, j) = DTW(Gi,Gj) ∀ i, j ∈ {1, 2, ..., L} (3.4)

where L is the total number of gesture traces, and the availability message is given by

a(i, j) = min

0, r(j, j) +
∑

i
′
s.t.i

′ 6=i,j

max{0, r(i′, j)}

(3.5)

In addition to the measure of similarity, AP takes as input a set of real numbers, known

as self-similarity or preference (p) for each gesture trace, so that traces with larger values

of p are more likely to be chosen as exemplars. For the proposed gesture recognition

system, the self-similarity p is proportional to the median of the input similarities, that

Chapter 3. Gesture Recognition Systems 47

is

p = β ∗median{s(i, j), ∀ i, j ∈ {1, 2, ..., L}} (3.6)

where β is a constant that controls the number of clusters to be generated in an inversely

proportional manner. In other words, as the value of β decreases, more clusters will be

generated.

AP is chosen as the clustering technique since it does not operate on feature vectors

or raw data but rather operates on a matrix of similarities between data points. This

configuration of AP eliminates the requirement of forcing all gesture traces to be of the

same length or generating feature vectors of equal lengths as is the case in [40] [10] [42].

AP can generate better clusters, compared to other clustering techniques like K-means

clustering, because of its initialization-independent property [21].

The output of AP is a set of exemplars E for the N gestures in our system, such that

E = {E1,E2, . . . ,EH} (3.7)

where H ≥ N . Notice that the number of exemplars H obtained is greater than or equal

to the number of gestures N . The reason is due to the fact that the gesture traces are

collected from different subjects. Consequently, the number of exemplars per gesture,

Hi, satisfies the inequality

1 ≤ Hi ≤ P ∀ i ∈ {1, 2, . . . , N} (3.8)

where P is the number of subjects included in training the system. Figure 3.4 shows a

complete block diagram of the training stage.

Chapter 3. Gesture Recognition Systems 48

Figure 3.4: Block Diagram of Training Stage

3.3.3 Testing Stage

In order to recognize an unknown gesture trace Y, it is intuitive to compare it to the

set of exemplars in E and classify Y to the gesture whose exemplar gives the lowest

cost. However, since our clustering algorithm does not yield a unique exemplar for each

gesture, this approach does not suffice in yielding a high recognition accuracy. We make

the following observations on the clustering technique used above.

First, we note that, although not observed in our simulations, the affinity propagation

technique does not guarantee that all members of a cluster and its exemplar are traces

of the same gesture. The problem becomes more significant when gesture traces from

different subjects are combined in the same database.

Second, although an exemplar is a representative of its cluster, it cannot be used to

detect the corresponding gesture of a testing trace due to the fact that a unique exemplar

cannot be extracted per gesture. However, exemplars are useful in removing outliers, and

reducing the size of the search space, hence reducing the computational complexity.

Fig. 3.5 shows a complete block diagram of the testing stage. The proposed recognizer

comprises mainly of two steps. In the first step, the unknown gesture traceY is compared

to the set of exemplars obtained in the training stage to find those that are closest to

Y. Then, a R is created by grouping together all the members of the clusters whose

exemplars are chosen to be closer to Y. Further processing of the data is very difficult

since the different gesture trace duration still poses problem.

One solution is to project all the traces onto the same lower dimensional subspace

and thus solve the problem of different durations and simultaneously reduce the compu-

Chapter 3. Gesture Recognition Systems 49

Figure 3.5: Block Diagram of Testing Stage

Chapter 3. Gesture Recognition Systems 50

tational cost. This proposition is motivated by the premise that, as seen in Fig. 1.3, the

defined hand gestures appear to be sparse since the hand follows a smooth trajectory

while performing a gesture. Therefore, gesture traces can be represented using fewer

samples as per the theory of compressive sensing as explained in Section 2.3.

Therefore, one solution to overcome the different gesture repetitions sizes is to project

all the repetitions onto the same lower subspace. An ideal dimensionality reduction tech-

nique has the capability of efficiently reducing the data into lower-dimensional subspace

while preserving the properties of the original data. Random projection is the approach

sought to project the repetitions onto the same lower subspace. The proposed gesture

recognition system will be tested against both forms of the sampling or projection matrix

A: the Gaussian distribution and the distribution in (2.27).

