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Abstract—The present work introduces a new optimization technique
suitable for adaptive beamforming of linear antenna arrays. The
proposed technique is a new PSO variant called Adaptive Mutated
Boolean PSO (AMBPSO) where the update formulae are implemented
exclusively in Boolean form by using an efficiently adaptive mutation
process. The AMBPSO aims at estimating the excitation weights
applied on the array elements considering that a desired signal and
several interference signals are received by the array at respective
directions of arrival. In order to exhibit the robustness of the technique,
the optimization process does not take into account the interference
correlation matrix. A certain power level of additive Gaussian noise
is also considered by the technique. The AMBPSO has been applied
in several cases of uniform linear antenna arrays with different spacing
between adjacent elements and different noise power level and therefore
seems to be quite promising in the smart antenna technology.

1. INTRODUCTION

The analysis and design of antenna arrays are very important and
challenging issues in communications industry. So far, many techniques
have been studied and developed in order to design arrays that
satisfy specific requirements [1–9]. Due to the demanding applications
in modern communications, the radiation pattern of base station
arrays must be dynamically shaped according to certain requirements.
Specifically, the peak of the main lobe must be steered towards a
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desired signal called signal-of-interest (SOI). On the contrary, pattern
nulls must be formed in the directions of arrival (DOA) of interference
or undesired signals. Antennas operating under the above requirements
are called smart antennas [10–17] and the techniques used to calculate
the excitation weights that produce the above-defined radiation pattern
are called adaptive beamforming (ABF) techniques [18–25].

Most of the ABF techniques proposed so far try to recover the
degradation in their performance caused by mismatches between the
assumed and the actual conditions. A usual kind of mismatch is the
steering vector uncertainly which is taken into account by a well-
known ABF technique named robust Capon beamforming (RCB) [21].
However, the performance decrease caused by uncertainty in the
interference correlation matrix is a major issue that needs careful
consideration. Therefore, an ABF technique insensitive to that type
of uncertainty would be desirable.

The present study introduces a new optimization technique
suitable for adaptive beamforming of antenna arrays. This technique is
a new variant of Particle Swarm Optimization (PSO) called Adaptive
Mutated Boolean PSO (AMBPSO). The conventional PSO and all
its variants are based on an update mechanism, where real number
expressions are used. However, the update mechanism in the AMBPSO
is implemented exclusively in Boolean form using an effectively
adaptive mutation process. Both the Boolean update and the adaptive
mutation process make the AMBPSO a robust technique.

The AMBPSO is utilized here as an ABF technique applied
to uniform linear arrays (ULAs). The technique assumes a desired
signal and several interference signals, all uncorrelated with each
other, received by the array at respective directions of arrival. These
directions are considered to be already estimated by well-known DOA
algorithms [10, 11, 26–31]. A certain power level of additive Gaussian
noise is also taken into account. The optimal excitation weights applied
on the elements of the ULA are extracted by minimizing a suitably
chosen fitness function F . In order to exhibit the robustness of the
technique, the optimization process does not take into account the
interference correlation matrix. In that manner, we try to develop a
technique which does not depend on the knowledge of the interference
signals but only on the knowledge of their DOA.

2. FORMULATION

Assume an M -element ULA that receives a SOI s(k) arriving from
angle θ0 and N interference signals in(k) arriving from different angles
θn (n = 1, . . . , N) (see Figure 1). Each angle is called angle of arrival
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Figure 1. M -element uniform linear array.

(AOA) and defines a signal DOA with respect to a reference direction
normal to the array axis. The parameter k denotes the k-th time
sample. Each element is consider to be an isotropic source, while all the
arriving signals are monochromatic with N < M . The received signal
xm(k) at the input of every m-th element (m = 1, . . . , M) includes
additive, zero mean, Gaussian noise nm(k) with variance σ2. Thus,
the input vector is:

x̄(k) = ā0s(k) + [ ā1 ā2 . . . āN ]









i1(k)
i2(k)

...
iN (k)









+ n̄(k)

= ā0s(k) + Āī(k) + n̄(k) = d̄(k) + ū(k) (1)

where ān = [ 1 ej 2π
λ

q sin θn . . . ej(M−1) 2π
λ

q sin θn ]T (n = 0, 1, . . . , N)

is the array steering vector of the θn AOA, Ā is the M × N matrix
of steering vectors ān, ī(k) is the vector of the N uncorrelated
interference signals in(k), n̄(k) is the vector of the M uncorrelated
noise signals nm(k), and q is the spacing between adjacent elements of
the ULA. Also, the vector d̄(k) = ā0s(k) represents the desired input
signals, while the vector ū(k) = Āī(k) + n̄(k) represents the undesired
(interference plus noise) input signals. Finally, the superscript T
denotes the transpose operation.

