
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

RENAN FONTELES ALBUQUERQUE

A NOVEL ADAPTIVE LEARNING VECTOR QUANTIZATION FOR TIME SERIES

CLASSIFICATION

FORTALEZA

2018

RENAN FONTELES ALBUQUERQUE

A NOVEL ADAPTIVE LEARNING VECTOR QUANTIZATION FOR TIME SERIES

CLASSIFICATION

Dissertação apresentada ao Programa de
Pós-Graduação em Engenharia Elétrica do
Centro de Tecnologia da Universidade Federal
do Ceará, como requisito parcial à obtenção do
título de Mestre em Engenharia Elétrica. Área
de Concentração: Automação e Controle.

Orientador: Prof. Dr. Arthur Plínio de
Souza Braga

Coorientador: Prof. Dr. Bismark Claure
Torrico

FORTALEZA

2018

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

F762n Fonteles Albuquerque, Renan.
 A Novel Adaptive Learning Vector Quantization for Time Series Classification / Renan Fonteles
Albuquerque. – 2018.
 146 f. : il. color.

 Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-
Graduação em Engenharia Elétrica, Fortaleza, 2018.
 Orientação: Prof. Dr. Arthur Plínio de Souza Braga.
 Coorientação: Prof. Dr. Bismark Claure Torrico.

 1. Reconhecimento de padrões. 2. Redes Neurais Artificiais. 3. Aprendizado Adaptativo. 4. Learning
Vector Quantization. 5. Classificação de Séries Temporais. I. Título.
 CDD 621.3

RENAN FONTELES ALBUQUERQUE

A NOVEL ADAPTIVE LEARNING VECTOR QUANTIZATION FOR TIME SERIES

CLASSIFICATION

Master’s dissertation presented to the Post
Graduate Program in Electrical Engineering of
the Federal University of Ceará as partial requi-
rement for the degree of Master in Electrical
Engineering. Concentration area: Control and
Automation.

Approved in September 21st, 2018

EXAMINATION BOARD

Prof. Dr. Arthur Plínio de Souza Braga (Advisor)
Federal University of Ceará (UFC)

Prof. Dr. Bismark Claure Torrico (Co-advisor)
Federal University of Ceará (UFC)

Prof. Dr. Wilkley Bezerra Correia
Federal University of Ceará (UFC)

Prof. Dr. Ajalmar Rego da Rocha Neto
Federal Institute of Education, Science and

Technology of Ceará (IFCE)

To my beloved family.

ACKNOWLEDGEMENTS

I would like to dedicate this thesis to my family, Cícero Raimundo Matos Albuquer-

que, Jacqueline Rios Fonteles Albuquerque and Camila Fonteles Albuquerque, for their support,

encouragement and love.

I thank my supervisor, Prof. Dr. Arthur Plínio Souza Braga, for his guidance and

partnership during the Master Course. I also thank my friends in the GPAR and PPGEE, for

all conversations, discussions and leisure moments. I specially express my gratitude to Paulo

Daving and Magno Prudêncio for all the support and friendship since the beginning of this

journey. I thank in general all the engineers, researchers and professors who had the opportunity

to evaluate and contribute with this work.

Finally, I would like to acknowledge the financial support of Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for my Master Scholarship.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior - Brasil (CAPES) - Finance Code 001.

“The profound study of nature is the most fertile

source of mathematical discoveries.”

(Joseph Fourier)

RESUMO

A Classificação de Séries Temporais é um problema de interesse em diversas áreas de pesquisa,

contendo aplicações interessantes para o uso de técnicas de Aprendizado de Máquina. Dentre

as soluções adotadas na literatura, os algoritmos baseados em Redes Neurais Artificiais (RNA)

têm se destacado devido à sua capacidade de generalização. Nesta dissertação foi realizado um

estudo sobre o desempenho das redes neurais no problema de classificação de séries temporais. É

proposta uma nova abordagem adaptativa para a rede neural Learning Vector Quantization (LVQ)

combinada com um método de agrupamento conhecido como Self-Organizing Map (SOM). O

classificador proposto, denominado Adaptive-LVQ-SOM (ALVQ-SOM), permite a remoção

e inclusão de protótipos com o objetivo de otimizar o desempenho de classificação da rede.

Outras duas variações inspiradas no método ALVQ-SOM também são apresentadas: Driven-LVQ

(dLVQ) e Driven-ALVQ-SOM (dALVQ). Para avaliar a eficácia do método proposto, um estudo

comparativo foi conduzido entre os classificadores LVQ clássicos, o ALVQ-SOM e outros dois

classificadores baseados em RNA: Multi-Layer Perceptron (MLP) e Support Vector Machine

(SVM). Além disso, o algoritmo K -Nearest Neighbours (k-NN) foi inserido neste estudo pois

este é considerado um algoritmo de referência na literatura de classificação de séries temporais.

A metodologia adotada na avaliação dos algoritmos consiste na aplicação da técnica de validação

cruzada 10-Fold na execução de simulações utilizando os diversos classificadores estudados,

aplicados a conjuntos de dados distintos. Os resultados dos experimentos mostram que o método

de LVQ adaptativo proposto (ALVQ-SOM) supera as versões clássicas do LVQ, apresentando

desempenho de classificação superior na maioria dos cenários estudados.

Palavras-chave: Reconhecimento de padrões; Redes Neurais Artificiais, Aprendizado Adapta-

tivo; Multi-Layer Perceptron; Support Vector Machine; Learning Vector Quantization;K-Nearest

Neighbor; Classificação de Séries Temporais; Mineração de Séries Temporais

ABSTRACT

Time series classification is a problem of interest in several areas of research, containing

interesting applications for the use of machine learning techniques. Among the solutions

adopted in the literature, the algorithms based on Artificial Neural Network (ANN) have been

outstanding due to their generalization capacity. In this dissertation, a study was conducted on

the performance of neural networks in the problem of time series classification. A new adaptive

variation of the Learning Vector Quantization (LVQ) neural network, combined with a clustering

method known as Self-Organizing Map (SOM), has been proposed. The proposed classifier,

called Adaptive-LVQ-SOM (ALVQ-SOM), allows the removal and inclusion of prototypes in

order to optimize the classification performance of the network. Two other methods inspired

by ALVQ-SOM are also presented: Driven-LVQ (dLVQ) and Driven-ALVQ-SOM (dALVQ).

To evaluate the efficacy of the proposed method, a comparative study was conducted between

the classical LVQ classifiers, ALVQ-SOM and two other ANN-based classifiers: Multi-Layer

Perceptron (MLP) and Support Vector Machine (SVM). In addition, the algorithm K - Nearest

Neighbors (k -NN) was inserted in this study, since this algorithm is considered a reference

classifier in the literature of time series classification. The methodology adopted in the evaluation

of the algorithms consists in the application of the cross-validation technique 10-fold in the

execution of simulations using different classifiers, applied to distinct datasets. The results of

the experiments show that the proposed adaptive LVQ (ALVQ-SOM) method outperforms the

classical versions of LVQ, presenting superior classification performance in most of the studied

scenarios.

Keywords: Pattern Recognition; Artificial Neural Networks; Adaptive learning; Multi-Layer

Perceptron; Support Vector Machine; Learning Vector Quantization; K-Nearest Neighbor; Time

Series Classification; Time Series Data Mining

LIST OF FIGURES

Figure 1 – Illustration of univariate and multivariate time series 27

Figure 2 – Subsequence example for ℓ= 10 . 27

Figure 3 – Time series data set with N samples . 28

Figure 4 – Euclidean distance and dynamic time warping measurements 30

Figure 5 – Distance matrix with a warping path . 31

Figure 6 – Unlabeled and Labeled time series data . 34

Figure 7 – Unlabeled and Labeled time series data representation 34

Figure 8 – Training process for classification . 35

Figure 9 – Testing process for a classifier . 36

Figure 10 – Clustering results for N = 4 and N = 5 . 36

Figure 11 – Time series observation and subsequence anomaly detection 37

Figure 12 – Time series classification approaches . 39

Figure 13 – Example of k-nn classification . 43

Figure 14 – Generic MLP architecture . 45

Figure 15 – Examples of MLP architectures . 46

Figure 16 – Feedforward propagation in vector form 47

Figure 17 – Example of two-dimensional SOM network. The input and weight vectors

are D-dimensional. The Nw neurons are uniformly arranged in a rectangular

grid. 50

Figure 18 – Evolution of a Self-Organizing Map . 52

Figure 19 – Prototype-based representations . 53

Figure 20 – LVQ1 architecture . 54

Figure 21 – Fuzzy-LVQ Architecture . 57

Figure 22 – Optimal hyperplane for linearly separable patterns 59

Figure 23 – SVM hyperplane for classes C1 and C2 . 61

Figure 24 – SVM hyperplane classification cases . 63

Figure 25 – Classic and Adaptive LVQ training frameworks 70

Figure 26 – Flowchart operation of the Adaptive Learning Vector Quantization proposed

by Grbovic & Vucetic (2009) (ALVQ-GV) 72

Figure 27 – Flowchart describing the operation of Adaptive Learning Vector Quantization

combined with Self-Organizing Map (ALVQ-SOM) 74

Figure 28 – Process of including three new prototypes to an adaptive LVQ 75

Figure 29 – Driven-Learning Vector Quantization (dLVQ) flowchart 82

Figure 30 – Generation-based learning decay in Driven Adaptive Learning Vector Quanti-

zation (dALVQ) . 83

Figure 31 – Example of multiple learning rate per prototype generation 84

Figure 32 – Cross-validation techniques . 88

Figure 33 – Cross-validation techniques . 89

Figure 34 – Synthetic control time series . 94

Figure 35 – Accuracy distribution for LVQ-based classifiers (Synthetic Control) 96