In the second step, the set R is then converted into three matrices and the random

projection matrix is constructed. After that, the data is projected onto the same lower

dimensional subspace. Then the problem is formulated as `1 minimization problem and

is solved to estimate the three sparse vectors θ̂x, θ̂y, and θ̂ which are then combined to

recognize the unknown trace Y.

For recognition, the following approach is followed. As per earlier notation, let Y

represent an unknown gesture trace to be recognized, which is a matrix of size ly× 3,

and let y denote one of the columns of Y and let R be the set of all traces that are of

close resemblance to Y. This resemblance is determined by computing the DTW cost

between Y and every exemplar Ej ∈ E , and choosing the clusters whose DTW cost is

below a certain threshold α. In other words,

R = {Cj | ∀ j : Ej ∈ E and DTW(Ej ,Y) < α} (3.9)

where Cj is any member of the jth cluster with the exemplar Ej . By empirical exami-

Chapter 3. Gesture Recognition Systems 51

nation, we have found that the threshold

α = 2 ·min{DTW(Ej,Y), ∀ Ej ∈ E } (3.10)

gives the best results.

In order to proceed with the recognition process, the set R is converted into three

matrices by forcing all traces as well as the unknown gesture trace Y to be in the same

space. This is done by finding the maximum length lmax to be

lmax = max{ly, l1, . . . , lL} (3.11)

where L is the total number of traces in R and l1, . . . , lL represent their lengths, i.e. the

number of rows in each trace. After lmax is found, all the traces including the unknown

gesture trace Y, which are shorter than lmax are padded by zeros forcing them to be

of length lmax. In other words, all traces are transformed to the largest subspace by

assuming that the shorter traces have zero components in the higher subspaces. Zero

padding can take any possible form, i.e. adding zeros to the beginning of the trace, adding

zeros in between the trace samples, or adding zeros to the end of the trace. This is due to

the fact that the random projection matrixA satisfies the RIP condition and therefore, it

makes no difference which columns of A are chosen to compress the trace [25]. However,

for simplicity of application, we pad zeros to the end of the traces, and in this case,

Rx = [rx
1 , r

x
2 , · · · , rx

L] =

rx1,1 rx2,1 · · · rxL,1

rx1,2 rx2,2 · · · rxL,2
...

...
. . .

...

rx1,l1 rx2,l2 · · · rxL,lL

01 02 · · · 0L

(3.12)

Chapter 3. Gesture Recognition Systems 52

and,

yx =

yx1

yx2
...

yly

0y

(3.13)

where Rx is a matrix whose columns represent the x-components of the padded traces, yx

is the x-component of the padded unknown gesture trace, and 0i and 0y are zero vectors

of length (lmax − li) and (lmax − ly) respectively. Ry, Rz, yy, and yz are constructed in

a similar manner.

In order to project the data onto the lower dimensional subspace, the projection ma-

trix A is constructed based on the distributions defined earlier and would be of size

lk × lmax, where lk is the dimension of the new common lower dimensional subspace. Ac-

cording to Fig. 1.3, gesture waveforms are smooth curves, and one of the transformations

which would give a sparse representation of the waveforms is the Fourier transform. So,

for a sparse sequence r, let r̃ and kr denote the Fourier transform and the sparsity level

of the sequence r respectively. Moreover, let rm denote the maximum magnitude in r̃.

The sparsity level kr of r is defined as

kr ≥ K · Bγ (3.14)

where K is a constant and Bγ is the number of samples in r̃ that are greater than a

threshold γ defined as

γ = c · rm (3.15)

where c is a constant ∈ (0, 1) to preserve only the significant samples. In practice, K can

be either 3 or 4 making the sparsity level kr three or four times Bγ [22]. Accordingly,

Chapter 3. Gesture Recognition Systems 53

the Fourier transform of a trace R is defined as

R̃ = [r̃x r̃y r̃z] (3.16)

The sparsity of R is then given by

kR = max{krx
, kry , krz} (3.17)

The sparsity level kR is computed for each trace in (3.1) and stored in the database as

well. Consequently,

lk = max{kRi
; ∀ i ∈ {1, 2, . . . , L}} (3.18)

After A is constructed, the data in the x-direction is projected as

Rx = ARx = [Arx
1,Arx

2, · · · ,Arx
L] (3.19)

and

yx = Ayx (3.20)

where Rx, represents the projected data in the x-direction onto the new subspace and

yx represents the projected x-component of the unknown gesture trace.

