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Abstract—The trend in power electronic applications is
to reach higher power density and higher efficiency. Cur-
rently, the wide band-gap devices such as Silicon Carbide
MOSFET (SiC MOSFET) are of great interest because they
can work at higher switching frequency with low losses.
The increase of the switching speed in power devices
leads to high power density systems. However, this can
generate problems such as overshoots, oscillations, addi-
tional losses and electromagnetic interference (EMI). In this
paper, a novel active gate driver (AGD) for improving the
SiC MOSFET switching trajectory with high performance is
presented. The AGD is an open-loop control system and its
principle is based on gate energy decrease with a gate re-
sistance increment during the Miller Plateau effect on gate-
source voltage. The proposed AGD has been designed and
validated through experimental tests for high-frequency
operation. Moreover, an EMI discussion and a performance
analysis were realized for the AGD. The results show that
the AGD can reduce the overshoots, oscillations and losses
without compromising the EMI. Besides, the AGD can con-
trol the turn-on and turn-off transitions separately and it is
suitable for working with asymmetrical supplies required by
SiC MOSFETs.

Index Terms—Driver circuits, electromagnetic interfer-
ence (EMI), silicon carbide MOSFET, switching losses,
switching transients.

I. INTRODUCTION

T
HE trend in power electronic applications is to reach

major power density, higher efficiency, and reliability.

In this regard, the power device should be able to work

at high frequency with low total losses and work in higher

temperature. Nowadays, studies have shown the advantages

of wide band-gap power devices in comparison with silicon

devices [1]–[3]. The new progress in power devices technology

establishes that silicon carbide (SiC) technology, and Gallium

Nitride (GaN), are the solutions for the needs faced by power

converters nowadays [4]. Accordingly, the SiC devices are

a mature technology and they have been used in different

applications, such as renewable energy [5], [6], drivers for

electrical machines [7], and power converters for Hybrid and

Electric Vehicles [8].

The challenges for the new power converters with SiC

devices such as BJTs, JFETs, MOSFETs and even IGBTs, are

to reach better performance and reliability for hard-switching

and even soft switching conditions. In the specific case of the

SiC MOSFETs, several studies have shown that despite its

advantages, the SiC MOSFETs can present problems in high-

frequency operation. When a power SiC MOSFET operates in

high frequency, over-voltage and over-current can present due

to high switching speed and stray inductances, which produce

electromagnetic interference (EMI) and decrease performance

[2], [9], [10]. On the one hand, when the PCB layout is

optimized, the stray inductances can be reduced. On the

other hand, the increment of gate resistance can reduce, even

removing this problem, however, efficiency can be affected.

Also, snubber circuits have been applied as an alternative

[9], [11], [12], but additional components such as inductors

or capacitors increase the losses and reduce efficiency of

the power converters. Then, the solutions to compensate the

switching problems and increase the SiC devices performance

are focused on the development of gate driver circuits [13].

This paper presents a new technique design for reducing

the overshoots and oscillations provoked by high di/dt and

dv/dt slopes while improving the switching trajectory of SiC

MOSFETs with low total losses. The main concept of this

approach is to decrease the energy realizing a gate resistance

increment during the Miller Plateau effect where the over-

shoots are commonly present.

The paper is organized as follows: first, a study about

gate driver solutions is discussed in section II. The operation

principle of the proposed gate driver is presented in section

III. Section IV focuses on the AGD design and validation

through experimental demonstrations. After that, an analysis

and discussion of gate driver performance are realized and

a study of losses, costs and electromagnetic interference is

developed in section V. Finally, section VI concludes this

paper.

II. A REVIEW OF CONVENTIONAL GATE DRIVERS FOR

SIC MOSFET

A. Gate Drivers Overview for Power Devices

Currently, high switching frequency is required for im-

proving the performances of the power electronics in new

applications. Regarding the literature, when a power device

works in high frequency the di/dt and dv/dt slopes are in-

creased due to stray inductances and parasitic capacitances,



which leads to oscillations and overshoots in current and

voltage [14]. On the one hand, with a large gate resistor, the

overshoots are reduced, but the losses are increased. Besides,

if the gate resistor value is small, the losses can reduce

but the current and voltage overshoots are increased, which

could involve EMI problems and stress in the devices [15],

[16]. Several authors have developed studies for the trade-

off between loss, stress, and EMI [17]. Other solutions have

reached better performance applying snubber circuits in Si and

SiC devices [10]. Nevertheless, these circuits can leave high

stress in additional components such as inductors, capacitors,

and diodes. Additionally, when using a better design of PCB

layout the stray inductances are reduced, and consequently

the EMI problems can also be lower. Furthermore, many gate

driver circuits have been proposed for silicon power devices,

such as different variations of resonant gate drivers [18], [19]

and AGD [15], [20]. Also, gate drivers for SiC devices such as

SiC BJTs [21] and SiC JFETs [22], [12] have been developed.