The array output is given by the form:

y(k) = w̄H x̄(k) = w̄H d̄(k) + w̄H ū(k) (2)

where w̄ = [ w1 w2 . . . wM ]T is the vector of excitation weights
and the superscript H denotes the Hermitian transpose operation.

The array output power for the desired signal is given by:
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where S = E[|s(k)|2] is mean power of SOI. Also, the array output
power for the undesired signal is given by:

σ2
u = E

[

∣

∣w̄H ū(k)
∣

∣

2
]

= E
[

∣

∣w̄H
[

Āī(k) + n̄(k)
]
∣

∣

2
]

= w̄HĀR̄iiĀ
Hw̄ + w̄HR̄nnw̄ (4)

where R̄ii = E [̄i(k)̄iH(k)] is the interference correlation matrix and
R̄nn = E[n̄(k)n̄H(k)] is the noise correlation matrix. Taking into
account that nm(k) (m = 1, . . . , M) are uncorrelated, zero mean,
Gaussian noise signals with variance σ2, we get R̄nn = σ2I. Therefore,
(4) can be written as:

σ2
u = w̄HĀR̄iiĀ

Hw̄ + σ2w̄Hw̄ (5)

Finally, the signal-to-interference-plus-noise ratio is given by:

SINR =
σ2

d

σ2
u

=
Sw̄H ā0ā

H
0 w̄

w̄HĀR̄iiĀHw̄ + σ2w̄Hw̄
(6)

The fitness function F can be simply defined as the inverse of
SINR. As F is minimized, SINR is maximized, which means that
the peak of the main lobe is steered towards the SOI and pattern nulls
are formed in the directions of arrival of all the interference signals. In
order to make our technique work without the knowledge of R̄ii and
S, we assume that R̄ii = I and S = 1. Then, F can be defined by the
form:

F =
w̄HĀĀHw̄ + σ2w̄Hw̄

w̄H ā0ā
H
0 w̄

(7)

It is obvious from (7) that the minimization of F performed by the
AMBPSO does not depend on the knowledge of R̄ii but only on the
knowledge of the interference DOA. The value of σ2 can be calculated
from the signal-to-noise ratio SNR in dB as follows:

σ2 = 10−SNR/10 (8)

The proposed technique is compared to an efficient well-known
ABF technique called Minimum Variance Distortionless Response
(MVDR) which is a variant of RCB technique [11]. The MVDR
beamformer seeks for the optimum weight vector w̄ that minimizes the
power of the undesired output signal while the desired output signal
is maintained. Therefore, w̄ is calculated by minimizing the quantity
w̄HR̄uuw̄, while w̄H ā0 = 1. The optimum w̄ is given by:

w̄mvdr =
R̄−1

uu ā0

āH
0 R̄−1

uu ā0

(9)

where R̄uu = E[ū(k)ūH(k)] is the correlation matrix of ū(k).
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3. ADAPTIVE MUTATED BOOLEAN PSO

PSO can be found in many studies in the literature [14, 32–36]. A brief
description of PSO is given in [32]. The Boolean PSO (BPSO) is a
binary version of PSO [37] based on the swarm behavior as well. The
AMBPSO is an improved version of BPSO proposed by the authors.

In the AMBPSO, the position x̄n = [xn1 . . . xnb . . . xnB] and
the velocity v̄n = [vn1 . . . vnb . . . vnB] of every n-th (n = 1, . . . , NP )
particle of the swarm are represented as binary strings of B bits. Every
position x̄n must be inside the search space defined by a lower and an
upper boundary, respectively l̄n and ūn. If a particle goes outside
the search space, a large fitness value is assigned as a penalty to the
particle. Since the AMBPSO aims at minimizing the fitness function,
these particles are gradually moved inside the search space.