The relationship between Rx and yx can be formulated as

yx = Rxθx (3.21)

where θx is theoretically a 1-sparse L × 1 vector whose elements are all zeros except

θx(n) = 1, such that rx
n best resembles yx. Namely,

θx = [0, , 0, 1, 0, , 0]T (3.22)

Chapter 3. Gesture Recognition Systems 54

where T denotes transposition. However, gesture traces suffer from inherent tempo-

ral variations and therefore, the above ideal scenario of having a perfect match to the

unknown gesture trace is impossible and therefore, the problem can be reformulated as

yx = Rxθx + εx (3.23)

where εx is the measurement noise.

Using the same formulation as in [43], we introduce the preprocessor W, which is

defined as

Wx = QxRx

†
(3.24)

where Qx = orth(R
T

x)
T , and orth(Rx) is an orthogonal basis for the range of Rx, and

R
†
x is the pseudo-inverse of the matrix Rx. The gesture recognition problem takes on a

new formulation as,

hx = Wxyx = Qxθx + ε
′

x (3.25)

where ε
′

x = Wxεx. θx can be well recovered from hx with a high probability through

the following `1-minimization formulation:

θ̂x = argmin ‖ θx ‖1, s.t. hx = Qxθx + ε
′

x (3.26)

This represents recognition of the unknown trace based on data in the x-direction only.

θy and θz are solved for using the same approach.

In order to recognize the unknown gesture trace, the three θ̂x, θ̂y, θ̂z vectors are

combined together in the following manner,

θ̂eq = θ̂
2

x + θ̂
2

y + θ̂
2

z (3.27)

The unknown gesture trace is then recognized as the gesture to which the traceRi belongs

Chapter 3. Gesture Recognition Systems 55

such that θ̂eq(i) is maximum.

Chapter 4

Implementation Results

4.1 Distance Calculation System

A simple distance estimating system using a single 3-axis accelerometer is developed.

For training, five individuals are asked to walk a distance of 48 ft while carrying an

accelerometer. The chosen individuals vary in height causing them to have different

stride sizes. The path the individuals follow consists of turns as well as U-turns to

verify how well the system performs in such setting. Each person is asked to repeat the

experiment three times, and each time the number of steps taken is noted. The collected

data is used to train the system by estimating the constant K in (1.2). The system is

tested by asking two of the individuals to walk a distance of 44 ft and a distance of 22 ft

and the estimated distance are compared to the actual distances.

Table 4.1 shows a summary of the performance of the system with the percentage

error. According to the obtained results, the system estimates the walked distance within

±8% of the actual distance which is a very promising result. In conclusion, 3-axis ac-

celerometer can be of great significance and their embodiment with many personal elec-

tronic devices opens a gate to numerous applications that need to be explored.

56

Chapter 4. Implementation Results 57

User Actual Distance (ft) Calculated Distance (ft) Percentage Error (%)

Individual 1 44 45.98 4.5
22 23.72 7.8

Individual 2 44 42.25 3.9
22 20.99 4.6

Table 4.1: Performance of distance estimating system

4.2 Gesture Recognition System

The acceleration data corresponding to the different gestures is collected using a wiimote,

which has a built-in 3-axis accelerometer. A dictionary of 18 gestures is created as shown

in Fig. 4.1. To the best o our knowledge, our dictionary of gestures is the largest in

published studies for accelerometer-based gesture recognition. The defined gestures are

not limited to one plane only as is the case in other studies [1] [42], but span the two

planes: XZ and Y Z planes. The dictionary contains a variety of gestures ranging from

the simple right, left, up, down gestures to more complex gestures resembling letters

and numbers. This definition of gestures is to increase the robustness of the gesture

recognition system.

The database consists of 3,780 traces and is built by acquiring gestures from 7 subjects

(2 females and 5 males) using the wiimote. Each subject is asked to repeat each gesture

30 times resulting in a total of 540 traces for all gestures per participant or a total of 210

traces from all participants per gesture. A gesture acceleration waveforms from the same

person can differ drastically if the tilting angle of the accelerometer is large. Therefore,

all participants are asked to try their best to perform the gestures without any, or with

minimal, tilting of the remote.