All these techniques could be applied for SiC MOSFET, but

these drivers must be adapted due to the differences between

the different Si and SiC devices.

B. Gate Drivers as a Solution for Improving the SiC

MOSFET Devices Performance

The SiC MOSFET is being widely studied in power elec-

tronics systems due to its advantages, but it has low transcon-

ductance in comparison with silicon devices such as MOSFET

or IGBT. Accordingly, higher gate-source voltage levels are

required for turn-on. Moreover, the total pulse of the gate-

source voltage is commonly asymmetrical. Therefore, different

values of Rg to improve its performance in both turn-on and

turn-off transitions are required [13]. The conventional two

resistance gate driver is commonly used for controlling the

turn-on and turn-off path. Although this configuration controls

the turn-on and turn-off path separately, it is limited with

regard to the trade-off between efficiency and EMI problems.

A boost gate-drive solution was introduced in [23]. The main

advantage of this gate driver is the losses reduction. However,

the oscillations and overshoots can be kept but cannot be

reduced. The same principle was presented in [24]. The

structure of the driver circuit is a half-bridge converter using a

GaN device. Although the AGD works at high frequency and

medium power, it results in a complex circuit.

In [25] a circuit driver for controlling di/dt and dv/dt for

turn-off transition was presented. This driver consists of a

close-loop control with an optically switched-drive. Results

showed that this driver reduces the losses and overshoots.

However, a complex control and laser devices are required.

In addition, the turn-on state is not considered.

There are other gate driver circuits for improving the

behaviour of the SiC MOSFETs. The resonant gate driver

or current gate driver have been developed as efficient and

simple solutions. In [26] a resonant gate driver was developed.

The driver can work at high frequency and it can reduce the

SiC MOSFETs switching losses. However, the EMI was not

considered and the gate driver solution adds problems with

the switching delay in turn-off. Additionally, a negative gate-

source voltage was not considered, which could affect the

Fig. 1. General scheme of the proposed AGD.

whole performance. In [27], a complete AGD was developed

for suppression of crosstalk of a phase-leg converter, but this

driver is focused mainly on problem transition between two

devices. Also, an AGD was developed by [28], the results

show that the solution can reduce the EMI with high efficiency;

however, the close control-loop used is a complex system. In

accordance with the previous description, most of the solutions

only consider SiC MOSFET losses reduction.

Although several driver circuits face the EMI problems

reduction, only a few studies consider reducing both losses and

EMI. Accordingly, new techniques or circuit drivers should

be developed to compensate for EMI problems and losses

reduction in SiC MOSFETs. Taking into account the previous

review, if the energy during the time interval where the

overshoot and oscillations is decreased, the EMI problems can

be reduced. This energy reduction can be reached by changing

the Rg resistance around the Miller Plateau effect. Therefore,

an AGD design based on a simple open-loop control can

be designed. In section III, a new proposal of the AGD is

presented and analysed.

III. PROPOSED GATE DRIVER AND OPERATING

PRINCIPLE

The general schematic circuit of the proposed AGD is

depicted in Fig. 1. The circuit consists of a conventional totem-

pole drive and two switches S1 and S2 placed in the turn-on

and turn-off path with two resistances in parallel. The switches

are controlled by two window comparator configurations,

which compares the gate-source voltage (vgs) with four refer-

ence voltages. Also, a simple control block is on the feedback

path for coupling the output signals of the comparators and

to generate delays. So, it produces the expected pulses and

suitable voltages for switches S1 and S2.

In addition to internal resistance (Rg,int) of the device,

an external gate resistance Rg,ext is considered because the

switches S1 and S2 could have a very low on-resistance

(Rds(on)) and consequently, the power MOSFET could be

outside of the safe operation area (SOA) when S1 and S2 are

carrying current. Therefore, Rg,ext is connected in series with



Fig. 2. Turn-on SiC MOSFET waveforms and control signals for S1 of
the AGD.

Fig. 3. Turn-off SiC MOSFET waveforms and control signals for S2 of
the AGD.

the driver. It should be worth mentioning that the minimum

Rg,ext is considered according to the recommended value in

the datasheet and it is of 6.3 Ω in this work for the main device

studied. On the other hand, Rg,int is usually very low and is

found in the note application. For this study Rg,int was less

than 1 Ω.

