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A Novel Adaptive Controller for Robot Manipulators

Based on Active Inference
Corrado Pezzato , Riccardo Ferrari, and Carlos Hernández Corbato

Abstract—More adaptive controllers for robot manipulators are
needed, which can deal with large model uncertainties. This letter
presents a novel active inference controller (AIC) as an adaptive
control scheme for industrial robots. This scheme is easily scalable
to high degrees-of-freedom, and it maintains high performance
even in the presence of large unmodeled dynamics. The proposed
method is based on active inference, a promising neuroscientific
theory of the brain, which describes a biologically plausible al-
gorithm for perception and action. In this work, we formulate
active inference from a control perspective, deriving a model-free
control law which is less sensitive to unmodeled dynamics. The
performance and the adaptive properties of the algorithm are
compared to a state-of-the-art model reference adaptive controller
(MRAC) in an experimental setup with a real 7-DOF robot arm.
The results showed that the AIC outperformed the MRAC in
terms of adaptability, providing a more general control law. This
confirmed the relevance of active inference for robot control.

Index Terms—Biologically-inspired robots, adaptive control of
robotic systems, industrial robots, active inference, free-energy
principle.

I. INTRODUCTION

T
RADITIONAL control approaches for industrial manip-
ulators rely on an accurate model of the plant. However,

there is an increasing demand in industry for robot controllers
that are more flexible and adaptive to run-time variability. Often,
robot manipulators are placed in dynamically changing sur-
rounding, and they are subject to noisy sensory input and unex-
pected events. In these new applications, obtaining such a model
is a major problem. For example, in pick and place tasks, the
dynamics of the robot manipulators can change unpredictably
while handling unknown objects. Recent research has focused on
the use of machine learning methods to obtain accurate inverse
dynamic models [1], [2]. In general, learning models using
Neural Networks (NN) requires experts for defining the best
topology for a particular problem [3]. Even though it is possible
to exploit the physical knowledge of the system to simplify and
improve the learning performance [4], the need of large amount
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of training data and several iterations for learning, still remains
a problem and hard to generalise [5], [6]. Controllers that can
dynamically adapt are required, but existing solutions in adaptive
control either need an accurate model, or are difficult to tune
and scale to higher number of DOFs. In this letter, we present a
novel adaptive controller for robot manipulators, inspired by a
recent theory of the brain, which does not require accurate plant
dynamics, and that is less sensitive to large parameters variation.

The proposed control scheme is based on the general free-
energy principle proposed by Karl Friston [7], and redefined
in engineering terms [8], [9]. The main idea at the basis of
Friston‘s neuroscientific theory, is that the brain’s cognition and
motor control functions could be described in terms of energy
minimization. It is supposed [10] that humans have a set of
sensory data and a specific internal model to characterize how
the sensory data could have possibly been generated. Then, given
this generative model, the causes of sensory data are inferred.
Usually, the environment acts on humans to produce sensory
impression, and humans can act on the environment to change it.
In this view, the motor control of human body can be considered
as the fulfillment of a prior expectation about proprioceptive
sensations [11]. Although the general active inference frame-
work is mathematically well defined, its application to robotics
remains a challenge. Active inference has mainly been applied
to neuronal simulations (for handwriting [7] for instance), sup-
posing to know the true dynamical process. However, this is
not the case in robotics. Even if the neuronal simulations are
a strong proof of concept for the neuroscientific theory, in the
present form their extension to realistic robotic scenarios [12],
[13] does not provide advantages over other classical controllers.
The main problems are the computational load and the definition
of meaningful generative models. With our work we overcome
these limitations, using active inference to derive a model-free
control law. Instead of modeling the true unknown dynamical
process, we define a reference model that active inference has
to follow. The main contributions of this letter are twofold:
� Derivation of an online active inference control law for a

generic n-DOF robot manipulator in joint space.
� Comparison of the adaptability of the AIC with a state-of-

the-art model reference adaptive controller.
The contributions have been experimentally validated in a

7-DOF collaborative industrial manipulator.

