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ABSTRACT The elimination of a variety of noises such as the narrow-band interference in the detection

of partial discharge (PD) signals in switchgear is an intractable issue. Furthermore, the self-adaptation in

the denoising process is weak. A partial discharge-based novel adaptive ensemble empirical mode decom-

position (Novel Adaptive EEMD, NAEEMD) method is proposed in this paper for noise reduction. First,

the signal is decomposed using the EEMD, only the first-order natural mode is decomposed until the signal

margin reaches the EEMD decomposed termination condition. After removing the first-order mode, noise is

added to the residual signal, and the remaining signal components are decomposed in the next stage. At last,

the intrinsic mode function (IMF) of the noise reduction reconstruction is adaptively selected. The latter is

accomplished by combining the energy density and the average period of the IMF correlation coefficient

method. Meanwhile, the proposed method provides a new strategy for pre-processing the PD signal of

the switchgear. The outcomes of the proposed NAEEMD de-noising method have been compared with the

conventional wavelet denoising algorithm (WDA) and EMD-based threshold denoising for validation. The

simulation results showed a good denoising effect and effectiveness of the proposed method compared to

the WDA and EMD-based threshold denoising. Furthermore, an experimental simulation utilizing actual

switchgear PD signal has been performed to verify the noise reduction effectiveness of the proposed

method.

INDEX TERMS Switchgear, partial discharge, NAEEMD, narrow-band interference, denoising, wavelet

transform.

I. INTRODUCTION

Nowadays, the on-line monitoring of the substation equip-

ment is the most concerned technical field of the electric

power section. Switch cabinet is a very important electrical

equipment in the power system has to be monitored. The

on-line monitoring of the partial discharge (PD) signal of

the switch cabinet can well reflect the insulation level of

the power equipment [1], [2]. But, due to the workplace

factors around the switching cabinet, there is often a large

number of periodic interference signals of narrow-band high

frequency, in the process of obtaining PD signals. These

signals are particularly random signals such as white noise.

Moreover, the PD signal is a nonlinear and unstable discharge

signal. Hence, how to accurately extract PD signals from
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noise-contaminated signals has become the key to online

monitoring of PD [3], [4]. Several methods have been pre-

sented for PD signals denoising include fast Fourier trans-

form (FFT) [5], [6], wavelet threshold denoising [7], [8] and

other methods [9]–[11]. Although these methods have made

great accomplishments regarding denoising, they still have

few drawbacks [12]–[15]. As an example, FFT is mainly

used for stationary signal denoising and the processing of

non-stationary signals for PD is often not applicable [16].

Also, diverse signals are identified with human experience in

selecting wavelet basis functions so that denoising effect does

not always achieve people’s expectations, and the uncertainty

is strong. Furthermore, the denoising of wavelet threshold is

not adaptive [17].

The time-frequency analysis methods of PD signal denois-

ing include linear time-frequency analysis, adaptive time-

frequency analysis and quadratic time-frequency analysis
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based on Cohen’s class distribution [18]–[20]. The linear

time-frequency analyses such as short-time Fourier trans-

form (STFT), Gabor transform (GT) and wavelet trans-

form (WT). The window functions of STFT and GT are

fixed and due to the limitations of their algorithms, the

resolution of time domain and frequency domain cannot be

optimized at the same time [21], [22]. WT can automatically

adjust the time-frequency window as per the signal frequency

change. As it were, it can make the resolution of time and

frequency domain reach the optimal at the same time to some

extent [23]. The physical significance of time-frequency dis-

tribution of Cohen’s class is the distribution of signal energy

in the time-domain and frequency-domain. Likewise, it can

consider the overall appearance and localization qualities of

time-domain and frequency-domain, yet there is a cross-term

interference problem.

The Empirical Mode Decomposition (EMD) algorithm

has good time-frequency characteristics, can manage nonlin-

ear, non-stationary signals, and has strong adaptability [24].

It has accomplished important achievements in signal denois-

ing [25], [26]. However, it is unfavorable for signal denois-

ing analysis because of its serious modal aliasing. In order

to overcome this problem, Zhu et al. [27] proposed the

Ensemble Empirical Mode Decomposition (EEMD) method

to superimpose the finite amplitude white noise multiple

times in the original signal. This method makes the signal

continuous on different scales to eliminate the modal aliasing

phenomenon to a large extent. The idea of noise-assisted

thinkingmethod depends on the investigation of the statistical

properties of white noise. But, the complexity and computa-

tional multifaceted of this method are enormously increased

with expansion of white noise multiple times.