The AGD principle is to increase the gate resistance value

about the Miller Plateau zone of the voltage vgs, in both turn-

on and turn-off conditions. Thus, the current and consequently

the energy are decreased in the interval where overshoots

occur, as shown in Fig. 2 and Fig. 3. Taking into account

Fig. 1, the gate resistance is increased due to the switches S1

and S2 being off during t1,1 − t3 and t7 − t8 respectively.

Therefore, only Ron and Roff are carrying current during

these intervals.

Switching off the S1 and S2 switches is reached through

a comparison realized by windows comparators that compare

four voltage references; V1,high, V1,low and V2,high, V2,low,

with vgs. In addition, two delays td,1 and td,2 are applied to

reach the expected control signal.

On the one hand, the reference voltage V1,low could be

defined at time t2, where vgs voltage reaches the Miller Plateau

voltage. However, the delay tdf,1 of S1 control which is the

total delay caused by MOSFET, the coupling circuit, and

comparators, should be considered for ensuring the timely

switching of S1 and reach the optimal behaviour of the turn-

on transition. On the other hand, V2,high is considered in t6,

where the Miller Plateau voltage is reached by vgs, but the

delay td,2 define the vds and ids slopes behaviour.

The voltages V1,high and V2,low should be properly defined.

V1,high is defined as the Miller Plateau voltage, but the delay

td,1 keeps the control signal high until the Miller Plateau

zone has finished, because it is the point when vds reaches

the minimum value as shown in Fig. 2. On the other hand,

V2,low is considered equal to voltage threshold because it is the

point where id current drops to zero, as shown in Fig. 3. The

total delay caused by the S2 MOSFET, the coupling circuit

and the comparators for controlling the turn-off transition is

considered, but it has no effect on the output signals.

A. Operating at Turn-on Transition

As depicted in Fig. 2, in t0 the PWM signal rises to high,

Q1 and S1 switches are activated, and vgs starts to rise.

While a constant Ig is generated to charge Cgs capacitance

with Rg,on = Rg,ext + Rg,int. Then, in t1 vgs reaches

the threshold voltage (Vgs(th)) and the drain current (id)

begins to rise. When vgs reaches V1,low the switch S1 is

turned off and Ron conducts, therefore Ig decreases with

Rg,on = Ron+Rg,ext+Rg,int. After the t1,1, vgs goes beyond

V1,low and reaches the Miller Plateau voltage. In this time, id
current matches the nominal value (Id) and a peak of current

arises due to the freewheeling diode effect. On the other hand,

vds starts to fall, at that time the reference voltage V1,low is

also reached and S1 is turned off, when td,1 is over in t3.

The vgs voltage starts to rise again in t3. Finally, in t4 vgs
reaches the Vgg and SiC MOSFET is in conduction mode.

S1 is active until the PWM signal rises again. The current

slope of ids during turn-on transition is approximated from

the following equation:

did
dt

= gfs ·
Vgg+ − Vgs(th) −

Id
2·gfs

Ciss ·Rg,on

, (1)

where gfs is the transconductance and Ciss = Cgs + Cgd is

the input capacitance of the SiC MOSFET. On the other hand,

the expressions for the ig current are:

ig,on =
Vgg+ − VMiller

Rg,on

, (2)

taking into account that Rg,on = Ron+Rg,ext+Rg,int during

the interval t2 − t1,1. Moreover, vds is:

dvds/dt = ig,on/Cgd. (3)

Regarding the equations (1)-(3), the current and voltage

slopes can be controlled varying the values of Rg,on.



B. Operating at Turn-off Transition

As shown in Fig 3, when PWM input drops to zero in t5, Q2

and S2 are turned on and Vgs starts to fall until it reaches the

Miller Plateau voltage in t6. The voltage Vgs is approximately

constant in t6 and in this time, vds starts to rise, V2,high is

reached, and S2 is turned off, after that the delay td,2 is over.

Therefore, only Roff is carrying current and Ig magnitude

decreases with Rg,off = Ron + Rg,ext + Rg,int. After in t7
the vds voltage matches the Vdc-bus but an overshoot is created

due to the parasitic inductance Lloop. At that time, also id starts

to fall. When V2,low is reached in t8, S2 is turned on and it

is carrying current until turn-off transition is completed. After

t8, the SiC is in blocking mode. In addition, slope for vds
during turn-on transition is approximated from the following

equation:

dvds/dt = ig,off/Cgd. (4)

On the other hand, the expressions for the ig current are:

ig,off =
−Vgg− − VMiller

Rg,off

, (5)

taking into account that Rg,off = Roff + Rg,ext + Rg,int in

the interval t7 − t8. In addition, vds slope approximation is:

did
dt

= gfs ·
−Vgg− − Vgs(th) −

Id
2·gfs

Ciss ·Rg,off

. (6)

Regarding the equations (4)-(6), the current and voltage

slopes can be controlled by varying the values of Rg,off .