Figure 36 – Gun-Point time series . 97

Figure 37 – Accuracy distribution for LVQ-based classifiers (Gun-Point) 98

Figure 38 – CBF time series . 100

Figure 39 – Accuracy distribution for LVQ-based classifiers (CBF) 101

Figure 40 – Trace time series . 103

Figure 41 – Accuracy distribution for LVQ-based classifiers (Trace) 104

Figure 42 – ECG200 time series . 106

Figure 43 – Accuracy distribution for LVQ-based classifiers (ECG200) 107

Figure 44 – Italy Power Demand time series . 109

Figure 45 – Accuracy distribution for LVQ-based classifiers (Italy Power Demand) . . . 110

Figure 46 – Computers time series . 112

Figure 47 – Accuracy distribution for LVQ-based classifiers (Computers) 113

Figure 48 – Comparison between the Adaptive-LVQ and classic LVQ approach 115

Figure 49 – Comparison between the Adaptive-LVQ1 and classic LVQ1 approach 116

Figure 50 – Comparison between the Adaptive-FLVQ and classic FLVQ approach . . . 116

Figure 51 – Overall results of ALVQ, KNN, SVM and MLP classifiers for all 7 datasets 117

Figure 52 – Comparison between classifiers, considering a rank of best results 118

Figure 53 – Learning evolution for varying the hyperparameter a f 119

Figure 54 – Influence of Adaptive Factor (a f) in execution time 120

LIST OF TABLES

Table 1 – Examples of Kernel functions used in SVM algorithms (HAYKIN et al., 2009) 66

Table 2 – Confusion matrix for a two-class problem 86

Table 3 – Parameters used in experimenting different classification models 90

Table 4 – Description of UCR datasets . 93

Table 5 – Overall LVQ-based classification performance results (Synthetic Control). . 95

Table 6 – Overall cost regarding number of prototype and execution time of LVQ-based

classification algorithms (Synthetic Control). 95

Table 7 – Overall classification performance results (Synthetic Control). 96

Table 8 – Overall LVQ-based classification performance results (Gun-Point). 98

Table 9 – LVQ-based Overall cost (Gun-Point). 99

Table 10 – Overall classification performance results (Gun-Point). 99

Table 11 – Overall LVQ-based classification performance results (CBF). 101

Table 12 – Overall cost regarding number of prototype and execution time of LVQ-based

classification algorithms (CBF). 102

Table 13 – Overall classification performance results (CBF). 102

Table 14 – Overall LVQ-based classification performance results (Trace). 104

Table 15 – LVQ-based overall cost (Trace). 105

Table 16 – Overall classification performance results (Trace). 105

Table 17 – Overall LVQ-based classification performance results (ECG200). 107

Table 18 – Overall cost regarding number of prototype and execution time of LVQ-based

classification algorithms (ECG200). 108

Table 19 – Overall classification performance results (ECG200). 108

Table 20 – Overall LVQ-based classification performance results (Italy Power Demand). 110

Table 21 – Overall cost regarding number of prototype and execution time of LVQ-based

classification algorithms (Italy Power Demand). 111

Table 22 – Overall classification performance results (Italy Power Demand). 111

Table 23 – Overall LVQ-based classification performance results (Computers). 113

Table 24 – Overall cost regarding number of prototype and execution time of LVQ-based

classification algorithms (Computers). 114

Table 25 – Overall classification performance results (Computers). 114

Table 26 – Sub-optimal parameters for k-NN classifier for each dataset 132

Table 27 – Sub-optimal parameters for SVM classifier for each dataset 132

Table 28 – Sub-optimal parameters for MLP classifier for each dataset 132

Table 29 – Overall LVQ-based classification performance results (Synthetic Control). . 133

Table 30 – Overall cost regarding number of prototype and execution time of LVQ-based

classification algorithms (Synthetic Control). 134

Table 31 – Overall LVQ-based classification performance results (Gun-Point). 135

Table 32 – Overall cost regarding number of prototype and execution time of LVQ-based

classification algorithms (Gun-Point). 136

Table 33 – Overall LVQ-based classification performance results (CBF). 137

Table 34 – Overall cost regarding number of prototype and execution time of LVQ-based

classification algorithms (CBF). 138

Table 35 – Overall LVQ-based classification performance results (Trace). 139

Table 36 – Overall cost regarding number of prototype and execution time of LVQ-based

classification algorithms (Trace). 140

Table 37 – Overall LVQ-based classification performance results (ECG200). 141

Table 38 – Overall cost regarding number of prototype and execution time of LVQ-based

classification algorithms (ECG200). 142

Table 39 – Overall LVQ-based classification performance results (Italy Power Demand). 143

Table 40 – Overall cost regarding number of prototype and execution time of LVQ-based

classification algorithms (Italy Power Demand). 144

Table 41 – Overall LVQ-based classification performance results (Computers). 145

Table 42 – Overall cost regarding number of prototype and execution time of LVQ-based

classification algorithms (Computers). 146

LIST OF ALGORITHMS

Algorithm 1 – SOM pseudo-code . 51

Algorithm 2 – LVQ1 pseudo-code . 55

Algorithm 3 – ALVQ-SOM include prototype function (All classes at once approach) . 76

Algorithm 4 – ALVQ-SOM include prototype function (One class at a time approach) 77

Algorithm 5 – ALVQ-SOM removal prototypes function 78

Algorithm 6 – ALVQ1-SOM pseudo-code . 79

LIST OF ABBREVIATIONS AND ACRONYMS

QE Quantization Error

k-NN k-Nearest Neighbor

ALVQ Adaptive LVQ

ALVQ-GV Grbovic-Vucetic Adaptive LVQ

ALVQ-SOM Adaptive LVQ with Self-Organizing Maps

ANN Artificial Neural Network

CM Confusion Matrix

CNN Convolution Neural Networks

dALVQ driven Adaptive LVQ with Self-Organizing Maps

dLVQ Driven-LVQ

DNN Deep Neural Network

DTW Dynamic Time Warping

ED Euclidean Distance

HAR Human Activity Recognition

KM-SOM Kohonen’s Map

LVQ Learning Vector Quantization

MLP Multi-Layer Perceptron

MSE Mean Squared Error

SOM Self-Organizing Maps

SVM Support Vector Machine

TS Time Series

TSC Time Series Classification

TSDM Time Series Data Mining

LIST OF SYMBOLS

a f Adaptive factor

g f Growth factor

rt Removal threshold

B Budget

α Learning rate

α0 Initial value of α

δ Local gradient

x classifier’s input vector

y desired class of of the input vector x

w Vector of neural weights

W Matrix of neural weights

xmin Vector of the lowest values for the attributes of an input vetor x

xmax Vector of the highest values for the attributes of an input vetor x

σ Size of the neighborhood of the SOM neural network

σ0 Initial value of σ

CONTENTS

1 INTRODUCTION . 19

1.1 Motivation . 20

1.2 Objectives . 22

1.3 Methodology . 22

1.4 List of Publications . 23

1.5 Organization of the Thesis . 23

2 TIME SERIES CLASSIFICATION . 25

2.1 Fundamentals of Time Series . 25

2.1.1 Univariate and Multivariate Time Series 26

2.1.2 Time Series Definition . 26

2.2 Time Series Data Mining . 28

2.2.1 Similarity and Dissimilarity Measures . 28

2.2.1.1 Euclidean Distance (ED) . 29

2.2.1.2 Dynamic Time Warping (DTW) . 30

2.2.2 Data representation and dimensionality reduction 32

2.2.3 Applications . 33

2.2.3.1 Classification . 33

2.2.3.2 Clustering . 36

2.2.3.3 Anomaly Detection . 37

2.3 Time Series Classification Problem (TSC) 38

2.4 State-of-the-art . 40

2.5 Summary . 42

3 THEORETICAL BASIS . 43

3.1 k-Nearest Neighbor classifier . 43

3.2 Multi-Layer Perceptron (MLP) . 44

3.2.1 MLP Training Process . 45

3.2.1.1 Feedforward . 47

3.2.1.2 Backpropagation . 48

3.3 Self-Organizing Map (SOM) . 49

3.3.1 SOM neural network training process . 49

3.4 Learning Vector Quantization (LVQ) . 52

3.4.1 Kohonen’s LVQ1 . 53

3.4.2 Kohonen’s LVQ2 . 55

3.4.2.1 Kohonen’s LVQ2.1 . 56

3.4.3 Kohonen’s LVQ3 . 56

3.4.4 Fuzzy-LVQ . 56

3.4.5 Quantization Error (QE) . 57

3.5 Support Vector Machine (SVM) . 58

3.5.1 Fundamentals of SVM classification . 58

3.5.2 Hard margin SVM classifier . 61

3.5.3 Soft margin SVM classifier . 63

3.5.4 Kernel Function . 65

3.5.5 Classifying approaches . 67

3.5.5.1 One-Against-All . 67

3.5.5.2 One-Against-One . 67

3.6 Summary . 67

4 NOVEL APPROACHES FOR ADAPTIVE LVQ CLASSIFIERS 69

4.1 Adaptive LVQ (ALVQ) . 69

4.2 ALVQ-GV . 71

4.2.1 ALVQ-GV strategy for prototype inclusion 72

4.2.2 ALVQ-GV strategy for prototype removal 73

4.3 Proposed Adaptive-LVQ (ALVQ-SOM) 73

4.3.1 Proposed strategy for prototype inclusion 74

4.3.1.1 All classes at once (v1) . 75

4.3.1.2 One class at a time (v2) . 76

4.3.2 Proposed strategy for prototype removal 77

4.3.3 ALVQ-SOM implementation . 78

4.3.4 ALVQ-SOM Hyper-parameters . 78

4.3.4.1 Growth factor (g f) . 79

4.3.4.2 Removal threshold (rt) . 80

4.3.4.3 Adaptation factor (a f) . 80

4.4 Driven-LVQ (dLVQ) . 81

4.5 Driven-Adaptive-LVQ (dALVQ) . 83

4.6 Summary . 84

5 EXPERIMENT METHODOLOGY . 85

5.1 Performance Metrics . 85

5.1.1 Confusion matrix . 85

5.2 Cross-Validation . 87

5.2.1 Hold Out . 87

5.2.2 K-Fold . 87

5.3 Experiment description . 88

5.4 Summary . 91

6 EXPERIMENTS AND RESULTS . 92

6.1 General performance evaluation . 93

6.1.1 Synthetic Control Dataset . 94

6.1.2 Gun-Point Dataset . 97

6.1.3 CBF Dataset . 100

6.1.4 Trace Dataset . 103

6.1.5 ECG200 Dataset . 106

6.1.6 Italy Power Demand Dataset . 109

6.1.7 Computers . 112

6.2 Discussion . 115

6.3 Adaptive factor (a f) influence in training 119

6.4 Summary . 120

7 CONCLUSION AND FUTURE WORK 121

7.1 Future works . 122

REFERENCES . 124

APPENDICES . 132

APPENDIX A – Sub-optimal parameters for k-NN, MLP and SVM 132

APPENDIX B – Overall result tables (B = P0) 133

19

1 INTRODUCTION

Time series are collections of sequential observations that describe the process of