A. Related Work

At present, the use of active inference for robot control is
still limited. In [12], the authors simulated a PR2 robot con-
trolled in Cartesian space for a reaching task. The solution was
offline, computationally expensive, open-loop, and it relied on
an additional position controller. This makes the approach not
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suitable for online tasks. A recent MSc thesis [13], based on [12],
derived an offline closed-loop scheme of active inference. The
feedforward torque commands for a simulated 7-DOF manip-
ulator are computed offline, relying on additional controllers
for feedback control. The scheme failed to control the robot
in presence of gravity since the feedforward torques did not
include the gravitational effect. Both [12] and [13] were based
on the Statistical Parametric Mapping (SPM) by Friston. This
toolbox is suitable for several offline applications, but it is too
computationally heavy for online control. In [13], each iteration
is reported to take about one second. Another recent work [14]
formalised the use of the free-energy for static state estimation,
using a real UR5 robot arm equipped with proprioceptive and
visual sensors. Even though the results of the state estimation
were promising, no control actions were included. The same
authors presented in [15] the body estimation and control in
the joint space of a simulated 2-DOF robot arm through active
inference. This solution included state-of-the art regressors to
estimate online the generative models. However, during the
simulations, the estimation of the acceleration was unreliable
and substituted with the ground truth. Regardless of the fact that
only forward dynamics models had to be learned, the authors
pointed out how this approach is not simpler compared with
classical inverse dynamics techniques. In a parallel, related work
on active inference [16], the authors successfully controlled a
real 3-DOF robot arm using velocity commands. In our ap-
proach we formulate an AIC for online closed loop control of
industrial robots, using low-level torque commands. We also
provide a comparison with a state-of-the-art adaptive controller,
and insights for design and tuning. On the other hand, the
adaptive control branch of control theory [17], offers solutions
to deal with manipulators subject to parameters variation and
abrupt changes in the dynamics. Within adaptive controllers,
two main categories can be identified: the model reference
adaptive systems, and the self-tuning regulators [18]. The first
technique being studied for robot manipulators was the model
reference adaptive control (MRAC) [19]. The idea behind this
technique is to derive a control signal to be applied to the robot
actuators which will force the system to behave as specified by
a chosen reference model. Furthermore, the adaptation law is
designed to guarantee stability using either Lyapunov theory or
hyperstability theory [20]. The other most common approach
for robot control is the self-tuning adaptive control [21], [22].
The main difference between this technique and the MRAC is
that the self-tuning approach represents the robot as a linear
discrete-time model and it estimates online the unknown param-
eters, substituting them in the control law. Adaptive control of
robot manipulators is required in presence of uncertain dynamics
and varying payloads, however, the complexity of the controller
usually increases with increasing number of DOFs. Among all
the possible adaptive controllers, in this letter we choose the
MRAC with hyperstability theory [20] for comparison. This
choice is motivated by the fact that this approach provides
adaptability to abrupt changes in the robot dynamics, and it
does not require the kinematic or dynamic description of the
manipulator, similarly to the AIC.

B. Paper Structure

The paper is organised as follows: In Sec. II we present
the free-energy principle and active inference in control engi-
neering terms. In Sec. III we derive a novel AIC for a 7-DOF

robot manipulator, and we explain the model assumptions and
simplifications. In Sec IV the MRAC is presented for compar-
ison. In Sec. V we compare the adaptability of the AIC and
MRAC in a simulated pick and place task, validating the results
in the real setup. We also discuss the advantages of our AIC and
the open questions. Finally, Sec. VI provides a summary and
directions for future work.

II. THE ACTIVE INFERENCE FRAMEWORK

In this section we report the free-energy principle and active
inference from [8], [10], rewriting only the necessary concepts
in control terms, to understand the derivation of our novel AIC
in Sec. III.

A. The Free-Energy Principle

The free-energy principle is formulated in terms of Bayesian
inference [23]. In this view, body perception for state estimation
is framed using Bayes rule:

p(x|y) = p(y|x)p(x)
p(y)

(1)

where p(x|y) is the probability of being in the n-dimensional
state x given the current m-dimensional sensory input y. In-
stead of exactly inferring the posterior, which often involves
intractable integrals, an auxiliary probability distribution rd(x),
called recognition density, is introduced. By minimizing the
Kullback-Leibler divergence (DKL) between the true posterior
p(x|y) and rd(x), the most probable state given a sensory input
is inferred [8]. DKL is defined as:

DKL(rd(x)||p(x|y)) =
∫

rd(x) ln
rd(x)

p(x|y)dx = F + ln p(y)

(2)
In the equation above, the scalar F is the so called free-energy.
By minimizing F , DKL is also minimized and the recognition
density approaches the true posterior. According to the Laplace
approximation [24], the controller only parametrises the suffi-
cient statistics (e.g. mean and variance) of the recognition den-
sity. rd(x) is assumed Gaussian and sharply peaked at its mean
value µ. This approximation allows to simplify the expression
for F which results:

F ≈ − ln p(µ,y) (3)

The mean µ is the internal belief about the true states x. Min-
imizing F , the controller is continuously adapting the internal
belief µ about the states x based on the current sensory input y.