The update of v̄n and x̄n is made by using “and”, “or” and “xor”
operators:

vnb = c1 · vnb + c2 · (pnb ⊕ xnb) + c3 · (gb ⊕ xnb) (10)

xnb = xnb ⊕ vnb (11)

where pnb is the b-th bit of the best position p̄n achieved so far by
the n-th particle and gb is the b-th bit of the best position ḡ achieved
so far by the swarm. In addition, c1, c2, and c3 are random bits
with probabilities of being ‘1’ respectively equal to C1, C2, and C3.
The exclusively Boolean update of v̄n and x̄n makes the AMBPSO
more efficient than the popular binary PSO version of [38], where the
velocity update is made by using a real number expression.

In order to control the convergence speed of the process, the
AMBPSO utilizes a parameter vmax called maximum allowed velocity
and defined as the maximum number of ‘1’s allowed in v̄n. The actual
number of ‘1’s in v̄n is the “velocity length” l(v̄n) and is controlled by
the “negative selection” (NS), which is a basic mechanism of Artificial
Immune Systems (AISs) [37]. AISs are inspired by the biological
immune systems. The NS is responsible for eliminating T -cells that
recognize self antigens in the thymus. According to the NS, v̄n is
considered as self antigen when l(v̄n) > vmax and then randomly chosen
‘1’s in v̄n change into ‘0’s until l(v̄n) = vmax. If l(v̄n) ≤ vmax, v̄n is
considered as non-self antigen and is not changed.

In order to increase the exploration ability of the particles, after
the completion of the NS, an adaptive mutation process is applied
by changing the ‘0’s of every v̄n to ‘1’s with “mutation probability”
m. The mutation process starts from relatively small values of m to
avoid pure random search. In every iteration, m undergoes a linear
reduction until it reaches zero at the end of the optimization process.
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The reduction in the values of m provides the AMBPSO with the
adaptation feature.

The AMBPSO is a technique of high computational complexity
like all the other evolutionary techniques and thus needs much more
CPU time than the MVDR technique to find an optimal solution. In
the cases studied here, an Intel Core 2 Duo computer was used and the
CPU time per execution was measured around 2 seconds. However, this
problem can be overcome by using Graphics Processing Units (GPUs),
which provide cheap access to high-performance parallel computing
resources and make the algorithm execution 10–100 times faster [25].

A brief description of the AMBPSO algorithm is given below:

1. Choose the values of NP , B, C1, C2, C3, vmax, m, l̄n and ūn

(n = 1, . . . , NP ), and the maximum number of iterations Tmax of
the optimization process.

2. Initialize random values for v̄n (n = 1, . . . , NP ) and apply the
NS to correct them. Also, initialize random values for x̄n (n =
1, . . . , NP ) inside the search space and calculate their fitness values
F (x̄n).