temporal evolution of a given variable. In general, these type of data is composed of observations

from a measurable phenomenon that varies over time. Time series are present in several areas

of knowledge, such as medicine, robotics, finances, and meteorology. Time series analysis is

the field which studies how to extract meaningful information from time series in order to solve

problems such as classification, regression, and prediction. Multiple papers in the literature have

explored different strategies for analysing continuous temporal data extracted from a diversity of

data sources. In general, these temporal data are collected from sensors which transforms the

observed physical, chemical or biological phenomena into electrical measure (voltage or current)

which can be represented in numerical values. Examples of time series data sources widely

explored in the literature are: accelerometers (ANGUITA et al., 2013), Electrocardiogram (ECG)

(NOVIYANTO; ARYMURTHY, 2012; RAJESH; DHULI, 2017), Electroencephalogram (EEG)

(HAJINOROOZI et al., 2016; SORS et al., 2018; JIAO et al., 2018).

Time Series Classification (TSC) is a specific classification problem which involves

finding a mapping function capable of assigning a time series data into a specific discrete class

label. The data sequence property is essential for featuring the problem, as the pattern recognition

depends on the samples sequence. A significantly number of time series classification algorithms

have been explored in the literature recently (BAGNALL et al., 2017).

For instance, Smith et al. (2017) have presented a study about the deployment of

Artificial Neural Network (ANN) and statistics methods for classification of transmission signal

in satellites communication. In Taqi et al. (2017) and Kumar et al. (2016) the authors have

proposed classification models applied to EEG signals using Deep Neural Network (DNN),

as in Chavan & Kolte (2017) they used Multi-Layer Perceptron (MLP). In Jen et al. (2008) is

presented a classification method of ECG signals using linear feature analysis. An interesting

area of research that has been widely discussed in recent years is the recognition of human

activities from accelerometer data. Currently, Human Activity Recognition (HAR) has been

shown to be a relevant topic in the field of time series classification (BAO; INTILLE, 2004;

LESTER et al., 2006; MANNINI; SABATINI, 2010; ATALLAH et al., 2011; CASALE et al.,

2011; AYU et al., 2016; BUENAVENTURA; TIGLAO, 2017).

As time series data can have complex characteristics, it is necessary to apply solutions

that can handle the nonlinear operations. There are numerous classifiers that rely on different

20

approaches to create an appropriate classification model for a given problem. The state of the

art in the area of pattern recognition has explored several algorithms for solving classification

problems: Decisions Trees (MURTHY, 1998), Artificial Neural Networks (ZHANG, 2000),

Bayesian Networks (JENSEN, 1996), Support Vector Machines (BURGES, 1998) and Instance-

based learning classifiers (AHA, 1997; MANTARAS; ARMENGOL, 1998). A complete review

of classification algorithms can be found in (KOTSIANTIS et al., 2006). Among the pattern

recognition methods, ANN-based algorithms become an interesting solution to address this

problem due to its generalization ability (HAYKIN et al., 2009).

Considering the efficacy of models based on neural networks in the solution of

complex classification problems, this work seeks to carry out a comparative and evaluative study

about such classifiers applied in the problem of classification of time series. This work explores

in the literature multiple ANN-based solutions for comparing their performance in classifying

time series. A benchmark using different data sets was built to analyze and compare several

ANN strategies. Furthermore, a novel adaptive algorithm based on Learning Vector Quantization

(LVQ) is proposed in order to improve the classification performance in time series problems.

1.1 Motivation

Applications in the area of time series analysis have been extensively explored in

recent years due to the numerous problems involving temporal data. More specifically, in TSC

problems, the construction of decision boundaries for separating data from different classes

is a challenging task that usually requires machine learning and computational intelligence

techniques. In order to build a classifier, an appropriate decision boundary must be defined. In

general, classification performance (i.e. accuracy) is the criterion used for choosing the optimal

model. Nevertheless, a diversity of criteria may be considered for selecting a classifier for a

determined application (e.g., computational cost and implementation complexity). Based on

Occam’s razor, the simplest classifier would be considered the “best” model (BUNTINE, 1990).

Usually, the simplest classifier is not the most successful in terms of accuracy performance, but

it may present other characteristics which could be more desirable. Hence, it is often preferable

to adopt simpler classification models that present a performance that suffice the application

requirements. In summary, it is necessary to find a compromise between performance and

simplicity of the designed model.

21

Time series are often high-dimensional data. Hence, depending on the volume of

data available for training a classifier, the computational cost may increase significantly, turning

complex models quite disadvantageous and sometimes unfeasible. Recent researches have shown

frequent use of techniques based on Artificial Neural Networks (ANNs) such as Multi-Layer

Perceptron (MLP) (HAYKIN et al., 2009) , Deep Neural Network (DNN) (WANG et al., 2018)

and Convolution Neural Networks (CNN) (GU et al., 2018) to solve TSC problems. Although

ANN-based techniques have been employed successfully in a diversity of TSC problems, there are

still issues to be addressed. For example, classifiers based on DNN and CNN are computationally

expensive. Therefore, when designing a classifier, it is interesting to carry out model evaluations

to determine if such techniques are indeed necessary to solve the problem, or if a simpler

classifier would be more recommended.

In this context, an alternative simpler ANN-based intelligent classification model

is the Learning Vector Quantization (LVQ) (KOHONEN, 1990). LVQ is a type of prototype-

based model that present lower cost in comparison to networks such as MLP, DNN and CNN.

Prototype-based algorithms are considered efficient models that present reduced computational

cost compared to models whose training process is based on Backpropagation (i.e., MLP). In

addition, LVQ is not inefficient in terms of memory consumption, since only a few prototypes

are necessary for building a model.

The algorithms based on LVQ are rarely approached in the literature of TSC problems,

and only few LVQ variations depend on adaptive strategies for solving complex classification

problems. Motivated by the discrete number of studies in algorithms based on LVQ in the

classification of temporal patterns, this work intends to contribute with the literature by proposing

a new adaptive method based on LVQ, and comparing this method with other classifiers of

different approaches. In this work, a comparative study is conducted on classification algorithms

applied in time series data sets of different nature. ANN-based algorithms such as LVQ (classic

and adaptive versions), MLP, Support Vector Machine (SVM) (CORTES; VAPNIK, 1995), and

an instance-based naive method called k-NN (Nearest Neighbor) (NASIBOV; PEKER, 2011) are

explored. In addition, a new approach of Adaptive-LVQ is proposed with the objective to improve

the overall classification performance of the model. This master thesis aims to contribute with

the state-of-the-art pattern recognition algorithms applied in time-series classification. Details

about the general and specific objectives are discussed in the next section.

22

1.2 Objectives

The main goal of this dissertation is to propose and evaluate a novel adaptive LVQ-

based variation in order to improve the classification performance in time series problems. As a

general objective, this thesis aims to contribute to the state-of-the-art in time series classification

by experimenting commonly used neural network techniques and assessing their effectiveness in

classifying time series from different domains. In addition, several ANN-based techniques are

compared to a benchmark algorithm called k-NN.

The specific objectives of this dissertation are:

1. To briefly review the state-of-art of neural network based algorithms applied in TSC

problems.

2. To evaluate the ANN-based classifiers when applied to solve TSC problems.

3. To propose and evaluate a novel adaptive LVQ-based variation.

4. To carry out experiments using several datasets for comparing and evaluating multiple

ANN-based techniques, the proposed adaptive-LVQ, and a naive instanced-based method

for solving TSC problems.

1.3 Methodology

Initially, it is shown a bibliography review on time series fundamentals, with focus on

the state-of-the-art of time series classification problem, covering the main articles of application

of neural networks in TSC problem. From the bibliography review, several algorithms are

selected for being experimented and studied. Within the selected algorithms, there are three

ANN-based algorithms: MLP, LVQ and SVM. Moreover, the k-NN algorithm is included

in this study due to its importance in time series classification. Furthermore, an adaptive

LVQ-based algorithm is designed. For assessing the proposed method, and the other studied

classifiers, several experiments are designed for comparing them, considering different aspects

of performance. The main performance criterion is the classification accuracy, however, other

criteria such as processing and memory cost are considered. Several computational experiments

and simulations are performed using Matlab environment. These simulations are performed with

different classification algorithms on multiple TSC datasets for comparing their classification

performance.

23

A general performance experiment is conducted on seven datasets from UCR Re-

pository (CHEN et al., 2015). The results of the experiments are analyzed for each data set.