For system evaluation, the database is split into two datasets: a training set and a

testing set. The training dataset is generated by choosing traces from three users (2 males

and 1 female) out of the seven users, i.e. P = 3. Specifically, 5 traces are randomly

chosen for each gesture from each of the three users resulting in a total of 15 traces per

gesture, i.e. M = 15. The testing dataset comprises all the remaining traces from the

Chapter 4. Implementation Results 58

X

Z

X

Z

X

Z

X

Z

X

Z

X

Z

X

Z

X

Z

X

Z

X

Z

X

Z

Y

Z

Y

Z

Y

Z

Y

Z

X

Z

X

Z

X

Z

Figure 4.1: The dictionary of 18 gestures

Chapter 4. Implementation Results 59

three users plus the entire set of traces from the remaining four users (3 males and 1

female). Simulations are run for N = {8, 10, 12, 14, 16, 18} gestures. The system’s

performance is compared to Hidden Markov Models (HMMs), the system in [1], and

furthermore to a system in literature developed using HMMs [2]. Fig. 4.2 and Fig. 4.3

show the system’s performance in terms of recognition accuracy against the number of

gestures for a projection matrix A, formed with a Gaussian distribution and the sparse

distribution in (2.27) respectively, and is compared to HMMs.

In order to develop the system of HMMs, the system is set up in an identical manner

to [41]: a left to right HMM with a continuous gaussian distribution is used to model

each gesture. The output distributions are assumed to have diagonal covariance matrices.

Consequently, each HMM can be described as an 8m-parameter model, where m is the

number of states. The eight parameters comprise the two state transition probabilities,

and one Gaussian output distribution which constitutes a mean vector µ ∈ R3 and the

three diagonal elements of the covariance matrix. For comparison, simulations are run

with m = 10.

Fig. 4.2 and Fig. 4.3 show that the system’s performance is almost identical for

both definitions of the projection matrix A which confirms that the sparse distribution

in (2.27) is a very good approximation of the Gaussian distribution. The system yields

a very competitive performance for a system of 8 gestures, giving a recognition accuracy

of 96.84%. The dashed lines show the system’s performance only on traces in the testing

dataset from the three subjects whose data is used in training the system. In other

words, this type of recognition can be referred to as mixed-user recognition. The solid

lines show the system’s performance on the entire testing dataset which includes traces

from all the seven subjects, and this type of recognition is referred to as user-independent

recognition. As shown, the system greatly outperforms the simple HMM-system for all

dictionary sizes.

The proposed system results in great computational savings in terms of training. Fig.

Chapter 4. Implementation Results 60

8 9 10 11 12 13 14 15 16 17 18
70

75

80

85

90

95

100

number of gestures

re
co

gn
iti

on
 a

cc
ur

ac
y

(%
)

user−independent recognition with Gaussian RP matrix
mixed−user recognition with Gaussian RP matrix
user−independent recognition with HMMs
mixed−user recognition with HMMs

Figure 4.2: System’s performance against the number of gestures using a Gaussian ran-
dom projection matrix compared to HMM

4.4 shows the average time taken to train the system for different dictionary sizes. The

dark bars in Fig. 4.4 pertain to the proposed system whereas the lighter bars pertain

to the system of HMMs. The proposed system takes much less time to train the system

for all dictionary sizes compared to the system of HMMs. This is due to the nature of

the Expectation-Maximization (EM) algorithm adopted by HMM for training. EM is

an iterative method which alternates between performing an expectation (E) step and a

maximization (M) step to estimate the parameters that describe the distribution of the

model. Therefore, depending on the starting points, the algorithm might converge to a

local maximum and never reach the global maximum. Affinity propagation, on the other

hand, is immune to the choice of the starting point, since it considers all data points

as exemplars. Exemplars are chosen based on the exchange of the responsibility and

the availability messages between the data points. In other words, affinity propagation

implements a recursive algorithm to create the exemplars, not an iterative algorithm as

is the case with HMM.