IV. AGD DESIGN AND EXPERIMENTAL VALIDATION

To evaluate the proposed AGD concept an experimental

study has been carried out by using the standard clamped-

inductive circuit depicted in Fig. 4. The circuit consists of an

inductive load, clamped diode with its parasitic capacitance

(CD1), and the SiC power MOSFET with parasitic elements.

The Lloop represents the parasitic inductance which is created

in the loop of the PCB and power devices. Besides, the gate

driver circuit was designed and implemented and is shown in

Fig. 5. The main experimental tests have been realized by

using the N-channel SiC MOSFET SCT2080KE by Rohm

Semiconductor and the SiC Schottky diode C3D25170H in

hard switching conditions. The load current was 6 A, and the

value of L was 87.7 µH. A square signal with 50% of duty

cycle and frequency at 100 kHz was applied in the input. The

Voltage dc-bus was 400 V and the Vgg supply was -5/20 V.

The parasitic capacitances were taken from the datasheet and

parasitic inductances were measured by considering previous

methodologies [15]. The final values for parasitic elements are

listed in Table I.

An inductance Lloop was connected on the circuit to emulate

the oscillations and overshoots. In addition, the maximum

values of Ron and Roff were calculated and the selection

of the voltage references were realized.

Fig. 4. Parasitic elements representation of the SiC MOSFET, and tests
circuit for AGD validation.

Fig. 5. AGD prototype manufactured.

TABLE I
PARAMETERS FOR AGD VALIDATION

Parameters Value

CD1 187.5 pF

Cgd 16 pF

Cgs 2064 pF

Cds 61 pF

Ld 6 nH

Lg 7 nH

Ls 9 nH

Lloop 190.5 nH

A. Calculation of Ron and Roff

As noted above, the Rg performs an important role in

the switching behaviour of the SiC MOSFET. Generally, the

resistance Rg can be determined through an analysis in the

gate driver path and its respective parasitic elements. Also,

based on the presented and validated methods in [9] and [29],



Fig. 6. Parasitic elements representation of the SiC MOSFET in turn-on
conditions.

Fig. 7. Parasitic elements representation of the SiC MOSFET in turn-off
conditions.

the resistance can be calculated through equivalent circuits

of the total parasitic elements. The circuit depicted in Fig. 6

is commonly used to analyse the behaviour of the MOSFET

parasitic elements together with the freewheeling diode and

its parasitic capacitance CD1 for turn-on transition, when the

power device is in conduction mode. Whereas, Fig. 7 depicts

the equivalent circuit for turn-off conditions when the device

is in blocking mode. It is important to mention that the load

inductance L is considered as a constant current source due

to does not change during switching transients. On the other

hand, the parasitic capacitance associated with L is neglected

in the models because is commonly lower than the output

capacitance and it does not intervene in the resonant effect

[30].

Equivalent elements are defined as: Leq = Lloop + Ld,

Rg,on = Ron+Rext+Rint, and Rg,off = Roff+Rext+Rint.

An impedance analysis is developed in the node A in both

circuit and the final equivalent circuits are represented in

Fig. 8.

Regarding Fig. 8, the equivalent resistances Req,on and

Req,off are obtained as [9]:

Req,on =
(ω1 · Ld)

2

Rg,on+
(

ω1·Lg+ω1·Ls− 1

ω1·Ciss

)

Rg,on

, (7)

Fig. 8. Final equivalent circuits of SiC MOSFET with parasitic elements.
a) Turn-on equivalent circuit and, b) Turn-off equivalent circuit.

Req,off =
(ω2 · Ls −

1
ω2·Cs

)2

Rg,off+
(

ω2·Lg+ω2·Ls−
1

ω2·Cg
−

1

ω2·Cs

)

Rg,off

, (8)

where ω1 and ω2 are the resonant frequencies of the resulting

RLC circuits and are defined by equation (9) and equation

(10).

ω1 =
1

√

(Leq + Ls) · CD1

, (9)

ω2 =
1

√

(Leq + Ls) · (Cgd + Cds

. (10)

The final circuits, as shown in Fig. 8, are second order

systems and can be solved using Laplace domain to obtain

the value of Rg,on and Rg,off . However, according to studies

in [29], equivalent resistances reach the maximum value when

the equations (11) and (12) are fulfilled.