B. Free-Energy Equation

Equation (3) is still general and it has to be further specified to
numerically evaluate F . To do so, the joint probability p(µ,y)
has to be defined. This is done by introducing two generative
models, one to predict the sensory data y, according to the
current belief µ, and another to describe the dynamics of the
evolution of the belief µ.

1) Generative Model of the Sensory Data: The sensory data
is modeled using the following expression [8]:

y = g(µ) + z (4)

where g(µ) represents the non-linear mapping between sensory
data and states of the environment, and z is Gaussian noise
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z ∼ (0,Σy). The covariance matrix Σy also represents the
controller’s confidence about each sensory input.

2) Generative Model of the State Dynamics: In presence of
time varying states x, the controller has to encode a dynamic
generative model of the evolution µ′ of the belief µ. This
generative model is defined as [8]:

dµ

dt
= µ′ = f(µ) +w (5)

where f is a generative function dependant on the belief about
the states µ and w is Gaussian noise w ∼ (0,Σµ).

3) Generalised Motions: To describe the dynamics of the
states, or better the belief about these dynamics, we have to
introduce the concept of generalised motions [25]. Generalised
motions are used to represent the states of a dynamical system,
using increasingly higher order derivatives of the states of the
system itself. They apply to sensory inputs as well, meaning that
the generalised motions of a position measurement, for example,
correspond to its higher order temporal derivatives (velocity,
acceleration, and so on). The use of generalised motions allows a
more accurate description of the system’s states. More precisely,
the generalised motions µ̃ of the belief under local linearity
assumptions [24] are, up to the second order:

µ′ = µ(1) = f(µ) +w

µ′′ = µ(2) =
∂f

∂µ
µ′ +w′ (6)

In general, we indicate the generalised motions of the states up

to order nd.1 as µ̃ = [µ, µ,′ µ,′′ µ,′′′ . . ., µ(nd)].
Similarly, the generalised motions of the sensory input are:

y = y(0) = g(µ) + z

y′ = y(1) =
∂g

∂µ
µ′ + z′ (7)

We indicate the generalised motions of the sensory input up to

order nd as ỹ = [y, y,′ y,′′ y,′′′ . . ., y(nd)].
4) General Free-Energy Expression: With the extra theoret-

ical knowledge about the generalised motions, we can define
an expression for the free-energy for a multivariate case in a
dynamically changing environment:

F = − ln p(µ̃, ỹ) (8)

The joint probability p(µ̃, ỹ) has to be specified. According
to [8] and to the definitions previously given, the noise at each
dynamical order is considered uncorrelated. Then, according to
the generalised sensory input, the sensory data at a particular
order relates only with the states at the same dynamical order.
Similarly, for the state dynamics, the state at a certain dynamical
order are related only with those which are one order below.
Then, using the chain rule, it results:

p(µ̃, ỹ) =

nd−1
∏

i=0

p(y(i)|µ(i))p(µ(i+1)|µ(i)) (9)

1Generalised motions can extend up to infinite order but the noise at high
orders is predominant, thus we can limit the chosen order to nd [26].

Using the Laplace assumption, and thus considering Gaussian
distributed probability densities, we can write:

p(µ(i+1)|µ(i)) =
1

|Σµ(i) | n
√
2π

exp

{

−1

2
ε(i)⊤µ Σ−1

µ(i)ε
(i)
µ

}

p(y(i)|µ(i)) =
1

|Σy(i) | n
√
2π

exp

{

−1

2
ε(i)⊤y Σ−1

y(i)ε
(i)
y

}

(10)

where ε
(i)
y = (y(i) − g(i)(µ)) and ε

(i)
µ = (µ(i+1) − f (i)(µ))

are respectively the sensory and state model prediction errors.
Furthermore it holds:

g(i) =
∂g

∂µ
µ(i), f (i) =

∂f

∂µ
µ(i), g(0) = g, f (0) = f

(11)
Substituting (9) in (8) leads to:

F = −
nd−1
∑

i=0

[

ln p(y(i)|µ(i)) + ln p(µ(i+1)|µ(i))
]