Performance indices are calculated with the purpose to compare the classification performance

between the experimented algorithms. The accuracy, precision and recall are chosen for better

evaluate difference between classification strategies, as these metrics considers true-positive,

true-negatives, false-positive and false-negative predictions. In addition, the classification perfor-

mance distribution is analysed graphically by using box-plots, and the training convergence is

assessed through learning curves.

1.4 List of Publications

The researches developed in this work originated the following publications:

• RENAN F. ALBUQUERQUE, ARTHUR P. S. BRAGA, BISMARK C. TORRICO, (2017).

Classificação de Dinâmicas em Sistemas Utilizandos Redes LVQ Adaptativas. Anais

da Conferência Brasileira de Dinâmica, Controle e Aplicações - DINCON 2017. São José

do Rio Preto, SP.

• RENAN FONTELES A. , PAULO DAVING, ARTHUR P. S. BRAGA, (2018). Adaptive

Fuzzy Learning Vector Quantization (AFLVQ) for time series classification. In 37th

North-American Fuzzy Information Processing Society (NAFIPS) Annual Conference

held jointly with the 5th Brazillian Congress of Fuzzy Systems.

1.5 Organization of the Thesis

The remaining of this thesis is organized as follows:

• In Chapter 2 the fundamentals on time-series are discussed, including time series definition

and notation. Furthermore, the main applications of time series data mining are cited,

with focus on classification problems. A brief discussion is held about the importance

of time series data representation and similarity measures. These topics are considered

the main challenges in classification of temporal data. The state-of-the-art of time series

classification is reviewed, addressing important works in this area and presenting the most

explored algorithms and applications. Finally, the main neural network based methods

addressed in the literature are mentioned.

• Chapter 3 briefly introduces the classification methods covered in this thesis. The k-NN

algorithm is presented as a general-purpose classifier for comparing with ANN approa-

24

ches (Section 3.1). In sequence, the ANN-based algorithms are described individually,

covering concepts related to each neural network used in the simulations. The ANN-based

algorithms Multi-Layer Perceptron (MLP) (Section 3.2), Self-Organizing Maps (SOM)

(Section 3.3), LVQ (Section 3.4) and SVM (Section 3.5) are addressed.

• Chapter 4 introduces the proposed LVQ-based algorithms, including their main concepts,

time complexity and implementation details. Furthermore, a framework is presented in

order to permit the combination of the proposed adaptive modifications to any non-adaptive

LVQ-based variation.

• Chapter 5 is focused on describing the performance evaluation metrics and the comparison

methodology for evaluating the results among the classifiers studied. Concepts such as

cross-validation , confusion matrix, accuracy, precision and recall are covered.

• In Chapter 6, the datasets and the experiments designed are detailed. At the end of this

section, the experiment results are presented, analyzed and discussed.

• Finally, Chapter 7 concludes the master thesis with a final discussion about main concepts

used in this work and present conclusions reached in previous chapters. In addition, the

limitations of the proposed algorithms are analyzed, and possible future works and further

research topics are suggested.

Every chapter start with an initial contextualization on the subject that will be

discussed in the chapter. Similarly, at the end of the chapter there will be final considerations,

which summarizes the subject discussed.

25

2 TIME SERIES CLASSIFICATION

Time is a variable which measures how long an action, process, condition or event

exists or continues (MERRIAM-WEBSTER, 2004). Time is ubiquitous; thus diverse phenomena

can be described in the temporal domain. Data sets which have a chronological sequence are

called time series. Time Series (TS) is a category of data that is extensively explored in researches

on several areas of knowledge (TAQI et al., 2017; CHAVAN; KOLTE, 2017; KUMAR et al.,

2016; JEN et al., 2008; MELGANI; BAZI, 2008; ROSA; MATTA, 2000).

A time series data set consists of sequences of numerical values obtained over

repeated measurements of time. Typically, each measure is taken at equal time intervals (e.g.,

every minute, hour or day). Time series databases are popular in many applications such as

stock market analysis, economic and sales forecasting, inventory studies, workload projections

and process and quality control. They are also useful for studying natural phenomena (e.g.,

atmosphere, temperature, wind, earthquake), designing scientific and engineering experiments

and developing medical treatments(HAN et al., 2011).

In this chapter, the fundamentals of time series are introduced, covering the basic

concepts and formal definitions. Moreover, a review of time series data mining is presented,

by exploring mainly the state-of-the-art of time series classification (TSC), which is the main

subject addressed in this work.

2.1 Fundamentals of Time Series

Time series consist on a set of observed values, ordered chronologically. A time

series can also be defined as realization of a stochastic process (BROCKWELL; DAVIS, 2013).

A stochastic process is a collection of random elements x = {xt , t ∈ T} defined on a

probability space, recorded according to the order they are obtained in time (DOUC et al., 2014;

CINLAR, 2013; BROCKWELL; DAVIS, 2013).

Therefore, a time series can be defined as a set of quantitative observations, or-

ganized in a chronological order where, generally, the time is assumed as a discrete variable

(KIRCHGÄSSNER; WOLTERS, 2007). In this work, only discrete time series are considered.

Hence, the index t, that represents the time, can only takes value in a set T composed by non-

negative integers greater than zero. The set T can be defined as T = {1,2,3,4...,n}, where n is

the number of observations, usually known as the time series length.

26

2.1.1 Univariate and Multivariate Time Series

In time series analysis, the temporal data can be univariate or multivariate. In

univariate time series, only one single observation is recorded sequentially over equal time

periods. On the other hand, multivariate time series involves two or more input variables being

recorded. In this thesis, dimensionality is considered as the quantity of observed variables in a

specific instant.

Multivariate processes are described by several related time series simultaneously

observed over time. In this work, multivariate time series and multidimensional time series are

considered equivalent.

In high dimensional time series, the observed data (xt) is an n-dimensional vector,

where n represents the data dimensionality. Therefore, an observed data from a n-dimensional

time series would be xt = {x1,x2,x3, ...,xn}

For instance, a univariate time series could be composed by measurements of tem-

perature from a sensor during a certain amount of time. As an example of a multi-dimensional

time series, a triaxial accelerometer measures three variables simultaneously (acceleration in

x, y and z axis), providing a three-dimensional time series. In Figure 1, a univariate and a

three-dimensional multivariate time series are presented. Note that these series were synthetically

produced for exemplification.

Formally, univariate and multivariate time series can be defined by the following

equations, respectively:

Sn,ℓ = {xt ∈ R,n = 1}ℓt=1 (2.1)

Sn,ℓ = {xt ∈ R
n,n ≥ 2}ℓt=1 (2.2)

2.1.2 Time Series Definition

A time series is a finite sequence of observations S = {x1,x2,x3, ...,xℓ}, which can

be defined by:

S = {xt}
ℓ
t=1 (2.3)

where xt is the observation in t that can be a one-dimensional or a multi-dimensional vector, and

ℓ is the time series length, which represents the number of observations that compose S .

27

Figure 1 – Illustration of univariate and multivariate time series

Source: The author.

A time series subsequence (also called subseries) is a segment of a time series in a

specific interval.A subsequence in an interval [t1 : t2] can be defined as S[t1 : t2] = {S[t1],S[t1 +

1], ...,S[t2]}. Figure 2 exhibits an example of a subsequence with length ℓ = 10 and interval

[1 : 10], then S[1 : 10].

Figure 2 – Subsequence example for ℓ= 10

Source: The author.

A time series data set D consists of a set containing N time series samples {S1,S2, ...,SN}

, which can be generalized by the following equation:

D = {S i}
N
i=1 (2.4)

28

Figure 3 illustrates a univariate time series data set with N samples. In the figure,

each data sample is a time series and all time series have the same length (ℓ), for all S ∈ D.

Figure 3 – Time series data set with N samples

Source: The author.

2.2 Time Series Data Mining

Time Series Data Mining (TSDM) is the study of techniques, strategies and methods

used to extract meaningful knowledge from data in time domain, known as time series (ESLING;

AGON, 2012). Temporal data has numerous complex features which reveals several outstanding

challenges in data mining techniques. Most challenge derives from the high dimensionality of

the data and the difficulty of determining proper similarity measures for comparing different

time series (FAKHRAZARI; VAKILZADIAN, 2017; BAGNALL et al., 2017; ESLING; AGON,

2012; RALANAMAHATANA et al., 2005). Among the challenges faced by time series mining

algorithms, the problem of similarity measures and data representation are further detailed , due

to their importance.

2.2.1 Similarity and Dissimilarity Measures

Similarity and dissimilarity measures are functions that defines the resemblance

between two elements. In other words, they provide a way to quantify how similar, or dissimilar,

two elements are from each other.

• Similarity measure: Functions that compares two objects and returns a value based on

their degree of similarity. The closer the objects are to each other, the higher the resulting

value of the function.

• Dissimilarity measure: Functions that compares two objects and returns a value based

on their degree of dissimilarity. The closer the objects are to each other, the lower the

resulting value of the function.

29

Considering d(a,b) a dissimilarity measure between objects a and b, then d(a,b)

must satisfy the following restrictions:

• d(a,b)≥ 0,∀a,b

• d(a,a) = 0,∀a

• d(a,b) = d(b,a),∀a,b

Similarity and Dissimilarity measures can be applied in data with different represen-

tations, such as vectors, matrices and objects. In this work, algorithms such as KNN, LVQ and

SOM are based on dissimilarity measures. Throughout the dissertation, terms such as dissimila-

rity, proximity, resemblance and distance will be considered equivalent, since the smaller the

distance between two elements, the more similar they are to each other.

Multiple data mining algorithms are based on comparing distances between time

series. Numerous time series researchers have reviewed the main similarity measures used in

the literature (BAGNALL et al., 2017; FAKHRAZARI; VAKILZADIAN, 2017; LIAO, 2005;

IGLESIAS; KASTNER, 2013; RALANAMAHATANA et al., 2005). In the next subsections,

two frequently used distance metrics are succinctly described: Euclidean Distance and Dynamic

Time Warping (DTW).