As for testing, Fig. 4.5 shows the average time taken to recognize an unknown gesture

Chapter 4. Implementation Results 61

8 9 10 11 12 13 14 15 16 17 18
70

75

80

85

90

95

100

number of gestures

re
co

gn
iti

on
 a

cc
ur

ac
y

(%
)

user−independent recognition with Sparse RP matrix
mixed−user recognition with Sparse RP matrix
user−independent recognition with HMMs
mixed−user recognition with HMMs

Figure 4.3: System’s performance against the number of gestures using a sparse random
projection matrix compared to HMM

trace. The system of HMMs executes an unknown gesture trace recognition in an average

of 0.08 seconds whereas the proposed system recognizes an unknown gesture trace in 0.18

seconds. Although the system of HMMs takes about half the time taken by the proposed

system for an unknown trace recognition, the difference is not noticeable since both times

are less than one-twentieth of a second. Besides, the unnoticeable saving in the testing

computational cost is minor at the expense of the tremendous outperformance of the

proposed system to the system of HMMs for user-independent recognition.

In order to give a deeper insight into the system’s performance, Fig. 4.6 depicts

the cumulative density functions (cdfs) of the system’s performance using a Gaussian

projection matrix for dictionary sizes of 8, 10, 16, and 18 gestures respectively. The cdfs

are generated by running the code 1000 times and recording the system’s recognition

accuracy for each run. According to Fig. 4.6, an increase in the dictionary size from 8

gestures to 18 gestures results in a reduction of 2% in the system’s performance. This

shows that the system is robust to large dictionary sizes unlike the case with the uWave

system. For uWave system, the dictionary size is limited to 8 gestures since the core of

Chapter 4. Implementation Results 62

8 10 12 14 16 18
0

20

40

60

80

100

120

140

number of gestures

tim
e

(s
ec

)

Proposed System
System of HMMs

Figure 4.4: Comparison of training computational cost between proposed system and
system of HMMs

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

tim
e

(s
ec

)

Proposed System
System of HMMs

Figure 4.5: Comparison of testing computational cost between proposed system and
system of HMMs

Chapter 4. Implementation Results 63

91 92 93 94 95 96 97 98 99
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recognition accuracy (%)

cd
f

8 gestures
10 gestures
16 gestures
18 gestures

Figure 4.6: Cdfs of the system’s performance for N = 8, 10, 16, and 18 gestures using a
Gaussian random projection matrix

the system is dynamic time warping which copes effectively with limited training data

and smaller dictionaries of gestures.

For further comparison between the proposed system and the other systems, Table 1

shows a comparison of performance between the proposed system, HMMs, uWave, and

the system in [2]. From Table 1, we can deduce that our proposed system outperforms

uWave system in [1] for user-dependent recognition. The system yields a perfect recog-

nition accuracy for a dictionary of 8 gestures using the gestures defined compared to an

accuracy of 98.4% by uWave. Finally, our system outperforms the system in [2] which

yields an average accuracy of 90% for a dictionary size of five gestures only compared to

our dictionary size of 18 gestures.

Chapter 4. Implementation Results 64

Table 1: Comparison of Performance of proposed system, HMMs, uWave, and system in [2]

Technique no. of gestures
Accuracy(%)

User-Dependent Mixed-User User-Independent

Proposed System 8 - 18 100 - 99.81 99.98 - 98.71 96.84 - 94.60

HMMs 8 - 18 99.97 - 99.54 99.61 - 98.11 75.96 - 71.50

uWave 8 98.6 - 75.4

System in [2] 5 89.7 89.7 -

Chapter 5

Conclusions and Future Work

A primary goal of virtual environments is to provide natural, efficient, and flexible inter-

action between human and computer. Gestures as input modality can help meet these

requirements. Human gestures which are natural can be efficient and powerful when

compared to other interaction modes. Gestures are expressive and meaningful body mo-

tions which involve physical movements of the fingers, hands, arms, face, or head with

the intent to convey information or interact with the environment. Gestures can be

static, where the user assumes a certain pose or configuration, or dynamic, defined by

movement.

Gesture recognition is the process by which gestures made by the user are made

known to the system. To support gesture recognition, body parts position and movement

must be tracked and interpreted in order to recognize meaningful gestures. Numerous

sensing devices such as magnetic field trackers, instrumented gloves, and datasuits, which

are attached to the user, have been utilized to develop gesture recognition systems as

well as cameras and other computer vision techniques. Each sensing technology differs

along several dimensions, including accuracy, resolution, latency, range of motion, user

comfort, and cost. Other gesture recognition systems have been developed by integrating

multiple sensors with the intent of improving the system’s performance and increasing

65

Chapter 5. Conclusions and Future Work 66

the recognition accuracy.