(12)

Finally, according to (10), F can be expressed up to a constant
as a weighted sum of squared prediction errors:

F =
1

2

nd−1
∑

i=0

[

ε(i)⊤y Σ−1
y(i)ε

(i)
y + ε(i)⊤µ Σ−1

µ(i)ε
(i)
µ

]

+K (13)

wherend is the number of generalised motions chosen andK is a
constant term resulting from the substitution. The minimisation
of this expression can be done by refining the internal belief,
thus performing state estimation, but also computing the control
actions to fulfill the prior expectations and achieve a desired
motion. The constant term K is neglected in the sequel since
it plays no role into the minimisation problem. The next two
subsections describe the approach proposed by Friston [10], [27]
to minimise F , using gradient descent.

C. Belief Update for State Estimation

The belief update law for state estimation is determined from
the gradient of the free-energy, with respect to each generalised
motion [8], [25]:

˙̃µ =
d

dt
µ̃− κµ

∂F
∂µ̃

(14)

The learning rate κµ, can be seen from a control perspective as
a tuning parameter for the state update.

D. Control Actions

In the free-energy principle the control actions play a funda-
mental role in the minimisation process. In fact, the control input
u allows to steer the system to a desired state while minimising
the prediction errors in F . This is done using gradient descent.
Since the free-energy is not a function of the control actions
directly, but the actions u can influence F by modifying the
sensory input, we can write [8]:

∂F(µ̃, ỹ(u))

∂u
=

∂ỹ(u)

∂u

∂F(µ̃,y(u))

∂ỹ(u)
(15)
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Dropping the dependencies for a more compact notation, the
dynamics of the control actions can be written as:

u̇ = −κa

∂ỹ

∂u

∂F
∂ỹ

(16)

where κa is the tuning parameter to be chosen.

III. ROBOT ARM CONTROL WITH ACTIVE INFERENCE

In this section we derive the first model-free, computationally
lightweight, online torque controller for joint space control using
active inference. The established theory of Sec. II is adapted to
define a novel control scheme for a generic n-DOF manipulator.
The challenging problem of finding suitable generative models
f(·) andg(·), and the relation∂ỹ/∂u in such a complex scenario
is solved.

Assumption 1: The robot manipulator is equipped with po-
sition and velocity sensors, which respectively provide the two
variables yq, yq̇ ∈ R

n.
Assumption 2: Since only the position and velocity measure-

ments are available, we will consider the generalised motions up
to order two, so nd = 2.

Assumption 3: The Gaussian noise affecting the different
sensory channels is supposed uncorrelated [8], [24]. The co-
variance matrices for sensory input and state belief are:

Σy(0) = σqIn, Σy(1) = σq̇In, (17)

Σµ(0) = σµIn, Σµ(1) = σµ′In (18)

where we supposed that the controller associates four different
variances to describe its confidence about sensory input and
internal belief.

Assumption 4: The states of the environment x are set as the
joint positions of the robot arm. Doing so, we can control the
robot arm in joint space through free-energy minimization, and
simplify the equations for states update and control actions.

A. Generative Models and F for a Robot Manipulator

In order to numerically evaluate the free-energy as in (13),
the two functions g(µ) and f(µ) have to be chosen.

1) Generative Model of the Sensory Data: g(µ) indicates
the relation between the sensed values and the states. Since we
chose the states to be the joint positions and the sensory data
provides directly the noisy values yq and yq̇ , it holds:

gq(µ) = µ, ∂gq/∂µ = 1 (19)

2) Dynamic Generative Model of the World: Instead of mod-
elling the true dynamics of the manipulator, we propose to
define a reference model to specify the desired behaviour of
the robot [8]. In particular, the world dynamics are chosen such
that the robot is steered to a desired position µd. In other words,
the controller believes that the states will evolve in such a way
that they will reach the goalµd with the dynamics of a first order
system with unitary time constant:

f(µ) = µd − µ (20)

The value µd is a constant ∈ R
n corresponding to the desired

set-point for the joints of the manipulator. Substituting (19) and
(20) in (7) and (6), it results:

{

µ′ = µd − µ+w

µ′′ = −µ′ +w′

{

yq = µ+ z

yq̇ = µ′ + z′ (21)

According to (21) and (13), the free-energy expression for a
generic robot manipulator under the assumptions given is:

F =
1

2
(yq − µ)⊤Σ−1

y(0)(yq − µ)

+
1

2
(yq̇ − µ′)⊤Σ−1

y(1)(yq̇ − µ′)

+
1

2
(µ′ + µ− µd)

⊤Σ−1
µ(0)(µ

′ + µ− µd)

+
1

2
(µ′′ + µ′)⊤Σ−1

µ(1)(µ
′′ + µ′) (22)

B. Belief Update and State Estimation for a Manipulator

According to the free-energy principle, the states of the robot
manipulator can be estimated using a gradient descent scheme.
Applying (14), having definedF as in (22), leads to the following
state update law:

µ̇ = µ′ + κµΣ
−1
y(0)(yq − µ)− κµΣ

−1
µ(0)(µ

′ + µ− µd)

µ̇′ = µ′′ + κµΣ
−1
y(1)(yq̇ − µ′)− κµΣ

−1
µ(0)(µ

′ + µ− µd)

− κµΣ
−1
µ(1)(µ

′′ + µ′)

µ̇′′ = −κµΣ
−1
µ(1)(µ

′′ + µ′) (23)

Note that κµ is the tuning parameter for state estimation.

C. Control Actions for a Robot Manipulator

The final step in order to be able to steer the joints of a robot
manipulator to a desired value µd, is the definition of the control
actions.

1) General Considerations: The general actions update is
expressed by (16). The partial derivatives of (22) with respect to
the generalised sensory input are given by:

∂F
∂yq

= Σ−1
y(0)(yq − µ),

∂F
∂yq̇

= Σ−1
y(1)(yq̇ − µ′) (24)

Having said that, the actions update is expressed as:

u̇ = −κa

[

∂yq

∂u
Σ−1

y(0)(yq − µ) +
∂yq̇

∂u
Σ−1

y(1)(yq̇ − µ′)

]

(25)

Active inference requires then to define the change in the sen-
sory input with respect to the control actions, namely ∂yq/∂u
and ∂yq̇/∂u. This is usually a hard forward dynamic problem,
which constituted a major complication in past control strategies.
One approach to compute these relations is through online
learning using high-dimensional space regressors. However, this
increases the complexity of the overall scheme and can produce
unreliable results, as shown by the authors in [15]. In this letter
we propose to approximate the partial derivatives relying on
the high adaptability of the active inference controller against
unmodeled dynamics, as suggested in the conclusive remarks
in [15].

2) Approximation of the True Relation Betweenu and ỹ: Let
us first analyse the structure of the partial derivative matrices in
(25). The control action is a vector of n torques applied to the n
joints of the robot manipulator. Each torque has a direct effect
only on the corresponding joint to which it is applied. This allows
us to conclude that ∂yq/∂u and ∂yq̇/∂u are diagonal matrices.
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Algorithm 1: AIC for Robot Control.

Initialization
Par ← σq, σq̇, σµ, σµ′ , κµ, κa ⊲ Set AIC parameters
µ = yq ∈ R

n
⊲ Initialise belief

µ′ = yq̇ ∈ R
n

µ′′ = 0 ∈ R
n

u = 0 ∈ R
n

⊲ Initialise torque commands
µd ∈ R

n
⊲ Set prior, desired goal

Control Loop ⊲ At high frequency
yq, yq̇ ⊲ Retrieve sensory input
˙̃µ= d

dt
µ̃− κµ

∂F
∂µ̃

⊲ Belief dynamics (14)

µ̃ = µ̃+∆t
˙̃µ ⊲ Belief update, integration

u̇ = −κa
∂ỹ
∂u

∂F
∂ỹ

⊲ Action dynamics (16)

u = u+∆tu̇ ⊲ Action update, integration
return u ⊲ Commanded torque

Furthermore, considering the second Newton’s law, the total
torque applied to a rotational joint equals the moment of inertia
times the angular acceleration. The diagonal terms of the partial
derivatives matrices are then time varying positive values which
depend on the current robot configuration. In other words, this
means that a positive torque applied to a joint will always result
in a positive contribution for both position and velocity of that
specific joint. In this control scheme we propose to approximate
the true positive time-varying relation with a positive constant,
making use of the learning rateκa as tuning parameter to achieve
a sufficiently fast actions update. The control update law is
finally given by:

u̇ = −κa

[

CqΣ
−1
y(0)(yq − µ) + Cq̇Σ

−1
y(1)(yq̇ − µ′)

]

(26)

∂yq

∂u
≈ Cq,

∂yq̇

∂u
≈ Cq̇ (27)

The positive definite diagonal constant matricesCq, Cq̇ are then
set to the identity, meaning that we only encode the sign of the
relation between u and the change in ỹ.