2.2.1.1 Euclidean Distance (ED)

A typically used distance measure for time series is the Euclidean Distance (ED)

(RALANAMAHATANA et al., 2005). ED, also known as L2-norm, compare the distance

between each point from two time series. For two time series (S1 and S2) which have the same

length ℓ, the ED can be computed by following equation.

dEuclidean(S1,S2) = ‖S1 −S2‖2 =

√

√

√

√

ℓ

∑
t=1

(S1[t]−S2[t])2 (2.5)

ED is a very simple similarity measure and it is widely used in the literature. However,

such a measure is not appropriate for measuring the distance between unaligned time series. The

alignment problem typically is solved by Dynamic Time Warping (DTW), introduced in the next

subsection.

30

2.2.1.2 Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) is a distance-based similarity measure used for

comparing unaligned two time series. DTW algorithm has been applied initially in speech

recognition applications (MÜLLER, 2007; RABINER; JUANG, 1993) and it is strongly explored

in time series data mining field.

The DTW approach consists in finding an optimal alignment between two time series,

exploiting temporal distortions (warping) between them. In other words, DTW are specifically

useful in comparing time series which have similar shapes but poor alignment. Figure 4 shows a

comparison between ED and DTW.

Figure 4 – Euclidean distance and dynamic time warping measurements

Source: The author.

Although they have similar patterns, the Euclidean distance or any other metric that

calculates distance sample by sample, will not properly measure their proximity, as these time

series are not aligned. In contrast, the DTW technique can find an optimal alignment between

these two time series, resulting in a more accurate distance measurement.

DTW algorithm is a typical optimization problem with constraints. For example, for

two time series S1 and S2 whose lengths are respectively N and M, a N-by-M distance matrix can

be constructed, where a (i, j) position in the matrix is given by dist(S1[i],S2[j]). In this matrix a

path can be drawn (warping path), and it may be represented as P = p1, p2, ..., pk, ..., pK , where

pk is a specific position in the matrix and K is the path length. Note that the warping path must

follow the restriction where max(N,M)≤ K < N +M−1.

31

For selecting a warping path, several constraints must be obeyed.

• Boundary conditions: The warping path must start with the point p1 = (1,1) and finish

at point pK = (N,M)

• Continuity: Consecutive adjacent path elements pk = (ik, jk) and pk−1 = (ik−1, jk−1),

ik − ik−1 and jk − jk−1 should be less than or equal to 1.

• Monotonicity: The elements in the path must be monotonically spaced. Then, consider

pk = (ik, jk), for any previous element path pt = (it , jt) where t < k, ik − it and jk − jt

should be greater than or equal to 0.

An illustration of a distance matrix with a warp path highlighted in light blue is

illustrated in Figure 5. The series S1 and S2 are samples extracted from ItalyPowerDemand

dataset, from UCR Repository.

Figure 5 – Distance matrix with a warping path

Source: The author.

The path minimizing the warping cost is

DTW (S1,S2) = min

√

∑
K
k=1 pk

K

(2.6)

A brief review about DTW can be found in Senin (2008). In particular, (BAGNALL

et al., 2017) present DTW algorithm improvements and variations found in the literature.

32

2.2.2 Data representation and dimensionality reduction

Data representation consist in methods used to represent information. In time series

context, data is typically represented by a sequence of observations in a temporal domain.

Originally, time series are high dimensional data (HAN et al., 2011). Directly dealing with raw

time series can be costly in processing and data storage terms. Therefore, data representation

methods are used for reducing the original data dimensionality to improve the efficiency of

algorithms in dealing with time series. Alternatively, time series can be represented in several

different ways such as in spectral domain, wavelets and symbolic.

In high dimensionality data applications, such as in image processing and time

series analysis, data sets can have much more variables than observations. Dealing with high

dimensional data lead to a severe problem, usually referred to as the curse of dimensionality.

Working with massive amount of data can lead to serious problems in processing

and storage requirements. For instance, a massive time series data could not fit into the main

memory. Thus, multiple swapping requirements in main memory will be necessary in order to

access all the data, resulting in a extremely slower algorithm. This problem is considered as

the major bottleneck in data mining application, and can be solved by dimensionality reduction

techniques (RALANAMAHATANA et al., 2005).

In this work, dimensionality reduction and data representation is considered as

equivalent concepts. Dimensionality reduction can be accomplished by two different approaches

(SORZANO et al., 2014):

• Feature selection: Consists in selecting the most relevant variables (or attributes) from

the original input pattern. Usually, the selected features are those that mostly explain the

data to be classified. In other words, the variables containing the most useful information

are preserved, and the others discarded.

• Feature extraction: Consists in transforming the original input pattern variables (or

attributes), generating a new set of variables. Typically, the new set of variables have a

lower dimensionality (quantity of variables) than the original data set. Example of feature

extraction techniques are Principal Component Analysis (PCA) and Linear Discriminant

Analysis (LDA).

A survey on dimensionality reduction techniques can be found in Sorzano et al.

(2014). Data representation techniques are described in details in (RALANAMAHATANA et al.,

2005).

33

This master’s thesis deals with originally generated data (raw data), and no data

representation technique is employed. Nevertheless, this topic is considered a worthwhile concept

to be addressed.

2.2.3 Applications

In the literature, time series can be found in the most varied application domains,

involving different types of problems. These applications can benefit from different data mining

techniques. In the context of machine learning and time series data mining, the most commonly

explored applications are: classification, clustering, forecasting, anomaly and motif detection

(FAKHRAZARI; VAKILZADIAN, 2017). Several surveys and reviews have explored the main

applications in time series data mining field. Valuable sources for data mining applications

can be found in Fakhrazari & Vakilzadian (2017), Bagnall et al. (2017), Ralanamahatana et

al. (2005). In this master’s thesis, problems related to classification, clustering and anomaly

detection are closely related to our work. Thus, these applications are described in more details.

2.2.3.1 Classification

Classification of time series is a typical data mining task. In classification problems,

the objective is to assign a specific predefined class or label to a time series. Time series classifiers

are usually trained by supervised approaches, which consists of training a model by presenting

the input pattern and the desired class. Figure 6 presents two types of time series data, unlabeled

and labeled.

In Figure 6(a), several time series are illustrated, but none of them are assigned to a

predefined class, this type of data are usually used in clustering problems, as will be discussed

in Section 2.2.3.2. Figure 6(b) presents a different situation. All data sample are assigned to a

specific class. In this example, multiple time series data are assigned to five different classes,

where each class is represented by a color (red, blue, green, orange and black). Labeled data are

commonly used in classification problems.

Each time series data sample is represented as N-dimensional vector, where N is the

length of the data sample. Each observation can be one-dimensional or a multi-dimensional,

depending on the time series (See section 2.1.1).

It can be seen in Figure 7 the representation of labeled and unlabeled data. Notice

that the only difference between them is that labeled data has an additional value which specifies

34

Figure 6 – Unlabeled and Labeled time series data

Source: The author.

the class of a sample (d).

Figure 7 – Unlabeled and Labeled time series data representation

Source: The author.

A data set time series can be represented as a matrix. For instance, a labeled data set

may be represented by the following matrix:

X =

x1,1 x1,2 · · · x1,ℓ d1

x2,1 x2,2 · · · x2,ℓ d2
...

...
. . .

...
...

xN,1 xN,2 · · · xN,ℓ dN

(2.7)

where X is the data set composed by N vectors of dimensionality ℓ+1. Note that the dimensi-

onality of each vector is the time series length ℓ itself, followed by a desired label (or target).

Therefore, a labeled sample xi is given by:

xi =
(

xi,1 xi,2 · · · xi,ℓ di

)

(2.8)

where di is a desired output for the i-th sample. In classification problem, di ∈ N as it represents

desired class labels. Unlabeled datasets are represented by a matrix X, without the last column

of desired classes.

35

In learning-based classification algorithms, the classifier needs to be firstly trained,

so it can learn how to distinguish different predefined data classes. The training process, also

called learning, consists in presenting a set of time series samples (training set) that can be used

by a classifier for adjusting properly a model for classifying any data from this domain. Figure 8

illustrates the training process. As illustrated in the figure, every sample on the training data set

is presented to the classifier. Once the training is completed, a trained classifier is produced.

Figure 8 – Training process for classification

Source: The author.

Ideally, after training, the classifier should be able to classify correctly any data from

the training set. However, it is not guaranteed that the model will be perfectly adjusted. On

the other hand, even though a trained classifier can correctly classify all samples from training

set, its robustness is not assured. A better way of evaluating the classifier’s performance, is by

verifying how well it performs classification in a set of samples which has not been presented to

the classifier, during the training process. This set is usually referred as the test set.

Figure 9 describes a testing process, where a test set is presented to a trained classifier

to classify its samples. In the following figure, the test set is composed by three time series

(S1,S2 and S3). After classification, only the time series S1 was correctly classified, whereas the

other two series were misclassified. Therefore, only one out of three was classified correctly,

giving a poorly classification accuracy of 33.3%

The previous example show how to use a test set for determining the classifier

generalization capability. Generalization determines how general a classifier is trained for a

specific domain. In other words, a trained classifier has a good generalization if it is able to

properly classify samples from test set. If a classifier presents high classification performance

in training set and classify poorly test set samples, this classifier has not performed a proper

generalization of the data.

36

Figure 9 – Testing process for a classifier

Source: The author.

2.2.3.2 Clustering

Clustering consists in grouping time series data into multiple clusters accordingly

to a similarity measure (See section 2.2.1). Clustering algorithms are generally considered an

unsupervised approach, where the data used for training a model are not assigned to any class,

that is, the data is unlabeled (See Figure 6(a)).