In order to overcome the above problems, a Novel Adap-

tive Ensemble Empirical Mode Decomposition (NAEEMD)

method is proposed in this paper. Combined with the correla-

tion coefficient method of the intrinsic mode function (IMF)

of energy density and average period, the intrinsic modulus

component of noise reduction reconstruction is adaptively

selected. A PD signal simulation example is presented for

validation and the measured signal case of the switchgear is

verified. Furthermore, the wavelet adaptive threshold (WAT)

denoising algorithm is compared with the threshold denois-

ing based EMD algorithm, in terms of signal-to-noise

ratio (SNR), waveform correlation (NCC), and the root

mean square error (RMSE) for quantitatively comparative

analysis [28], [29].

II. EEMD OF ADAPTIVE NOISE

A. NAEEMD ALGORITHM

In perspective of the drawbacks of the EEMD method, this

paper proposed the NAEEMD method. The core idea of this

method is that after adding white noise to the original sig-

nal, only the first-order mode is decomposed, and afterward

the noise is ceaselessly added to the residual signal after

the first-order mode is expelled. The next decomposition of

the residual signal component, only the first-order mode is

decomposed during the decomposition. Therefore, themargin

of the noise adaptive EEMD method isn’t gotten by inde-

pendent decomposition after every addition of noise, but by

the margin of the last decomposition. So as to recognize it

from EEMD, the IMF component acquired by NAEEMD

is recorded as cj [30], [31]. The flowchart of NAEEMD

algorithm is shown in Fig.1.

FIGURE 1. The flowchart of NAEEMD algorithm.

The specific steps of the NAEEMD algorithm are detailed

as follows:

Step#1: The input signal (i.e. the original signal,

x(t)) decides the number of times that the noise is added, N ,

and ε is the amplitude coefficient of the added noise.

Step#2: Adding white noise to the original signal x(t) as

the following:

xi(t) = x(t) + ni(t) (1)

where ni(t) is the white noise sequence added for the i − th

time, xi(t) is the noise-absorbing signal.

Step#3: EMD decomposition of the signal xi(t), only the

first-order mode ci,1 is decomposed at a time, the result is as

follows [32], [33]:

c1(t) =
1

N

N
∑

i=1

ci,1(t) (2)
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where N is the number of times of Gaussian white noise,

c1(t) is the first order IMF component of NAEEMD decom-

position, and ci,1(t) is the first order IMF component of

NAEEMD decomposition after the i addition of Gaussian

white noise.

Step#4: Calculation the decomposition r1(t) to get the

margin after the first order mode c1(t) as follows:

r1(t) = x(t) − c1(t) (3)

Step#5: Decomposition for each added Gaussian white

noise ni(t), i = 1, 2, . . .N as the following:

Ni(t)

=













n1(t)

n2(t)

. . .

ni(t)













EMD
→













cn1,1(t) cn1,2(t) . . . cn1,j(t) rn1 (t)

cn2,1(t) cn2,2(t) . . . cn2,j(t) rn2 (t)

. . . . . . . . . . . . . . .

cni,1(t) cni,2(t) . . . cni,j(t) rni (t)













(4)

where cni,j(t) is the j − th order IMF component obtained

by decomposing noise ni(t), rni (t) is the margin obtained by

decomposing the noise ni(t).

At the same time, a function Dj(xi(t)) is defined, that rep-

resents a set of j− th order IMF after the EMD decomposition

of the signal as follows [34]:

D1(ni(t)) =

(

cn1,1(t) cn2,1(t) . . . cni,1(t)
)T

(5)

where T is the matrix transpose.

Step#6:Construct a new signal xnew1
(t) = r1(t)+D1(ni(t))

for next decomposition as the following:

xnar1 (t)= r1(t)

+













cn1,1(t)

cn2,1(t)

· · ·

cni,1(t)













EMD (Only

lecomposes the

first order 1

H⇒

















cr1n1,1(t)

cr1n2,1(t)

cr1n2,1(t)

· · ·

cr1ni,1(t)

















(6)

where cr1ni,1(t) is the first order IMF component decomposi-

tion after the addition of D1(ni(t)).