3) Tuning Parameters AIC: The tuning parameters for the
active inference controller are:
� σq, σq̇, σµ, σµ′ : the standard deviations representing the

confidence of the controller regarding its sensory input and
internal belief about the states;

� κµ, κa: the learning rates for state update and control
actions respectively.

Algorithm 1 reports the pseudo-code of our AIC. For state
and actions update, first-order Euler integration is used.

IV. MODEL REFERENCE ADAPTIVE CONTROLLER

The controller chosen for comparison is an MRAC. This
adaptive controller allows to obtain decoupled joint dynamics,
forcing every single joint i = 1, . . ., n to respond as a second
order linear system with transfer function:

Gi(s) =
ω2
i

s2 + 2ζωis+ ω2
i

qri(s) (28)

The control architecture is taken from [20], where the control is
specified in terms of feedforward and feedback adaptive gain
matrices. These time-varying gain matrices are adjusted by
means of adaptation laws to guarantee closed loop stability in

Fig. 1. Simulated and real robot for pick and place cycle.

case of large parameters perturbations. Supposing zero initial
conditions for the gains, and neglecting the derivative terms as
described in [20], it holds:

K0(t) = E01q̄e(t)q(t)
⊤ + E02

∫ T

0

q̄e(τ)q(τ)dτ (29)

K1(t) = E11q̄e(t)q̇(t)
⊤ + E12

∫ T

0

q̄e(τ)q̇(τ)dτ (30)

Q0(t) = F01q̄e(t)qr(t)
⊤ + F02

∫ T

0

q̄e(τ)qr(τ)dτ (31)

Q1(t) = F11q̄e(t)q̇r(t)
⊤ + F12

∫ T

0

q̄e(τ)q̇r(τ)dτ (32)

f(t) = α1q̄e(t) + α2

∫ T

0

q̄e(τ)dτ (33)

The variables qr and q̇r are the desired references to track. The
diagonal matricesEjk andFjk ∈ R

n×n, and the vectorαk ∈ R
n

with j = {0, 1} and k = {1, 2}, are the tuning parameters for
the proportional-integral adaptation law. The term q̄e is called
modified joint angle error vector [20]:

q̄e = P2[qr(t)− q(t)] + P3[q̇r(t)− q̇(t)] (34)

with P2 and P3 diagonal weighting matrices. The MRAC,
similarly to the AIC, does not need the dynamic description of
the robot manipulator, and it is scalable to high DOF. However,
the number of the tuning parameters increases with the degrees
of freedom, unlike for the AIC.

V. EXPERIMENTAL EVALUATION

This section presents the performance comparison between
AIC and MRAC. To analyse the adaptability of the algorithms
against unmodeled dynamics, the controllers are tuned in sim-
ulation using an approximated model of the robot, and then
transferred to the real system. The tests performed are based
on a pick and place cycle using the Franka Emika Panda 7-DOF
robot manipulator, as in Fig. 1, with different payloads.

A. Remarks About the Tuning Procedure for the Controllers

Before presenting the simulations and experimental results,
we provide some observations regarding the number of parame-
ters and the different tuning procedures for the AIC and MRAC.

1) Number of Tuning Parameters: The number of tuning
parameters for the MRAC equals the number of DOFs times the
number of weighting terms. According to Sec. IV, this results
in 17× n parameters to be tuned. Regarding the AIC, instead,
the number of tuning parameters is independent from the DOFs
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and it equals 6, following the formulation presented in Sec. III.
The lower number of parameters resulted in an overall easier
tuning procedure for the active inference controller. As a final
remark, to modify the behaviour of the step response for the
AIC, such as rise time and settling time, one should change
the internal reference model f(µ) instead of fine tuning the
controller’s parameters.

2) AIC Tuning Procedure: To obtain a satisfactory response
for the AIC, we performed the following steps: 1) We set the
controller confidence about sensory input and internal belief to
one; 2) We disabled the control actions and incremented the
learning rate κµ until the state estimation in a static situation was
fast enough; 3) We included the control actions and increased
the learning rate κa until the robot was steered to the desired
position, showing significant oscillations; 4) We dampened the
oscillatory behaviour decreasing the sensory confidence about
the most noisy sensors and the internal belief about velocities.