Typically, clustering algorithms try to maximize variance between elements from

different clusters while minimizing variance between elements in the same cluster. An important

parameter for clustering algorithms is the quantity of clusters (N). Finding the optimal N

is one of the challenges in clustering problem (ESLING; AGON, 2012). In Figure 10, two

examples of clustering are illustrated, considering N = 4 and N = 5. It can be easily noticed

that the parameter N directly affects in the clustering result. For further details about time series

clustering techniques, a complete review can be referred in Kavitha & Punithavalli (2010) and

Aghabozorgi et al. (2015).

Figure 10 – Clustering results for N = 4 and N = 5

Source: The author.

37

2.2.3.3 Anomaly Detection

Anomaly detection problems can be defined as finding abnormal or unexpected

patterns in data (CHANDOLA et al., 2009a). Anomaly, in time series, are generally infrequent

outlier observations or subsequences that may appear in a time series. Example of anomaly

behaviour are spikes, drops and level shifts. Anomaly detection problems can be described in

several different ways. A common approach is to consider an anomaly detection problem as

a binary classification problem, where the time series data can be classified as anomaly or not

anomaly. This approach can also be generally divided into two categories:

• Observation Anomaly Detection: It is a problem focused on finding anomaly observati-

ons or outliers in a time series.

• Subsequence Anomaly Detection: This problem consists in finding one or more anomaly

subsequences in a time series.

In Figure 11, two groups of anomaly detection are shown. Figure 11(a) presents a

single anomaly observation, which is typically called an outlier. In this example, an anomaly

detection algorithm would classify all observations as not anomaly, except the outlier.

Figure 11 – Time series observation and subsequence anomaly detection

Source: The author.

38

Figure 11(b) illustrates an example of two subsequences anomaly in a time series.

A systematic literature review in anomaly detection was conducted by Chandola et al. (2009a),

whose fundamentals on anomaly detection, regarding its formal definition, categories, applicati-

ons and challenges are addressed. In addition, studies about anomaly detection techniques in

time series database are explored in Chandola et al. (2009b).

2.3 Time Series Classification Problem (TSC)

Time series classification (TSC) is a specific field in data mining which studies the

main techniques for classifying multi-dimensional sequential data. In this context, classification

models (generally called classifiers) are designed for learning how to distinguish specific classes

from different time series. A classifier consists in a function that maps the space of possible

inputs to a specific class.

In time series data mining, there are different algorithms with specific approaches for

classifying time series. Bagnall et al. (2017) presented a taxonomy of TSC algorithms based on

the type of discriminatory features explored by the technique. The TSC categories most closely

related to this work are:

1. Whole series: Time series are compared as a vector or by a distance measure that uses all

the data. Typically, whole series samples are composed by large number of observations.

Algorithms based on this approach usually quantifies the distance between two series

employing a similarity measure. Whole series similarity is appropriate when there may

be discriminatory features over the whole series. These distance measures are usually

employed with a Nearest Neighbour (NN) classifier (BAGNALL et al., 2017).

2. Intervals: Instead of using the whole series, as cited in the previous approach, this

technique select one or more intervals of the time series (subseries). This approach is also

called phase dependent. This strategy can be very useful for dealing with time series that

presents noise or outliers.

3. Shapelets: Shapelets is similar to the interval-based approach, however this method is

focused on finding short patterns or subsequences (shapelets) that define a class. These pat-

tern can appear anywhere in the series and its location is irrelevant. A class is distinguished

by the presence or absence of one or more shapelets in the whole series.

39

Figure 12 exhibits the different approaches of classifying time series. As it can be

noticed, Figure 12(a) presents an example of a whole time series. In this case, all observations

from the time series is used for classification. In Figure 12(b) there is a different situation. In

this case, the whole time series is segmented in several subsequences, where each subsequence

will be classified separately.

Figure 12 – Time series classification approaches

Source: The author.

Finally, in Figure 12(c), the approach of classifying a time series by its shapelets is

shown. In the figure, two shapelets are presented. A time series then can be distinguished by

finding these highlighted forms.

Several other TSC approaches have been studied by Bagnall et al. (2017). For

example, dictionary-based techniques deals with TSC by analyzing the frequency of recurring

subsequence. Moreover, in model-based algorithms, each time series class is modeled, which

can be compared by a similarity measure between models. Bagnall et al. (2017) also cited the

possibility of combining multiple approaches in a single classifier.

Among the approaches discussed previously, only TSC problems involving whole

time series and interval-based techniques will be covered. However, the algorithms used in the

experiments can be easily adapted for working as with other approaches.

40

2.4 State-of-the-art

The key aspects for building an efficient time series classifier are mainly related

to how to deal with temporal data. Therefore, great improvements in designing classifiers are

not concentrated in classification strategies, but mainly in how to properly process the data

to be classified. In general, time series are high dimensional data, noisy and usually present

outliers (KLEIST, 2015). These particularities increase fairly the problem complexity. A large

portion of the research in this area is based on designing techniques to circumvent the challenges

presented by time series data. Specifically, many of the researches are based on tackling two

major challenges in time series: data representation and similarity measure (GIUSTI, 2017;

FAKHRAZARI; VAKILZADIAN, 2017; AGHABOZORGI et al., 2015; ESLING; AGON, 2012;

FU, 2011; RALANAMAHATANA et al., 2005).

Choosing an appropriate data representation is essential for improving accuracy and

efficiency in a data mining algorithms. Several of these methods also focus on reducing the data

dimensionality, as it can contribute for improving algorithm processing performance and memory

storage. In the literature, there are multiple time series data representation and dimensionality

reduction techniques: Discrete Fourier Transform (DFT) (BLOOMFIELD, 2004), Discrete

Wavelet Transformation (DWT) (CHAN; FU, 1999), Piecewise Aggregate Approximation (PAA)

(KEOGH et al., 2001) and Symbolic Aggregate approXimation (SAX) (LIN et al., 2007).

Similarity measure or distance measure need to be carefully defined in classifica-

tion algorithms. Some techniques depend heavily on a mechanism of measuring similarities

between time series (See section 2.2.1). These techniques are generally called distance-based

classification algorithms. A well-know distance-based algorithm is the Nearest Neighbor (NN),

usually mentioned as k-NN, where k is the number of nearest neighbors. There are a significant

number of distance measure method in the literature, such as Euclidean Distance (ED) (RALA-

NAMAHATANA et al., 2005), Dynamic Time Warping (DTW) (BERNDT; CLIFFORD, 1994)

and Longest Common Subsequence (LCSS) (VLACHOS et al., 2002). In Wang et al. (2013), an

extensive experimental study was conducted for testing the effectiveness of different time series

representations and similarity measures. Eight different time series representation method and

nine similarity measures were tested in a variety of application domain (38 data sets).

Another important area in time series data mining is concerned in design and conduct

experiments with machine learning techniques for evaluating the performance of existing and

novel methods.

41

According to (XING et al., 2010), techniques for sequential data classification can

be categorized in three main groups: distance-based, model-based and feature-based algorithms.

Distance-based algorithms require a function to measure the similarity between

sequences. In this approach, lazy learning methods, such as k−Nearest Neighbor classifier

(k-NN), have been constantly explored in the literature. Such technique does not require a trained

model for classification. A new instance is classified by comparing distance between the new

element and the k-nearest neighbors on the training set. Several papers have employed k−NN

algorithm for solving TSC problems:

• Nearest Neighbors (NN) (DO et al., 2017; PARVINNIA et al., 2014; DUARTE et al.,

2014; LEE et al., 2012; NASIBOV; PEKER, 2011);

Model-based algorithms assume that a sequence are generated by an underlying

generative model M , with a probability distribution (XING et al., 2010). A model M is firstly

trained for tuning the model’s parameters, then, the classification of a new instance is assigned

to the class with the highest likelihood. Example of model-based algorithms are Naive Bayes

(HILLS et al., 2013) and Hidden Markov Model (HMM) (RONAO; CHO, 2014).

Feature-based algorithms are conventional classification methods designed for wor-

king with vector (XING et al., 2010). A time series can be represented basically in two forms: a

raw vector and a feature vector. A raw vector would consider a time series a high-dimensional

vector as a input vector for a feature-based classification method. Alternatively, features can be

extracted from the temporal data. Hence, a feature vector based on the time series characteristics

can be built. Decision trees and neural networks are examples of feature-based algorithms.

From the last decade until recently different Neural Network based algorithms have

been constantly employed in time series classification:

• Multi-Layer Perceptron (MLP) (DELGADO et al., 2017; NAKANO; CHAKRABORTY,

2017; BHATIA; RANI, 2016; FEJFAR et al., 2013; NOVIYANTO; ARYMURTHY, 2012;

ORHAN et al., 2011);

• Learning Vector Quantization (LVQ) (JAIN; SCHULTZ, 2018; MELIN et al., 2014;

BISWAL et al., 2014; MOKBEL et al., 2015; LIU et al., 2015);

• Support Vector Machine (SVM) (RAJESH; DHULI, 2017; DOBROWOLSKI et al.,

2016; XU et al., 2016; SHARMA; PACHORI, 2015; JEONG; JAYARAMAN, 2015; SU

et al., 2014; ŞTEFAN, 2012; ADNANE et al., 2012; EKICI, 2012; ISCAN et al., 2011;

SALAHSHOOR et al., 2010; ORSENIGO; VERCELLIS, 2010);

42

2.5 Summary

This chapter has presented basic concepts regarding time series data mining in pattern

recognition problems. It was formally defined what are time series and resented some of the

main data mining time series application research, highlighting the problems of classification,

clustering and anomaly detection.

Several challenges in dealing with temporal data were discussed, as well as presented

the main techniques employed in the literature for solving time series classification problems.

Among them, focused on the neural network based algorithms (MLP, LVQ and SVM), and the

naive k-nearest neighbor method, as they will be studied in this thesis.