Rg,on =

∣

∣

∣

∣

ω1 · Lg + ω1 · Ls −
1

ω1 · Ciss

∣

∣

∣

∣

, (11)

Rg,off =

∣

∣

∣

∣

ω2 · Lg + ω2 · Ls −
1

ω2Cg

−
1

ω2 · Cs

∣

∣

∣

∣

. (12)

After performing the calculation and replacing the values in

each equation, Ron and Roff were obtained. The final value

of Ron and Roff are 28.3 Ω and 32.1 Ω respectively.

B. Time Interval Calculation

If conventional gate driver (CGD) with fixed resistance is

used, the time intervals to define the behaviour of the AGD can

be calculated. Regarding the Fig. 2, the time t1,1 is calculated

as t2 − tdf,1 and t2 is expressed in equation (13), where tdf,1
is considered constant.

t2 ∼= Rg,on · Ciss · ln

(

Vgg − vgs(th)

Vgg − ( 2·Id
gfs

) + vgs(th)

)

. (13)

On the other hand, the delay td1 is the interval t3 − t2 and

the time t3 is expressed as:

t3 ∼= Qgd ·Rg,on/

(

Vgg −

(

2 · Id
gfs

+ vgs(th)

))

, (14)
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where the Qgd is gain-drain charge. For turn-on transition, the

delay td,2 is the interval t7−t6 where t6 and t7 are determined

as:

t6 ∼= Rg,off · Ciss · ln

(

Vgg

( 2·Id
gfs

) + vgs(th)

)

, (15)

t7 ∼= Qgd ·Rg,off/

(

Vgg −

(

2 · Id
gfs

+ vgs(th)

))

. (16)

C. Optimal Values for Reference Voltage V1,low and Opti-

mal Delay td,2

As previously mentioned, V1,low and td,2 are the parameters

that influence the optimal behaviour of the current id and

voltage vds. Accordingly, to reach a better design, V1,low and

td,2 are calculated realizing the optimization between losses

and switching times. On the one hand, usually the switching

losses in both turn-on and turn-off are expressed as:

Eon = 0.5 · (Vds · Id · ton) = Eri + Efv, (17)

Eoff = 0.5 · (Vds · Id · toff ) = Erv + Efi. (18)

On the other hand, a method to characterize the power losses

in relation to the rise time and fall time of the current id was

presented in [31]. This method is used for getting the optimal

times for the points V1,low and td,2, when a relation between

minimal losses Emin expressed in (19), and the energy losses

Eri and Efi, is found. In addition, taking into account the

overshoots and turn on and turn off delay times.

Emin = 0.5 · (Id)
2 · Lloop. (19)

The rise time losses of the current are calculated by using

the expression:

Eri = 0.5 · (Id)
2 · Lloop ·

(

1

α
− 1

)

· (1 + σ1)
3, (20)

where α is the relation between di/dt and [di/dt]max accord-

ing to (21).

α =
did/dt

(did/dt)max

. (21)

The maximum di/dt is defined by equation (22). In general,

the maximum di/dt slope is infinite, for this reason in this

analysis the maximum value of did/dt is considered with the

minimum value result calculation of Rg which is 6.3 Ω.

(did/dt)max = Vdc/Lloop. (22)

In addition, σ1 is the relation between diode reverse

recovery current and id as shown in equation (23).

σ1 = Irr/Id. (23)

The ratio between the losses in trise and minimal losses is

represented by (24).

Eri

Emin

=

(

1

α
− 1

)

· (1 + σ1)
3 (24)

TABLE II
TURN-ON ENERGY LOSSES AND CURRENT PEAKS

V1,low di/dt α Irr σ1 Eon Eon/Emin

(V) (A/µs) (A) (µJ)

5 14.5 0.47 1.8 0.63 195 2.43

6 15.4 0.50 2.3 0.74 182.3 2.27

7 16.8 0.58 2.7 0.88 163.6 2.03

8 22.4 0.59 3.2 1.05 134.3 1.67

9 27.1 0.63 3.8 1.16 128.2 1.59

10 37.3 0.11 4.2 1.29 115.3 1.43

11 36.8 0.81 4.7 140 95.6 1.19

12 47.2 0.92 5.1 146 88.2 1.1

TABLE III
TURN-OFF ENERGY LOSS AND VOLTAGE OVERSHOOTS

td(ns) Vos σ2 Eoff (µJ) Eoff/Emin

200 2 1.00 389.1 1.44

197 15 1.04 345 1.28

156 79 1.19 325.3 1.25

130 88 1.22 292.2 1.2

114 135 1.33 290.6 1.08

96 162 1.145 286.1 1.06

92 189 1.47 283.8 1.05

88 198 1.49 279.5 1.04

81 224 1.56 274.3 1.02

For the case of the losses for fall time of the current, the

equation (25) is used.