3. Set p̄n = x̄n and F (p̄n) = F (x̄n) (n = 1, . . . , NP ).

4. Find Fmin = F (ḡ) among F (p̄n) (n = 1, . . . , NP ).

5. Update v̄n (n = 1, . . . , NP ) using (10) and apply NS to correct
them.

6. Mutate the ‘0’s of v̄n (n = 1, . . . , NP ) according to the value of m.

7. Update x̄n (n = 1, . . . , NP ) using (11).

8. Calculate the fitness values F (x̄n) (n = 1, . . . , NP ).

9. Assign a large fitness value for x̄n lying outside the search space.

10. For n = 1, . . . , NP , if F (x̄n) < F (p̄n) then p̄n = x̄n.

11. For n = 1, . . . , NP , if F (p̄n) < F (ḡ) then ḡ = p̄n.

12. Reduce the value of m according to a linear decrease expression.

13. If Tmax is not reached, repeat the algorithm from step (5), or else
report results and terminate.

4. NUMERICAL RESULTS

The AMBPSO algorithm was applied on a 10-element ULA. The
parameters used by the algorithm were: NP = 20, C1 = 0.1, C2 =
C3 = 0.5, vmax = 4, m = 0.10, and Tmax = 10000. The ULA receives
a SOI arriving from angle θ0 = 30◦ and 8 interference signals arriving
from respective angles θn ∈ {−70◦,−40◦,−30◦,−10◦, 0◦, 10◦, 50◦, 70◦}.
All the above signals are uncorrelated with each other. Four cases
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are studied with different spacing q between adjacent elements and
different SNR. In the first case, SNR = 30 dB and q = 0.5λ which
is the usual spacing for most of the ABF techniques. In the second
case, our technique is tested for q 6= 0.5λ. Therefore, q is set to 0.6λ,
while SNR = 30 dB. In order to explore the efficiency of our technique
for smaller and larger values of SNR, two more cases are studied. In
the third case, SNR = 15dB and q = 0.5λ, and in the fourth case
SNR = 50 dB and q = 0.5λ.

Initially, the AMBPSO was compared to the conventional BPSO
in terms of convergence. Both algorithms use the same fitness function
F given in (7). For each case, the AMBPSO and BPSO algorithms were
executed 100 times in order to derive comparative graphs that depict

Figure 2. Comparative convergence graphs.

Table 1. Optimal weight values for q = 0.5λ and SNR = 30 dB.

m wmvdr wambpso m wmvdr wambpso

1 0.352− j0.227 0.191 + j0.197 6 0.342 + j0.940 0.070 + j1.033

2 0.017 + j0.405 −0.195 + j0.490 7 −0.921 + j0.101 −0.905 + j0.228

3 −0.750 + j0.152 −0.692− j0.202 8 −0.114− j0.757 −0.214− j0.622

4 −0.220− j0.900 0.165− j0.983 9 0.386− j0.122 0.435− j0.239

5 1.000 + j0 1.000 + j0 10 −0.092 + j0.409 0.144 + j0.096

Table 2. Optimal weight values for q = 0.6λ and SNR = 30 dB.

m wmvdr wambpso m wmvdr wambpso

1 0.387− j0.377 0.316− j0.104 6 0.392 + j0.920 0.181 + j1.010

2 0.483− j0.070 0.252 + j0.256 7 −0.738− j0.412 −0.767− j0.202

3 −0.711 + j0.223 −0.722 + j0.095 8 −0.073− j0.741 −0.025− j0.717

4 −0.668− j0.518 −0.369− j0.782 9 0.124 + j0.472 0.223 + j0.159

5 1.000 + j0 1.000 + j0 10 −0.195 + j0.503 −0.089 + j0.285
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the average convergence of F (see Figure 2). Although the AMBPSO
converges a little slower than the BPSO, it finally gives better solutions.

Then, the AMBPSO was compared with the MVDR technique.
The optimal excitation weights of the four cases are given respectively
in Tables 1–4, while the radiation patterns are shown respectively
in Figures 3–6. All the cases show the superiority of the AMBPSO
algorithm over a robust ABF technique such as the MVDR. Both

Table 3. Optimal weight values for q = 0.5λ and SNR = 15 dB.

m wmvdr wambpso m wmvdr wambpso

1 0.354− j0.226 0.303 + j0.030 6 0.340 + j0.940 0.195 + j1.020

2 0.018 + j0.407 −0.093 + j0.476 7 −0.922 + j0.100 −0.901 + j0.171

3 −0.751 + j0.152 −0.752− j0.053 8 −0.113− j0.758 −0.153− j0.671

4 −0.219− j0.901 −0.011− j0.986 9 0.389− j0.122 0.405− j0.192

5 1.000 + j0 1.000 + j0 10 −0.092 + j0.410 0.010 + j0.210

Table 4. Optimal weight values for q = 0.5λ and SNR = 50 dB.

m wmvdr wambpso m wmvdr wambpso

1 0.352− j0.227 0.213 + j0.034 6 0.342 + j0.940 0.159 + j0.978

2 0.017 + j0.405 −0.127 + j0.442 7 −0.921 + j0.101 −0.921 + j0.185

3 −0.750 + j0.152 −0.683− j0.072 8 −0.114− j0.757 −0.190− j0.678

4 −0.220− j0.900 0.036− j0.921 9 0.386− j0.122 0.427− j0.194

5 1.000 + j0 1.000 + j0 10 −0.092 + j0.409 0.086 + j0.226
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Figure 3. Optimal radiation patterns for q = 0.5λ and SNR = 30dB.
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Figure 4. Optimal radiation patterns for q = 0.6λ and SNR = 30dB.
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Figure 5. Optimal radiation patterns for q = 0.5λ and SNR = 15dB.