Step#7: Acquiring the second-order IMF component c2(t)

and margin r2(t) obtained by the NAEEMD algorithm as the

following.

c2(t) =
1

N

N
∑

i=1

cr1ni,1(t) (7)

r2(t) = r1(t) − c2(t) (8)

Step#8: Determine the j − th order IMF of the original

signal, construct a new signal and repeat Step#4 and Step#5

as follows:

xnewj−1
(t) = rj−1(t) + Dj−1(ni(t)) (9)

cj(t) =
1

N

N
∑

i=1

crj−1ni,1(t) (10)

The final margin r(t) is:

r(t) = x(t) −

M
∑

j=1

cj(t) (11)

It tends to be seen from equations (1) to (11) that the

NAEEMD algorithm makes smart utilization of the uniform

conveyance of the white noise spectrum. So that the sig-

nal can be projected on a white noise background spread

over the whole time-frequency space and chose in order

to diminish the modal aliasing phenomenon. In addition,

unlike EEMD algorithm, the margin of NAEEMD doesn’t

rely on the independent decomposition after every addition

of noise, yet relies on the margin of the last decomposi-

tion, which in turn diminishes the reconstruction error after

decomposition.

B. SIGNAL RECONSTRUCTION BASED-CORRELATION

COEFFICIENT METHOD

The essential thought of denoising of NAEEMD algorithm

is to decompose the original signal into a series of IMF

components arranged in orders of frequencies from high

to low. At that point, specify whether each order of IMF

is a noise or a signal through some corresponding noise

assessment criterias. The noise component is eliminated,

and the remaining IMF component is recombined to acquire

a noise-reduced signal. The commonly used IMF decision

criteria includes correlation analysis method, mutual infor-

mation value, adjacent signal standard deviation, continuous

mean square error, etc. [35], [36]. In this paper an IMF

correlation coefficient method based on energy density and

average period is proposed to choose the reconstructed IMF

component.

By using the EEMD noise adaptive algorithm, the energy

density, Ej and the averaging period of the j − th order IMF,

Tj can be calculated, respectively as the following:

Ej =
1

N

N
∑

i=1

[

cj(i)
]2

(12)

Tj =
2N

gj
(13)

where N is the length of each order of IMF and gj is the

number of extreme points of the j− th order IMF cj.

Based on the conclusion in [37], the product of the energy

density of each order IMF component obtained by decompo-

sition of the white noise sequence and its average period is a

constant, namely:

Sj = EjTj = const (14)
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Then, the IMF correlation coefficient, RSj which depends

on the energy density and average period is defined as [38]:

RSj =

∣

∣

∣

∣

Sj

Sj−1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

Sj

1
j−1

j−1
∑

i=1

Si

∣

∣

∣

∣

∣

∣

∣

∣

∣

(15)

where Sj is the product of the energy density of the j − th

order IMF and the averaging period, Sj−1 is the mean of the

product of the energy density of the (1 ∼ j-1)th order IMF

and the average period.

When RSj > 1, it can be seen that the j − th order IMF

Sj is larger than the former (j-1)th IMF Sj−1, indicating that

the product of the energy density of each order IMF and

its average period is constant in the (j-1)th IMFs. There-

fore, the former (j-1)th IMF is the noise component and is

rejected during reconstructing the signal. This method can

effectively distinguish the noise component and avoid the

denoising effect of the algorithm due to improper selection

of the truncation order of the IMF components [39].

III. SIMULATION EXAMPLE

The attenuated PD signal can be theoretically analyzed by the

double exponential oscillation attenuation model. Assuming

the following pulse signal [40]:

f (t) = A(e−1.3t/τ
− e−2.2t/τ ) sin(2π fct) (16)

where A is the partial amplitude of the pulse signal, τ is the

attenuation coefficient, fc is the oscillation frequency and the

sampling frequency is f = 10MHz. The added white noise

interference signal is w ∼ N (0, 0.22). The mathematical

expression of the narrowband periodic interference signal is

as the following:

fi(t) =

4
∑

i=1

Ai sin(2π fit) (17)

whereAi is the amplitude of narrowband periodic interference

signal, and fi is the frequency. The PD simulation parameters

are shown in Table 1.

TABLE 1. The PD simulation model parameters.

The simulated PD signal, the noise-diffused signal under

narrow-band periodic interference and the white noise inter-

ference are shown in Fig.2. Figure 2(a) shows the analog PD

signal, and Fig.2(b) shows the noise signal after adding the

narrowband interference and the white noise. The NAEEMD

FIGURE 2. Simulating the original PD signal and the noise signal. (a) The
analog PD signal. (b) The noise signal after adding the narrowband
interference and the white noise.