Efi = 0.5 · (Id)
2 · Lloop + 0.5 · (Id)

2 · Lloop ·
1

σ2
, (25)

where

σ2 =
Vos

Vds

=
Lloop · did/dt

Vdc

, (26)

If the minimal losses are defined by (19), the ratio between

tfall losses and minimal losses can be represented by (27).

Efi

Emin

= (1 + σ1). (27)

Taking into account the equations (24) and (27), the Eon

and Eoff losses were calculated and the optimal trise and

tfall were obtained. Then, times obtained by the equations

(13)-(15) were used to calculated V1,low and td,2. The Tables

II and III show the variation values when the V1,low and td,2
were finally calculated. In addition, the delay tdf,1 of 28 ns

and minimal losses Emin = 350.4 µJ (for Rg = 6 Ω) were

considered.

D. Experimental Validation Analysis of the AGD

With the calculated values in the previous subsection, ex-

perimental setup of the AGD for both turn-on and turn-off

transitions were developed. Firstly, an evaluation test between

AGD and CGD with the minimum fixed Rg,ext of 6.3 Ω was

carried out. The purpose of this comparison was to analyse

the overshoots and oscillations behaviour of the AGD and the
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Fig. 9. Experimental results for voltage Vgs transitions. Rg = 6.3 Ω and
AGD with V1,high = 14 V and V1,low = 7 V and V2,high = 8 V and
V2,low = 2 V.

Fig. 10. Experimental results for current Ig transitions. Rg = 6.3 Ω and
AGD with V1,high = 14 V and V1,low = 7 V and V2,high = 8 V and
V2,low = 2 V.

CGD with minimal resistance. In addition, for the AGD the

initial values of Rg and reference voltages were used according

to the values calculated previously. The commercial values

Ron = 27 Ω and Roff = 33 Ω were used finally.

The value references considered for the study taking into

account the results listed in Tables II-III, were V1,hihg = 14
V and V1,low = 7 V for turn-on transition and V2,hihg = 8 V

and V2,low = 2 V for turn-off transition. On the one hand,

Fig. 9 and Fig. 10 show the experimental results of Vgs and

the Ig respectively. On the other hand, the Vds and Id impact

when the driver is applied are shown in Fig. 11 and Fig. 12

for turn-on and turn-off transition.

According to results, by using the CGD with Rg fixed

and minimum value the current oscillations are remarkable

with resonant frequency at 5.4 MHz, maximum amplitude 5.8

A and switching speed di/dt of 53.2 A/µs. Accordingly, the

AGD reduces the current oscillation 31.6% of the maximum

amplitude leading a di/dt of 12.3 A/µs. For turn-off transition,

voltage oscillations with 5.4 MHz of resonant frequency, an

overshoot of 648 V and dv/dt of 4.8 k V/µs is presented by

using the CGD with fixed resistance of 6.3 Ω. However, the

AGD damps the total oscillation and reduces 28.2% of the

voltage overshoot with dv/dt of 3.2 kV/µs.

To strengthen the experimental validation of the proposed

AGD, an analysis with another SiC MOSFET was per-

Fig. 11. Experimental results of Id and Vds for turn-on transition. Rg =
6.3 Ω and AGD with V1,high = 14 V and V1,low = 7 V and V2,high = 8
V and V2,low = 2 V.

Fig. 12. Experimental results of Id and Vds for turn-off transition. Rg =
6.3 Ω and AGD with V1,high = 14 V and V1,low = 7 V and V2,high = 8
V and V2,low = 2 V.

formed. Accordingly, the SiC MOSFET C2M0080120D by

Cree was evaluated by using the AGD and CGD with the
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Fig. 13. Experimental results of Id and Vds for turn-on transition
between two SiC MOSFETs.

minimum fixed Rg,ext of 2.5 Ω. For realising the analysis

with the AGD, the presented method to determinate the

gate resistances and reference voltages was used. Regarding

the calculation obtained, the gate resistance values for this

SiC MOSFET were Ron = 33 Ω and Roff = 39 Ω. In

addition, the voltage references were V1,hihg = 16 V and

V1,low = 9 V for turn-on transition and V2,hihg = 10 V and

V2,low = 3 V for turn-off transition. The test setup parameters

were DC-bus = 400 V, switching frequency at 100 kHz, a load

of 6 A and L = 120 µH . Whereas the parasitic elements were

considered from the datasheet and previous experiments. The

obtained data were compared with the results of a developed

study with the SiC MOSFET SCT2080KE under the same

operation conditions and AGD parameters used previously for

this device. The voltage and current waveforms comparison is

shown in Fig. 13 and Fig. 14.