Motivated by the proliferation of the accelerometers on personal electronic devices

such as Apple iPhone, iPad, and other smart phones, this work presented a novel gesture

recognition system based solely on data from a single 3-axis accelerometer. The system

employs dynamic time warping and affinity propagation algorithms for efficient training.

Dynamic time warping is used to calculate a cost of similarity between the gesture traces

after the conventional methods failed due to the different gesture trace durations. Affinity

propagation operates on the costs of similarities between the gesture traces and divides

the training data into different clusters each represented by an exemplar.

In the testing phase, the unknown trace is compared to the exemplars induced by

affinity propagation to select a subset of coordinate traces. The sparse nature of the

gesture traces is exploited to project candidate traces and the unknown gesture trace onto

the same lower-dimensional subspace. Projection is implemented using two definitions

of a projection matrix: a matrix whose entities are independent realizations of Gaussian

random variables and a matrix whose entities are independent realizations of Bernoulli

random variables.

The system is tested on a dictionary of 18 gestures whose database contains over 3,700

traces collected from 7 subjects. The system’s performance is evaluated by comparing

it to the performance of a system of continuous HMMs, a system of discrete HMMs,

and uWave. Systems of HMMs are used for comparison since HMM is a powerful tech-

nique which manifested itself in virtual environments and recognition problems. The

system achieves almost perfect recognition for user-dependent recognition and extremely

competitive accuracies for mixed-user and user-independent recognitions. Compared to

HMMs, the system outperforms a system of continuous HMMs as well as a system of dis-

crete HMMs for all dictionary sizes. Furthermore, the system requires much less time to

train the system compared to HMMs. Although uWave, the most recent gesture recogni-

tion system that is solely accelerometer-based, is primarily user-dependent, our proposed

Chapter 5. Conclusions and Future Work 67

system outperforms uWave for user-dependent recognition. In summary, our proposed

gesture recognition system provides an outstanding performance in terms of recognition

accuracy and computational complexity when compared to other systems in literature.

5.1 Future Work

Future work involves implementing the proposed gesture recognition system on a smart

phone or any other personal device with a built-in accelerometer. The system proves a

very competitive performance computationally and in terms of recognition accuracy by

running the code in Matlab on a computer. However, it is more reasonable to validate

the system’s novelty and performance by testing how it performs in real life. This entails

running the code on a different platform which means converting the code to a different

programming language such as JAVA, C, C++, or any language supported by the phone.

Another interesting topic for future work is to extend the proposed system to incor-

porate gesture spotting. In our proposed system, the starting point of a gesture trace

was marked by pressing and holding the ‘trigger’ button or ‘B’ button on the bottom of

the remote. This way of acquiring gesture traces by assuming known starting and end

points is not realistic. Therefore, a more realistic scenario would be to detect meaning-

ful gesture traces from a stream of hand movements and recognizing the gesture traces

accordingly.

One more interesting topic to research is the problem of tilting. As mentioned earlier,

tilting of the remote can lead to erroneous recognition if not taken into account. There-

fore, in our proposed system, subjects were requested to hold the remote in a natural way

while performing the gestures and to avoid any tilting of the remote as much as possible.

However, this way of holding the remote can result in some inconvenience to users of

the system. Consequently, a system which is immune to tilting of the accelerometer is

definitely a desirable one.

Bibliography

[1] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan, “uWave: Accelerometer-

based personalized gesture recognition and its applications,” Pervasive and Mobile

Computing, vol. 5, no. 6, pp. 657 – 675, 2009, perCom 2009.

[2] T. Schlömer, B. Poppinga, N. Henze, and S. Boll, “Gesture recognition with a Wii

controller,” TEI’08 - Second International Conference on Tangible and Embedded

Interaction - Conference Proceedings, pp. 11–14, 2008.

[3] “The global Wii experience website,” 2010. [Online]. Available:

http://us.wii.com/iwata asks/wii remote/

[4] S. Mitra and T. Acharya, “Gesture recognition: A survey,” IEEE Transactions on

Systems, Man, and Cybernetics - Part C, vol. 37, no. 3, pp. 311–324, 2007.

[5] J. Alon, V. Athitsos, Q. Yuan, and S. Sclaroff, “A unified framework for gesture

recognition and spatiotemporal gesture segmentation,” IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, vol. 31, pp. 1685–1699, 2009.