FIGURE 3. The NAEEMD decomposition of the modal function.

decomposition of the noise signal is performed to obtain the

seven IMFs, of which RS8 is the signal margin, as shown

in Fig.3.
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As shown in in Fig.3, the PD signal fundamentally

exists in the IMF1 and IMF2 modes and the white noise

signal is mostly concentrated in the IMF3 mode. The

IMF4∼IMF6 modes contain the narrowband periodic inter-

ference signals of different frequencies. IMF7 is clearly the

false component of the decomposition, and it ought to be

relinquished. It combines the energy density and the aver-

age period of the IMF correlation coefficient method when

reconstructing the signal, so as to restore the true signal to

the greatest extent. As appeared in Fig.3 the IMF transition

is progressively natural, and the frequency components of

different scales are clearly separated. Besides, the proposed

NAEEMD method can separate the PD signal from the inter-

ference signal, and mitigate the modal aliasing phenomenon.

In order to validate the proposed method, the outcomes

have been compared with theWAT denoising and EMDbased

threshold denoising for the analog noise discharge signal as

shown in Fig.4.

FIGURE 4. The simulated PD signal denoising results.

As seen in Fig.4, the waveform with the proposed

NAEEMD denoising and the EMD-based threshold denois-

ing are both closer to the original signal than with the WAT

denoising. Moreover, both the noise suppression and the sig-

nal mutation characteristics are significantly better than the

WAT denoising method. In additional, the simulation results

showed that the waveform after NAEEMD denoising has

more discharge information than the EMD-based threshold

denoising waveform. That is because the margin obtained by

the noise adaptive EEMD method after each decomposition

does not rely on the independent decomposition after each

noise addition. But it depends on the margin of the last

decomposition, so that the reconstruction error is decreased

and the signal has restored more realistically.

To evaluate the waveform characteristic after denoising,

the signal-to-noise ratio (SNR), waveform correlation coef-

ficient (NCC) and root mean square error (RMSE) are

estimated as the following:

SNR = 10 lg

N
∑

n=1

x(n)2

N
∑

n=1

[x(n) − x̂(n)]2

(18)

NCC =

N
∑

n=1

x(n)∗x̂(n)

√

(
N
∑

n=1

x(n)2)∗(
N
∑

n=0

x̂(n)2)

(19)

RMSE =

√

√

√

√

1

N

N
∑

n=1

[x(n) − x̂(n)]2 (20)

where x(n) and x̂(n) are the time series of signals before noise

reduction and after noise reduction, respectively.

The SNR value and the amplitude error are visibly mea-

sured by denoising. Furthermore, the larger SNR value,

the smaller the amplitude error, which indicates better denois-

ing effect. The waveform correlation coefficient is the micro-

scopic measure of denoising effect. So that, the larger the

waveform similarity coefficient indicates the smaller the

waveform distortion and the better the denoising effect.

The evaluation index values of the three denoising algorithms

are shown in Table 2.

TABLE 2. Evaluation index values of three denoising algorithms.

It can be seen from Table 2 that for the WAT denoising

and EMD-based threshold denoising, although the latter’s

RMSE is higher than the former, both SNR and NCC are

higher than the former. In general, the denoising effect with

EMD-based threshold is better than WAT denoising. Con-

cerning the proposed NAEEMD denoising, it can be seen that

the three indicators are better than the EMD-based threshold

denoising, it is further illustrated that the proposed method

has acceptable advantages in PD denoising.
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FIGURE 5. Wiring diagram of the switch cabinet PD experimental platform.

FIGURE 6. The switchgear noise-containing PD signal.

IV. EXPERIMENTAL ANALYSIS

In order to verify the noise reduction effect of the proposed

denoising method, a real switchgear PD signal is utilized in

the laboratory, the switch cabinet PD experimental platform

as shown in Fig.5.

The signal waveform is obtained by using an omnidirec-

tional ultra-high frequency sensor and a high-speed digital

storage oscilloscope. The omnidirectional antenna bandwidth

is 0.2 ∼ 2GHz, and the oscilloscope sampling rate is 5GS/s.

The discharge signal sampled at each power frequency cycle

is taken as a sample.