In the figures can be seen that the behavior in both power

devices is similar with CGD. Whereas the overshoots in Cree

MOSFET are low, the switching delay times are better in

Rhom MOSFET. In addition, the frequency oscillations are

bigger in the latter. Furthermore, with AGD the oscillations

and overshoots are reduced in both devices, despite of the

switching time in SiC MOSFET C2M0080120D is longer.

Therefore, it can be concluded that the AGD is valid for

different MOSFETs and its performance depend on the charac-

teristics of each device and the proper parameters calculation.

Fig. 14. Experimental results of Id and Vds for turn-off transition
between two SiC MOSFETs.

TABLE IV
NUMERICAL COMPARISON OF POWER LOSSES

Pgate Pcond Psw Total Losses

(W) (W) (W) (W)

CGD with minimum Rg 0.233 1.25 35.04 36.5

CGD with large Rg 0.254 2.03 85.4 87.6

Proposed AGD 0.232 1.66 39.1 40.9

V. AGD VIABILITY STUDY

A. SiC MOSFET Performance Analysis with AGD

The aim of the proposed AGD is to reduce the oscillations

in both current and voltage but also to reduce total losses.

Accordingly, the performance of the AGD was analysed for the

SiC MOSFET SCT2080KE, realising a comparison between

losses with the AGD and losses with the CGD. The total losses

were calculated as:

Ptotal = Pconduction + Pswitching + Pgate, (28)

where

Pconduction = Rds(on) · (id,rms)
2, (29)

and

Pgate = (Vgg,on + |Vgg,off |) ·Qgate.fsw. (30)

Table IV shows the experimental results of switching losses

by cycle, with operation conditions of 400 V dc-bus, 6 A on

the load, fsw=100 kHz, Qg =106 nC and Rds(on)=125 mΩ
(Tj=125◦C).



On the one hand, the performance of proposed AGD has

been compared with CGD and fixed resistance of 6.3 Ω justi-

fied previously. The complete analysis has been realized with

the purpose of obtaining the approximation of minimal losses

with the minimal considered resistance. On the other hand,

an analysis of CGD with large fixed resistance and different

values for turn-on and turn-off path has been performed.

The considered resistances for this evaluation have been the

maximum values calculated and selected previously, which

were 27 Ω for turn-on and 33 Ω for turn-off paths.

According to results, the conduction losses are low due to

them being dependent on statics characteristics of the SiC

MOSFET such as Rds(on) and blocking capabilities. Despite

this, the conduction losses have an important variation between

the AGD and the CGD with different resistance values. This

variation is because of the id,rms current changes with respect

to the maximum and minimum drain current that can have

significant differences for each driver.

Besides, in Table IV it can be seen that the conduction

losses and losses in the gate are less than the switching losses.

Therefore, only the switching losses play an important role.

With AGD the switching losses are 4.4 W more than CGD

with minimum fixed resistance. However, the switching losses

are 40.9 W and are less than CGD with fixed large resistance.

B. Electromagnetic Interference Analysis

The proposed AGD has the capability of reducing the

ringing and oscillations in both drain current and drain-source

voltage, as shown in Fig. 11 and Fig. 12. In general, the high

dv/dt is the main parameter of conduced EMI production in

power converters. Therefore, although the proposed AGD only

reduces the overshoot voltage in 28.2%, the oscillation are

eliminated.

The purpose of this EMI study is to have an understanding

of the noise provoked mainly by high di/dt and dv/dt. There-

fore, this analysis does not include the total noise but also

the main oscillation in the current and voltage waveforms.

Accordingly, the effect of oscillations can be characterized

considering the current or voltage source as a periodic trape-

zoidal pulse and FFT analysis. In addition, it is important to

consider that the id and vds measures were in common mode

(CM) conditions.

Fig. 15 shows an approximation of the spectrum for both vds
voltage and id current. These results were obtained from exper-

imental measurement by means of an oscilloscope Tektronix

MDO3024 and the spectrum was obtained applying the FFT in

MATLAB software after the data were processed. The results

show that the AGD can eliminate the noise in vds voltage and

reduce the noise in id current with a resonant frequency of

5.4 MHz.

C. AGD Cost Study

As noted above, the SiC MOSFET requires a driver to

supply the device, achieve better performance, reliability and

even reduce EMI problems. In power converters with a simple

gate driver, the snubber circuits are necessary to reduce the

Fig. 15. Spectrum comparison between CGD with Rg=6.3 Ω and AGD
for Id and Vds experimental results. a) Spectrum approximation of Vds

and, b) Spectrum approximation of Id.