In the Chapter 3, the k-NN method and the studied neural network algorithms are

described in details.

43

3 THEORETICAL BASIS

This chapter starts presenting a simple classification method called k-Nearest Neigh-

bor (k-NN). In the literature, the k-NN classifier is considered a benchmark for time series

classification. Furthermore, theoretical and mathematical concepts regarding the classification

algorithms adopted in this work are discussed. The algorithms studied are Support Vector

Machine (SVM) and three well-known neural network based classifiers: Multi-Layer Perceptron

(MLP), Self-Organizing Map (SOM) and Learning Vector Quantization (LVQ).

3.1 k-Nearest Neighbor classifier

Nearest neighbor (NN) is an instance-based classification method, which strategy

consists in finding in the training set the closest neighbors to a given new instance. The closest

neighbor class will be used for classifying the new instance. In this approach, a parameter k is

employed to define the number of closest prototypes that will be examined for deciding the class

of the new instance. Typically, these classifiers are called k-NN. For instance, a 3-NN classifier

consider three closest elements (from the training set) in order to assigning a class to the new

element. Figure 13 exemplifies the classification using a 3-NN classifier.

Figure 13 – Example of k-nn classification

Source: The author.

44

NN-based classifiers depend on distance measures for comparing similarity between

elements. Typically, it uses Lp norm distance measures, such as Euclidean Distance (See section

2.2.1.1). k-NN is one of the most common classification method in literature, and it is considered

a benchmark method for time series classification (NASIBOV; PEKER, 2011; LEE et al., 2012;

DO et al., 2017). For instance, 1-NN with DTW have demonstrated very effective on TSC

problems (XI et al., 2006).

In Figure 13(a), there are two new unlabeled instances, I1 and I2. The dashed arrows

show the three nearest neighbors from each instance. In I1 all nearest neighbors are from class C1;

therefore, I1 will be assigned to this class. Similarly, in I2, the majority of the nearest neighbors

are from C2, then this will be the class assigned for I2. Figure 13(b) presents the classification

result.

This example shows a simple strategy called majority vote, and this will be adopted

in k-NN implementation. There are several other approaches for deciding how to assign the class

based on the nearest neighbors. However, further details on this classifier will not be discussed

as it is beyond the scope of this work.

3.2 Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP) is a widely used ANN-based technique, constantly

applied to signal processing, adaptive control, pattern recognition, and so on. A typical MLP

architecture is formed by a feedforward network composed by an input layer, with neurons for

receiving the input patterns; a hidden layer, responsible for applying nonlinear mapping in the

data; and the output layer, where the output is computed (See Figure 14). In this illustration,

a general MLP is composed by D, N and M neurons for input, hidden and output layers,

respectively. The number of neurons in each layer will depend on the problem in which the

neural network is designed for.

The neurons presented in the hidden layer act as feature detectors. These features are

detected during the learning process by performing nonlinear transformation on the input data

into a new space known as feature space (HAYKIN et al., 2009). Therefore, the complexity of a

MLP-based neural network is generally defined by quantity of hidden neurons (Nh). Complex

problems usually require great quantities of hidden neurons (Nh), since the greater Nh the higher

is the networks non-linear mapping capability.

45

Nevertheless, the excess of Nh could make the network to specialize in the training

dataset and lose its generalization capability, resulting in a problem called overfitting. On the other

hand, a network with few Nh loses the capability to extract features from the dataset, presenting

poor training, resulting in a problem known as underfitting. Regarding the neural network

architecture design, there is no definitive method for determining the number of hidden neurons.

Nonetheless, there are techniques developed to search optimal parameters and hyper-parameters

for being applied in models. For example, Grid Search based algorithms are commonly used to

find optimal parameters for classification learning models (JIMéNEZ et al., 2009).

Figure 14 – Generic MLP architecture

Source: The author.

In Figure 15, two examples of MLP architectures are presented. Note that the

numbers separated by hyphens represent the quantity of neurons in each layer. For example, in

Figure 15(b) the neural network consist of 3, 3, 4 and 2 neurons in input, first hidden, second

hidden and output layers, respectively. These architectures are example of shallow MLP neural

networks, as they are composed by few hidden layers. In contrast, MLP-based deep neural

networks present high quantity of hidden layers.

3.2.1 MLP Training Process

MLP-ANN are trained by a supervised learning process, which adjust the synaptic

weights of the network’s neurons, so the resulted error from the output layer is the lowest possible.

46

Figure 15 – Examples of MLP architectures

Source: The author.

Therefore, this problem can be interpreted as an optimization problem, since the objective is to

minimize the cost function in each iteration.

In this optimization problem, the cost function is the sum of squared error (SSE):

SSE =
n

∑
i=1

(d(n)− y(n))2 =
n

∑
i=1

(e(n))2 (3.1)

where N is the total of samples in a training set, d(n) is the n-th desired output and y(n) is the n-th

predicted output. This optimization problem is solved by an algorithm called Backpropagation

(BP) (HAYKIN et al., 2009).

The backpropagation algorithm is a Least Mean Square (LMS) generalization which

explores the gradient descend technique iteratively in order to minimize a cost function (HAYKIN

et al., 2009). In a MLP-ANN, the error calculated in the output layer is not explicitly related to

hidden layer neurons, therefore, the hidden neurons influence in the output cannot be determined

directly. Hence, the main contribution from BP algorithm in training a MLP is in providing

a solution for adjusting hidden neurons’ synaptic weights by propagating the error signal

backwardly from the output layer to the input layer. BP algorithm can be divided in two main

stages:

• Feedforward: The input pattern is presented to the neural network, and the signal is

propagated forwardly from the input to the output layer. In this stage, the output of the

ANN is calculated.

• Backpropagation: After resulting an output for the ANN, the error is calculated and it

is propagate backwardly from the output layer to input layer. In this stage, the synaptic

weights are adjusted.

47

3.2.1.1 Feedforward

In this stage, an instance xi is presented to the network’s input layer, and the signal

is forwardly propagated to compute its respective output, yi. Figure 16 illustrates the output y

calculation in vector form.

Figure 16 – Feedforward propagation in vector form

Source: The author.

Considering n a time reference which represent the algorithm’s iteration. For any

layer m, the induced local field vector um is given by the linear combination between the previous

layer output ym−1 and the matrix of weights Wm of the current layer, as described in Equation

(3.2).

um(n) = Wm(n)(ym−1(n))T (3.2)

There is a matrix of weights for each hidden layer. A matrix of weights in layer m is given by:

Wm =

w1,1 w1,2 · · · w1,ℓ

w2,1 w2,2 · · · w2,ℓ
...

...
. . .

...

wkm,1 wn,2 · · · wkm,ℓ

(3.3)

where km is the number of neurons in layer m and ℓ is the dimension of ym−1. The output signal

ym is calculated by applying an activation function to um.

ym(n) = ϕ(um(n)) (3.4)

48

Note that Equation (3.2) and (3.4) are generalized for all layers, except the input layer. In input

layer, the output is the pattern x itself:

y0(n) = x(n) (3.5)

3.2.1.2 Backpropagation

In backpropagation, the output result, estimated by the network in feedforward stage,

is compared with the desired output, resulting in an error signal for this instance:

e(n) = d(n)−y(n) (3.6)

the calculated error from feedforward stage is propagated in backwards to the input layer,

adjusting the weights from each layer accordingly to a learning rule. Firstly, the local gradient

δ j(n) is calculated for each output neuron j = 1, ...,M:

δ m
j (n) = e j(n)ϕ

′
j(u

m
j (n)). (3.7)

As for calculate the local gradient for hidden neurons, the following equation is used:

δ m
j (n) = ϕ ′

j(u
m
j (n))∑

k

δ m+1
k (n)wk j(n). (3.8)

The learning rule used for adjusting the network’s weights is given by the Delta Rule, defined by

the following equation:

wm
k j(n+1) = wm

k j(n)−αδ m
k ym−1

j (3.9)

The same equation can be written in matrix form:

Wm(n+1) = Wm(n)−αδ m(ym−1)T (3.10)

where Wm(n+1) and Wm(n) is the new and old matrix of weights, respectively. The learning

rate (α) is defined by 0 < α << 1.

The backpropagation method is executed iteratively for each input sample applied to

the network’s input layer, until all the input dataset is presented. The training set can be presented

to the neural network multiple times. A cycle where all training samples from training set are

presented to the classification model is called epoch. The Mean Squared Error (MSE) is usually

used as a performance measure for evaluating the backpropagation algorithm.

49

The training process should finish when a stop criteria is acquired. Generally, these

criteria are limited by the number of epochs, or by predefined threshold error, or both. A

drawback of the backpropagation algorithm lies in its slow convergence and costly processing.

Furthermore, it is not guaranteed that this algorithm will achieve the global minimum error, as

there is a risk the algorithm will be stuck into a local minimum, preventing the network from

improving its model.

3.3 Self-Organizing Map (SOM)

Self-Organizing Map (SOM) is a neural network capable of organizing data into

groups or clusters. This category of unsupervised learning algorithm has been introduced by

Teuvo Kohonen (KOHONEN, 1997). SOM neural networks use only the data attribute for

organizing clusters based on the similarity between samples.

The main objective of the SOM network consists in mapping a continuous high-

dimensional space to a discrete space with reduced size. This mapping, or projection, is

composed by Nw neurons (or prototypes) organized in a S-dimensional space, typically two-

dimensional. Formally, for a continuous space X ⊂ R
D and a discrete space Y ⊂ R

S, composed

by Nw prototypes, a vector x ∈ X will be represented by the network for a vector yi∗ ∈ Y by the

mapping i∗(x) : X →Y .

The SOM neural network is a competitive neural network that can be used in

both clustering and vector quantization tasks. Clustering, as explained previously, consists in

separating the data in groups based on a similarity criterion. Vector quantization is the task of

replacing a set of N vectors by a set of Nw prototypes, in which Nw << N.