techniques succeed to steer the peak of the main lobe towards the
SOI and form pattern nulls in the DOA of every interference signal.
However, the AMBPSO provides deeper nulls and that’s why all the
radiation patterns produced by the AMBPSO have lower side lobe level
(SLL) than the patterns produced by the MVDR technique. In order
to achieve specific values of SLL for certain angular regions, a properly
defined term must be added to the fitness function F . Of course, the
additional term increases the CPU time required by the AMBPSO to
find an optimal solution.
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Figure 6. Optimal radiation patterns for q = 0.5λ and SNR = 50dB.

Table 5. SINR derived from MVDR and AMBPSO for various values
of SNR, considering a 10-element ULA with q = 0.5λ.

SNR

(dB)

SINR (dB) derived

from MVDR

SINR (dB) derived from AMBPSO

Best Worst Mean STD

−20 −10.0540 −10.0522 −10.0548 −10.0523 0.0004

−15 −5.1601 −5.1395 −5.1512 −5.1399 0.0020

−10 −0.3701 −0.2975 −0.3692 −0.2998 0.0098

−5 4.3345 4.5321 4.3422 4.5269 0.0218

0 8.8967 9.4241 8.5481 9.3749 0.1643

5 13.4522 14.3768 12.0647 14.2676 0.3628

10 18.2011 19.3598 15.1371 19.2810 0.4463

15 22.6889 24.3542 16.5370 24.1008 1.0643

20 27.3035 29.3509 17.2416 29.0332 1.2290

25 31.7012 34.3515 22.4314 33.6680 1.4163

30 36.4811 39.3341 30.2715 38.7648 0.8722

35 40.4633 44.3440 32.6393 43.1564 1.5287

40 45.2813 49.3461 36.6898 48.1781 1.2409

45 49.3217 54.3358 43.2386 52.5134 1.5788

50 54.8269 59.3317 47.6499 58.3221 1.7439

55 59.1356 64.3458 52.7630 63.0660 1.6119

60 63.4345 69.3468 56.3379 67.5858 1.8369
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Finally, the AMBPSO is compared in terms of SINR with the
MVDR technique for various SNR values considering a 10-element
ULA with q = 0.5λ. For each value of SNR, the AMBPSO algorithm
is executed 100 times and statistical results concerning the SINR are
extracted (see Table 5). The results show low standard deviation and
mean values of SINR close to the respective best values. Therefore,
the AMBPSO algorithm seems to have stable and good performance
regardless of the SNR values. In addition, the mean SINR achieved
by the AMBPSO is always greater than the SINR achieved by the
MVDR technique, and their difference increases with increasing SNR.

5. CONCLUSION

The cases studied in the present work show that the AMBPSO
converges a little slower than the conventional BPSO, but it finally
leads to better solutions. Also, the AMBPSO can be used as an efficient
ABF technique capable of producing radiation patterns better than
patterns produced by a robust ABF technique such as the MVDR.
The AMBPSO succeeds not only to steer the main lobe towards the
SOI and form nulls in the DOA of all the interference signals but
also to reduce the SLL more than the MVDR technique does. As
an ABF technique, the AMBPSO does not need the knowledge of
the interference correlation matrix but only the knowledge of the
interference DOA. In addition, the AMBPSO algorithm exhibits stable
and good behavior for every value of SNR, providing better SINR
values than those obtained by the MVDR technique. By using GPUs,
the computational complexity can be overcome and then the AMBPSO
algorithm can be used by adaptive beamforming networks in real-time
applications. Therefore, the AMBPSO seems to be quite promising in
the smart antenna technology. As a future work, the AMBPSO will be
applied on more complex fitness functions in order not only to control
the pattern nulls but also to achieve specific values of SLL.
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