[6] H.-K. Lee and J. H. Kim, “An HMM-based threshold model approach for gesture

recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 21, pp. 961–973, 1999.

68

Bibliography 69

[7] J. Jia, J. Jiang, and D. Wang, “Recognition of hand gesture based on Gaussian

mixture model,” in Content-Based Multimedia Indexing, 2008. CBMI 2008. Inter-

national Workshop on, 18-20 2008, pp. 353 –356.

[8] S. Zhao, W. Tan, S. Wen, and Y. Liu, “An improved algorithm of hand gesture

recognition under intricate background,” in ICIRA ’08: Proceedings of the First In-

ternational Conference on Intelligent Robotics and Applications. Berlin, Heidelberg:

Springer-Verlag, 2008, pp. 786–794.

[9] J. Alon, V. Athitsos, and S. Sclaroff, “Accurate and efficient gesture spotting via

pruning and subgesture reasoning,” in In Proc. IEEE ICCV Workshop on Human

Computer Interaction, 2005, pp. 189–198.

[10] X. Zhang, X. Chen, W.-h. Wang, J.-h. Yang, V. Lantz, and K.-q. Wang, “Hand

gesture recognition and virtual game control based on 3D accelerometer and EMG

sensors,” in IUI ’09: Proceedings of the 13th international conference on Intelligent

user interfaces. New York, NY, USA: ACM, 2009, pp. 401–406.

[11] Y. Fujiki, “iPhone as a physical activity measurement platform,” in CHI EA ’10:

Proceedings of the 28th of the international conference extended abstracts on Human

factors in computing systems. New York, NY, USA: ACM, 2010, pp. 4315–4320.

[12] C. A. Wingrave, B. Williamson, P. D. Varcholik, J. Rose, A. Miller, E. Charbonneau,

J. Bott, and J. J. L. Jr., “The wiimote and beyond: Spatially convenient devices for

3D user interfaces,” IEEE Computer Graphics and Applications, vol. 30, pp. 71–85,

2010.

[13] ADXL330, Small, Low Power, 3-Axis ±3g iMEMS Accelerometer, Analog Devices,

2007.

[14] “Wiimote - WiiBrew,” 2010. [Online]. Available: http://wiibrew.org/wiki/Wiimote

Bibliography 70

[15] H. Weinberg, “Using the ADXL202 in pedometer and personal navigation applica-

tions,” application note AN602, Analog Device.

[16] Q. Ladetto, “On foot navigation: Continuous step calibration using both comple-

mentary recursive prediction and adaptive Kalman filtering,” in ION GPS 2000,

Salt Lake City, Utah, USA, 2000.

[17] S. Y. Cho and C. G. Park, “MEMS based pedestrian navigation system,” The Jour-

nal of Navigation, vol. 59, no. 01, pp. 135–153, 2006.

[18] A. Akl and S. Valaee, “Accelerometer-based gesture recognition via dynamic-time

warping, affinity propagation, & compressive sensing,” 2010 IEEE International

Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 2270 –2273,

March 2010.

[19] A. Akl, C. Feng, and S. Valaee, “A novel accelerometer-based gesture recognition

system,” Submitted to IEEE Transactions on Signal Processing, 2010.

[20] E. Keogh, “Exact indexing of dynamic time warping,” in VLDB ’02: Proceedings of

the 28th international conference on Very Large Data Bases. VLDB Endowment,

2002, pp. 406–417.

[21] B. J. Frey and D. Dueck, “Clustering by passing messages between data points,”

Science, vol. 315, no. 5814, pp. 972–976, February 2007. [Online]. Available:

http://dx.doi.org/10.1126/science.1136800

[22] E. Candès and M. Wakin, “An introduction to compressive sampling,” Signal Pro-

cessing Magazine, IEEE, vol. 25, no. 2, pp. 21 –30, March 2008.

[23] R. Baraniuk, M. Davenport, R. Devore, and M. Wakin, “A simple proof of the

restricted isometry property for random matrices,” Constr. Approx, vol. 2008, 2007.