The switchgear noise-containing PD signal is obtained

through the laboratory simulation test, as shown in Fig.6. Due

to the small degree of noise interference in the laboratory

environment and to keep the test results closer to the actual

switch cabinet PD signal, the PD signal obtained by the simu-

lation test is processed as shown in Fig.7. In order to verify the

effectiveness of the proposed NAEEMD denoising method

for noise reduction, the WAT denoising and EMD-based

threshold denoising are used to denoise the signal shown

in Fig.7 as appeared in Fig.8. By comparing and analyz-

ing the denoised signals of the three denoising methods,

FIGURE 7. The processed PD signal.

the characteristics of the three denoising methods are verified

as the following.

It can be seen from Fig.8 that after utilizing the three

methods of noise reduction, the noise interference of the PD

signal that was originally submerged in the noise is effectively

suppressed. Moreover, the noise-reduced signal maintains the

contour of the original signal, which proves the feasibility

and effectiveness of the three methods for denoising the PD

signal. The WAT denoising and the EMD-based threshold

denoising, Fig.8 (a) and (b) basically complete the denoising

processing of the PD signal, however, a small portion of the

original signal spectrum is lost and there is still some noise

glitch after the denoising process. In Fig.8 (c), the proposed

denoising method is succeeded to denoise the signal from

the noise signal. In addition, the noise glitch of the signal

is suppressed to a large extent, and the PD signal is almost

completely extracted from the noise.

For further verifying the noise immunity of the proposed

method, the spectrum analysis is performed on the measured

original signal waveform and the latter has denoised by

the three different methods, as shown in Fig.9. As shown

in Fig.9, the useful information contained in the PD sig-

nal is mainly concentrated in the 0.5 MHz and 0.8 MHz

58144 VOLUME 7, 2019



T. Jin et al.: Novel Adaptive EEMD Method for Switchgear Partial Discharge Signal Denoising

FIGURE 8. The result of denoising the measured PD signal. (a) The
measured PD denoised signal of WAT denoising. (b) The measured PD
denoised signal of EMD-based threshold denoising. (c) The measured PD
denoised signal of NAEEMD denoising.

high frequency bands. Obviously, the narrowband interfer-

ence signals are concentrated in the 0.2 MHz and 2 MHz

frequency bands, while the remaining low frequency bands

contain ambient noise information. Furthermore, with com-

paring the spectrum of the signal after denoising by the three

methods with the spectrum of the measured original signal,

it can be seen that the three denoising methods succeeded

FIGURE 9. Spectrum analysis after denoising of measured PD signals.

in suppressing the narrowband interference signal of the PD

signal and white noise denoising. Although, the EMD-based

threshold denoising and the proposed denoising method are

closer to the spectrum distribution of the original signal than

theWAT denoisingmethod.With further comparing the influ-

ence of narrowband interference and noise on the spectral

distribution of the PD signal, it is obvious that the denoising

waveform by proposed method is richer than the EMD-based

threshold denoising method. Meanwhile, the signal spectrum

after denoising with the proposed method is basically consis-

tent with the spectrumwaveform of themeasured original sig-

nal, which embodies the superiority of the proposed method

in the recognition and extraction of PD signal.

V. CONCLUSION

Aiming at the drawbacks of pattern aliasing in the con-

ventional EMD decomposition and the lack of signal spec-

trum and reconstruction signal, this paper proposes a Novel

Adaptive EEMD (NAEEMD) denoising method. The main

idea of the proposed method is to decompose only the first-

order mode after adding white noise to the original signal

then adding the noise ceaselessly to the residual signal. The

proposedmethod has been compared with theWAT denoising

and EMD-based threshold denoising for validation. Based

on the analysis and verification of the signal simulation and

the actual example, it can be concluded that the NAEEMD

method haven’t the problem of selecting the basis function

and number of decomposition layers compared with WAT

denoising and EMD-based threshold denoising. Moreover,

the proposed method completely denoises the signal char-

acteristics and maintains the threshold denoising feature for

each component in wavelet denoising. During the decom-

position of the residual signal component by the proposed

NAEEMDmethod, only the first-order mode is decomposed.

Therefore, the margin isn’t gotten by independent decom-

position after each noise addition, but by the margin of

the last decomposition. This largely reduces the reconstruc-

tion error after decomposition, which is not available in the
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EMD-based threshold denoising andWAT denoising. In addi-

tion, it can be seen from the analysis of the PD signal that

the proposed NAEEMD method is superior to the other two

methods in terms of noise suppression and signal mutation

characteristics.
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