B. Simulations With Approximated Model

The performance of AIC and MRAC in simulation are now
presented. The task is a pick and place cycle where the desired
joint values are chosen such that the arm simulates the pick and
place of an object from one bin to the other, positioning the
end-effector in A, B or C, see Fig 1. This is achieved giving
every 6 [s] a set-point in joint space following the sequence: qA,
qB , qC , qB , qA, where:
� qA = [1, 0.5, 0, −2, 0, 2.5, 0] [rad]
� qB = [0, 0.2, 0, −1, 0, 1.2, 0] [rad]
� qC = [−1, 0.5, 0, −1.2, 0, 1.6, 0] [rad]
The controllers have been tuned using a considerably inac-

curate model of the robot arm on purpose. The links have been
approximated as cuboids, and 20% random uncertainty in each
link’s mass has been assumed. This will allow to evaluate later on
the adaptability performance while applying the controllers to
the real manipulator. The joint values and control actions using
AIC and MRAC, are depicted in Fig. 2. Note that, for the MRAC,
saturation of the control input at ±85 Nm is reached for some
of the joints, after providing the new goal position.

C. Experiments on the Real Setup

The same controllers tuned in simulation using the approxi-
mated model of the 7-DOF robot arm are now applied to control
the real manipulator. Two tests are performed: first, the pick and
place cycle of the previous section is repeated in the real robot,
without re-tuning the controllers. Second, the AIC and MRAC
are re-tuned in the real robot and used to pick and place different
objects. The real setup is controlled using a standard laptop
running Ubuntu 16.04 with RT kernel, 8-cores Intel i7-4710MQ
2.50 GHz.

1) Pick and Place Cycle on the Real Robot: We applied the
MRAC and AIC from simulation to the real 7-DOF Franka
Emika Panda. It is important to notice that, besides having
different physical parameters, the real setup is already grav-
ity compensated. The AIC and MRAC are simply applied on
top of this intrinsic controller. This is already a considerable
change in the system’s dynamics, but to further increase the
level of uncertainties, an end-effector is attached to the robot.
From a modeling point of view, the system used for tuning the
controllers in simulation is completely different from the real
one. Usually, a controller tuned in simulation will not directly
work on a real setup, especially if the initial model was not

Fig. 2. Response and control actions for the 7-DOF robot arm controlled
through AIC and MRAC with approximated dynamics.

accurate. This was indeed the case for the MRAC which, when
transferred to the real robot, could not control the setup leading
to an immediate safety stop. Nonetheless, this was not the case
for our novel AIC: its strong capabilities to cope with unmodeled
dynamics allowed to transfer the controller from the simulation
to the real setup without re-tuning. For clarity, we only report
the response of the AIC during the initial part of the pick and
place cycle (qB → qA → qB) in Fig. 3. Joint 7 is not reported to
limit redundant information, since no motion was required. As
can be seen the AIC can successfully control the manipulator,
however, the effect of the large uncertainties introduced for the
tuning, resulted in some initial jittering, especially in joint 6.2 In
other words, the AIC tuned in simulation resulted too aggressive
for the real robot. This is because in simulation the AIC had to
compensate also for gravity, thus a faster torque update was
required. The learning rate κa is the same for every joint but the
jittering effect is mostly visible in joint 6. This is because in the
last part of the kinematic chain, the resulting inertia acting on a
joint is lower, and so it is its reluctance to changes in velocities.
To completely remove the jittering, one can simply reduce the
learning rate κa to lower the torque update rate. The AIC and
MRAC have been tested against large external disturbances such
as a human pushing the robot during motion. AIC resulted more
compliant than MRAC, showing at the same time a faster and
less oscillatory disturbance rejection.

2) Pick and Place With Different Payloads: In order to use
the MRAC on the real robot, a severe re-tuning of 63 parameters
had to be performed, to stabilise the response due to the large
unmodeled dynamics. For the AIC, κa has been reduced to
eliminate the jittering, as well as σq, σq̇ to give more impor-
tance to the measurements and further reduce oscillations. The
two controllers are used to perform a pick and place of an
almost empty water bottle (≈0.1 [kg]) and a full water bottle

2https://youtu.be/Vsb0MzOp_TY
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Fig. 3. AIC on real setup without re-tuning from simulation. Focus on initial part of the pick and place cycle (qB → qA → qB) to highlight jittering.