Bibliography 71

[24] E. J. Candès, J. K. Romberg, and T. Tao, “Stable signal recovery from

incomplete and inaccurate measurements,” Communications on Pure and Applied

Mathematics, vol. 59, no. 8, pp. 1207–1223, August 2006. [Online]. Available:

http://dx.doi.org/10.1002/cpa.20124

[25] E. Candès and T. Tao, “Decoding by linear programming,” IEEE Transactions on

Information Theory, vol. 51, no. 12, pp. 4203 – 4215, dec. 2005.

[26] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal

reconstruction from highly incomplete frequency information,” IEEE Transactions

on Information Theory, vol. 52, no. 2, pp. 489–509, February 2006. [Online].

Available: http://dx.doi.org/10.1109/TIT.2005.862083

[27] A. Cohen, W. Dahmen, and R. Devore, “Compressed sensing and best k -term ap-

proximation,” Tech. Rep., 2006.

[28] D. Achlioptas, “Database-friendly random projections,” Proceedings of the ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp.

274–281, 2001.

[29] E. Bingham and H. Mannila, “Random projection in dimensionality reduction: Ap-

plications to image and text data,” Proceedings of the Seventh ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, pp. 245–250, 2001.

[30] J. Lin and D. Gunopulos, “Dimensionality reduction by random projection and

latent semantic indexing,” of the Text Mining Workshop, at the 3rd SIAM Interna-

tional Conference on Data Mining, May 1-3, 2003.

[31] W. B. Johnson and J. Lindemstrauss, “Extensions of Lipshitz mapping into Hilbert

space,” Conference in Modern Analysis and Probability, volume 26 of Contemporary

Mathematics, pp. 189-206, 1984.

Bibliography 72

[32] R. Hecht-Nielsen, “Context vectors: general purpose approximate meaning repre-

sentations self-organized from raw data,” in J. M. Zurada, R.J. Marks II, and C.J.

Robinson, editors, Computational Itelligence: Imitating Life, 1994, pp. 43–56.

[33] Y. Lu and M. Do, “Sampling signals from a union of subspaces,” Signal Processing

Magazine, IEEE, vol. 25, no. 2, pp. 41 –47, Mar. 2008.

[34] E. Candès and T. Tao, “Near-optimal signal recovery from random projections:

Universal encoding strategies?” IEEE Transactions on Information Theory, vol. 52,

no. 12, pp. 5406 –5425, Dec. 2006.

[35] L. Rabiner, “A tutorial on Hidden Markov Models and selected applications in speech

recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257 –286, feb 1989.

[36] L. E. Baum and J. A. Egon, “An inequality with applications to statistical estimation

for probabilistic functions of a markov process and to a model of ecology,” Bulletin

of the American Meteorological Society, vol. 73, pp. 360-363, 1967.

[37] L. E. Baum and G. R. Sell, “Growth functions for transformations on manifolds,”

Pacific Journal of Mathematics, vol. 27, no. 2, pp. 211-227, 1968.

[38] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, “An introduction to the application

of the theory of probabilistic functions of a markov process to automatic speech

recognition,” Bell System Technical Journal, vol. 62, no. 4, pp. 1035-1074, April

1983.

[39] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-

plete data via the EM algorithm,” Journal of the Royal Statistical Society, vol. 39,

no. 1, pp. 1-38, 1977.

[40] A. Yang, S. Iyengar, S. Sastry, R. Bajcsy, P. Kuryloski, and R. Jafari, “Distributed

segmentation and classification of human actions using a wearable motion sensor

Bibliography 73

network,” in Computer Vision and Pattern Recognition Workshops, 2008. CVPRW

’08. IEEE Computer Society Conference on, June 2008, pp. 1 –8.

[41] T. Pylvänäinen, “Accelerometer based gesture recognition using continuous HMMs,”

in Pattern Recognition and Image Analysis. New York, NY, USA: Springer Berlin

/ Heidelberg, 2005, pp. 639–646.

[42] J. Kela, P. Korpip, J. Mantyjarvi, S. Kallio, G. Savino, L. Jozzo, and D. Marca,

“Accelerometer-based gesture control for a design environment,” Personal Ubiqui-

tous Comput., vol. 10, no. 5, pp. 285–299, 2006.

[43] C. Feng, S. W. A. Au, S. Valaee, and Z. H. Tan, “Orientation-aware localization

using affinity propagation and compressive sensing,” IEEE International Workshop

on Computational Advances in Multi-Sensor Adaptive Processing , CAMSAP, 2009.