EMI problems and overshoots. However, the snubber circuits

could reduce the system efficiency.

As an example, the total cost of the driver plus snubber

circuit can be considered 100 % and it is obtained regarding

the driver components cost. One optocoupler driver HCPL-

3120 with 10 % price, one isolated power supply with 54 %

of the cost and a snubber network with of 36 % of total cost.

The cost of the proposed gate driver is increased mainly by

the high-speed comparators and MOSFETs. Regarding Fig. 1

four high-speed comparators and four MOSFETS are required.

For the implementation of the proposed AGD, four ANALOG

DEVICES AD8561ANZ comparators were used with a 16

% price per unit. In addition, two N-channel MOSFETS

IRF520NPBF and two P-channel MOSFETs IRF9520PBF

were used with a price of 3 % per unit. Assuming, that the rest

of components have an approximately cost of 36 %, and one

isolated power supply of 54 % value; the AGD approximated

total cost is 166 %. It is also important to mention that

the components cost of this study was consulted for a few

components, not for large series. Also, this type of solutions

could be integrated into specific gate drivers, reducing, even

more, the final cost compared to bulky snubbers.

In Table V a comparison of approximated costs and main

characteristics between CGD plus snubber network and pro-

posed gate driver is developed. The comparison shows that



TABLE V
COST AND CHARACTERISTICS COMPARISON OF THE GATE DRIVERS

Drivers Cost Efficiency EMI Overshoots

(%) Reduction Reduction

GD+Snubber 100 Medium High High

Proposed AGD 166 High High High

the AGD is a good solution and in spite of its cost it

has advantages in terms of efficiency, EMI and overshoots

reduction.

D. General considerations for the AGD Design

So far, the AGD was designed and validated for a particular

case. However, the AGD should be able to work in different

load current and tolerate the parameter variations such as

the parasitic elements, voltage threshold, and Miller Plateau

voltage. Accordingly, for better performance of the AGD in

different work conditions, the following assumptions can be

established:

• The AGD should be designed for a known application.

Therefore, its plant is also known and the expected

variations of the system are known.

• The parasitic elements behaviour can be determined

through the characterization of the defined system, of

studies such as [15], [30], [32] and datasheets specifi-

cations.

• The tolerance band for voltage threshold and voltage

plateau should be adjusted to guarantee the AGD opera-

tion on the variations caused by the temperature and high

load currents [32].

• The AGD should be designed for the maximum load

current level with the purpose of working in different

current loads variations.

Taking into account these considerations, the AGD can offer

an extensive operation range of load currents and be insensitive

to parasitic elements variations.

VI. CONCLUSIONS

A new AGD has been presented and characterized under

hard-switching conditions. The concept of the controller was

defined and the main parameters were calculated and opti-

mized. The new gate driver can control the di/dt turn-on and

the dv/dt turn- off individually with low switching losses.

The proposed AGD has been validated with experimental tests

at 100 kHz of switching frequency and 400 V of dc-bus.

The results showed that the AGD can reduce the overshoot

voltages until 28.2% and until 31.6% of the current peak.

The reduction of the overshoots leads total switching losses

until about 53.3% less than conventional gate driver with high

gate resistance fixed. On the other hand, the AGD cannot

only attenuate the current oscillations but also eliminated the

voltage oscillations caused by parasitic elements in 5.4 MHz

for conditions of this study. In addition, an experimental

validation for two different SiC MOSFET has been developed.

The two devices evaluation show that the active gate driver

can work for any SiC MOSFET. Taking into account all

of the above, it has been demonstrated that if the energy

on gate-voltage trajectory of the SiC MOSFET is reduced,

varying the Rg on a specific interval of vgs around the Miller

Plateau zone, the overshoots problems are reduced without

compromising performance. Although this driver needs two

switching devices and high-speed comparators, it is a good

solution due to its control simplicity. In addition, the AGD

can be implemented as a closed-loop control with the output

signals, just by adding simple analog circuits connected to the

load. Therefore, this AGD is a good alternative to snubber

circuits and even complex gate circuits presented so far.
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(UPC), Barcelona, Spain, in 1985 and 1995,
respectively.

In 1988, he joined the Electronic Engineering
Department, UPC, where he is currently an
Associate Professor and the Director of the
Motion and Industrial Control Group (MCIA),
whose major research activities concern
induction and permanent magnet motor drives,

enhanced efficiency drives, fault detection and diagnosis of electrical
motor drives, and improvement of educational tools. He has developed
and taught post-graduate courses on programmable logic controllers,
electrical drives and motion control, and sensors and actuators.