Fig. 4. (A) Lift and place of empty bottle. (B) Difference of trajectories between empty and filled bottle during lift, place, and release.

(≈0.7 [kg]), as in Fig. 1. In Fig. 4 A we show the responses
of AIC and MRAC in case of the almost empty bottle, during
lifting and placing. As can be seen, the AIC presents a faster
convergence to the set-point, as well as smoother trajectories
with less oscillations. To achieve a satisfactory response, we had
to increase the stiffness of the MRAC, while the AIC could be
kept compliant. Furthermore, in Fig. 4 B we show the difference
of the trajectories in joint space between the case with empty
and full bottle, considering lifting, placing and releasing. Both
controllers adapt to the heavier payload, making the trajectory
converge to the one with lightweight bottle. AIC behaves simi-
larly to the MRAC, yet it presents considerably less oscillations
which reflected in smoother placing of the heavy object. The
bigger error appearing at around 16 [s] is due to the releasing of
the heavy object. The effect is more visible in the AIC since the
robot is more compliant. In a sense, the AIC behaves similarly
to a human arm, when an unexpected weight is dropped. This
is an additional evidence of the bio-inspired character of the
controller. The AIC can also be tuned to be stiffer if this effect
is not desired.

D. Discussion and Implementation Notes

Our novel AIC showed high adaptability, allowing to transfer
from simulation to real robot without re-tuning. Furthermore, the
AIC showed superior performance with respect to the MRAC in
pick and place scenarios. The AIC is compliant while allowing
to compensate for large perturbations. However, even though
there is a strong evidence of stability and robustness of the AIC
for a complex non-linear system, finding a formal stability proof

is still an open question. Similarly to a linear case, one should
determine a set of learning rates which guarantees convergence.
Intuitively, active inference is a gradient descent on a quadratic
and convex function thus, for some set of learning rates, the
algorithm should converge to the global minima. A possible
approach to a formal proof is to use Lyapunov theory as for the
back-propagation algorithm in neural networks. Active infer-
ence is, in a sense, back-propagating the sensitivity of the control
input with respect to the free-energy, to minimise F . Properly
addressing this proof mathematically would require a deep
analysis which is out of the scope of the current paper. Another
remark relates to the computational load of AIC. According to
Algorithm 1, our novel AIC has a computational complexity of
O(n) where n is the number of DOFs. Given the structure of the
generative models and covariance matrices chosen, the AIC re-
duces to 16 sums of vectors and 15 scalar-vector multiplications
with n-dimensional vectors. On the other hand, the complexity
of the MRAC is O(n3). Another optimised computed torque
algorithm such as LGP [28], which relies on learning dynamical
models, has a cost of O(N2) for online learning, where N is the
number of data points (i.e. N ≈ 300). Finally, the Franka Emika
Panda requires the control signals to be ready within 300 [µs]
to guarantee a functioning frequency of 1 [kHz]: Our AIC can
perform at such a high loop rate without any package loss; is
straightforward to implement; and extremely simple to tune. The
source code for simulations3 and experiments4 is freely available
on GitHub.

3https://github.com/cpezzato/panda_simulation
4https://github.com/cpezzato/active_inference
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VI. CONCLUSION

In this letter we derived the first active inference torque
controller for online joint space control of robot manipulators.
Our approach makes use of the alleged adaptability of active
inference, to introduce simplifications for the generative mod-
els, obtaining a model-free scheme which is less sensitive to
unmodeled dynamics, is easily scalable to high DOF and is com-
putationally inexpensive. With the proposed controller structure
we overcame the complexity barrier of previous approaches,
making possible control loops at high frequency with active
inference. Simulations and experiments in a real setup with a
7-DOF robot arm showed that our AIC is suitable for tasks in
which the dynamic model of the plant is unknown or subject
to large changes. The performance of our novel AIC has been
compared with that of a state-of-the-art MRAC, in different
pick and place scenarios. The AIC shows better adaptability
properties, allowing to transfer from simulation to real setup
without re-tuning. In addition, the AIC resulted easier to tune
and implement. With this work we confirmed the value of active
inference to develop more adaptive control of robot manipu-
lators. This is only the first step in this direction, future work
should proof the closed-loop stability of active inference, define
generative models to account for dynamic requirements and
motion constraints, and be extended to other control modalities,
such as control in Cartesian space or impedance control.
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