A structure of a SOM algorithm is generally divided in two layers: input layer and

output layer. A sample from the dataset is presented to the input layer, which is connected to each

neuron in output layer. All Nw neurons receive from the input layer a data sample x(n) ∈ R
D,

simultaneously. The attributes contained in x(n) are weighted by the ith neuron’s vector of

weights wi(n) ∈ R
D. The architecture of a SOM network is shown in Figure 17.

3.3.1 SOM neural network training process

For training a SOM network, firstly the Nw neurons’ weights are randomly initialized

by small values. After proper initialization, the algorithm proceeds with three essential stages

(HAYKIN et al., 2009; MATTOS, 2011):

50

Figure 17 – Example of two-dimensional SOM network. The input and weight vectors are
D-dimensional. The Nw neurons are uniformly arranged in a rectangular grid.

Source: Adapted from (MATTOS, 2011).

1. Competition: For a input pattern x(n), the SOM network calculates the nearest prototype

(winning prototype) to x(n), based on a similarity measure:

i∗(n) = arg min‖x(n)−wi(n)‖ ,∀i (3.11)

where ‖·‖ denotes the Euclidean Distance. As discussed in earlier sections, there are

several other similarity measures.

2. Cooperation: The winner prototype’s weights, as well as its neighbours’ weights, are

adjusted based on the following learning rule:

wi(n+1) = wi(n)+α(n)hi,i∗(n)(n)[x(n)−wi(n)] (3.12)

where 0 < α(n) < 1, correspond to the learning rate in iteration n. The funciton hi,i∗(n)

is referred as neighbouring function. This function defines a neighbourhood around the

winning prototype. Therefore, the prototypes that will be adjusted is the winning prototype

and its neighbours. A typically used topological neighborhood is the Gaussian function:

hi,i∗(n)(n) = exp

[

−

∥

∥wi −wi∗(n)

∥

∥

2

2σ2(n)

]

(3.13)

where wi and wi∗(n) are, respectively, the coordinates of the i-th neuron and the winner

neuron i∗(n). The parameter σ(n)> 0 refers to the neighborhood width considered: the

higher its value, the higher the number of neurons updated around the winning neuron.

To ensure the convergence of the SOM network weights to stable values during the

training algorithm, it is necessary to reduce the parameter of neighboring and the learning step.

Considering σ0 and α0 their initial values.

51

The neighborhood’s size σ and the learning rate α can be reduced over time, by an

exponential decay:

σ(n) = σ0 exp

(

−
n

τ1

)

α(n) = α0 exp

(

−
n

τ2

)

(3.14)

where τ1 and τ2 are time constants to be defined by the designer.

Algorithm 1 shows the process of training a SOM neural network.

Algorithm 1: SOM pseudo-code
Input:

N : Number of iterations
Nw : Number of prototypes
α0 : Initial learning rate
σ0 : Initial neighborhood
X : Training data

Output:
Wopt : Optimal weights (All prototypes and their respective weights)

Algorithm:
1. Initialization

Initialize the prototypes’ weights with random small values W0 = rand(Nw,Nw)
Initialize the learning rate α(1) = α0

Initialize the neighborhood σ(1) = σ0

2. Training
while (Termination criteria not satisfied) do

for n = 1 to N do
(2.1) Select a sample x(n) from the dataset
(2.2) Find the nearest neuron (winner neuron) to sample x(n)

i∗(n) = argmin‖x(n)−wi(n)‖ ,∀i

(2.3) Adjust the weight of the winner neuron and its neighbours:

wi(n+1) = wi(n)+α(n)hi,i∗(n)(n)[x(n)−wi(n)]

(2.4) Update (decrease) the learning rate α(n)
(2.5) Update (decrease) the neighborhood σ(n)

end
end

Figure 18 shows an example of a SOM network during training. This example

consists of a two-dimensional dataset that must be mapped by the network. Notice that, although

the amount of neurons is smaller than the number of samples, over time the SOM network is

able to obtain a representation of the training data.

52

Figure 18 – Evolution of a Self-Organizing Map

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(a) Initial condition

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b) Iteration 100

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(c) Iteration 1000

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(d) Iteration 4000

Source: The author.

3.4 Learning Vector Quantization (LVQ)

Learning Vector Quantization (LVQ) is a prototype-based supervised classification

algorithm which adopts a competitive learning strategy based on similarity measures (distance

functions) and winner-takes-all approach. LVQ is a neural network based method proposed by

Kohonen (1990).

Its architecture is composed by a layered feedforward network which has a competi-

tive layer where the neurons compete among them based on a distance metric, or a similarity

measure, between training instances and prototypes. This method aims to divide the data space

into distinct regions and defining a vector prototype (or neuron) for each region. This process is

also known as Vector Quantization.

53

Figure 19(a) illustrates a problem where there are three regions to be represented (or

three classes). In this example, each region is represented by a unique prototype. The number of

prototypes is not necessarily the same for each class. Depending on the problem, some classes

may have more prototypes than others. In Figure 19(b) an illustration by voronoi diagram shows

the prototypes and the regions represented by them.

Figure 19 – Prototype-based representations

Source: The author.

3.4.1 Kohonen’s LVQ1

The learning method in LVQ consists in using the input vector as guidance for

organizing the prototypes in specific regions that defines a class. Firstly, a set of prototypes is

initialized and for each prototype is assigned a class. Each class must be represented by at least

one prototype. A class can have multiple prototypes, and one prototype only represents a unique

class. Then, during the learning process, each instance from the training set is compared with

all network’s prototypes, using a similarity measure. LVQ-based algorithms are classified as

competitive learning due to the selection of the closest prototype within the set of P prototypes:

i∗(n) = arg
P

min
i=1

d(x(n),wi) (3.15)

where i∗(n) is the index of the winner prototype (the closest prototype of an specific instance

x(n)). The distance is measured by a distance function. The Euclidean distance, or L2-norm, is

generally used to calculate this distance.

d(x(n),wi) = ‖x(n)−wi‖2 =

√

√

√

√

D

∑
k=1

(xk(n)−wik)2 (3.16)

54

where D is the dimension of the instance x(n), which is the same for wi. If the class of an

instance is equal to the class of the closest prototype (winner prototype), this prototype is moved

towards the instance, otherwise it moves away.

Consider n as the iteration counter of the training algorithm. The learning rule for

Kohonen’s LVQ1 algorithm is given by:

wi∗(n)(n+1) =

wi∗(n)(n)+α(n)[x(n)−wi∗(n)(n)] if C(wi∗(n)) =C(x(n));

wi∗(n)(n)−α(n)[x(n)−wi∗(n)(n)] if C(wi∗(n)) 6=C(x(n)).
(3.17)

For all prototypes wi where i 6= i∗(n), the prototypes remains the same.

The parameter α(n) is the learning rate, and it should be kept at low values, preferably

between 0 and 1. Furthermore, during training, α(n) should decrease monotonically. Among the

several ways of decreasing α(n), a linearly decreasing learning rate was employed:

α(n) = α(0)(1−
n

N
) (3.18)

where α(0) is the initial learning rate and N is the maximum number of training iterations.

In Figure 20 a LVQ1 architecture is presented.

Figure 20 – LVQ1 architecture

Source: The author.

Note that the competitive layer consist in finding the closest prototype from an

instance x. Therefore, this represent a competitive layer for the Kohonen’s LVQ1. As it will

be seen in the next sections, the competitive layer will change accordingly to the LVQ strategy

adopted. Algorithm 2 presents the pseudo-code for implementing a LVQ1 neural network.

55

Algorithm 2: LVQ1 pseudo-code
Input:

α0 : Initial learning rate
X : Training input samples
Y : Desired output (classes)

Output:
Wopt : Optimal weights (All prototypes and their respective weights)

1. Initialization
(1.1) Initialize vector wi with random values from training set
(1.2) Initialize the learning rate α(1) = α0

2. Training
while (Termination criteria not satisfied) do

for n = 1 to N do
(2.1) Select an input pattern x(n) and its class y(n) from training set
(2.2) Find the closest prototype from pattern x(n) (Winner prototype)

i∗(n) = argmin‖x(n)−wi(n)‖ ,∀i

(2.3) Adjust the winner neuron’s synaptic weights
if Class(wi∗(n)) = y(n) then

wi∗(n)(n+1) = wi∗(n)(n)+α(n)∗ (x(n)−wi∗(n)(n)) ; // Move prototype

towards the pattern x(n)

else
wi∗(n)(n+1) = wi∗(n)(n)−α(n)∗ (x(n)−wi∗(n)(n)) ; // Move prototype

away from the pattern x(n)
end
(2.4) Update learning rate
α = α0 ∗ (1− n

N
)

end
end

3.4.2 Kohonen’s LVQ2

Kohonen introduced in 1988 the LVQ2 algorithm, another variation similar to the

original LVQ (KOHONEN et al., 1988). In LVQ2 learning process, two prototypes wi∗1
and wi∗2

that respectively represent the first and second nearest prototypes to an instance x, are adjusted

simultaneously. The adjustment occurs only when the runner-up (wi∗2
) belongs to the correct

class as the winner (wi∗1
) belongs to the incorrect class. Furthermore, these prototypes must fall

into a zone defined around the mid plane between them. Let di∗1
and di∗2

be the distances of x to

wi∗1
and wi∗2

, respectively. An instance x will fall into a window of width ws if Equation (3.19)

is satisfied. It is recommended to adopt the width ws between 0.2 and 0.3 (KOHONEN, 1990).

The prototype LVQ2 learning rule is given by the Equation (3.20).

min

(

di∗1

di∗2

,
di∗2

di∗1

)

> s , where s =
1−ws

1+ws
(3.19)

56

wi∗1
(n+1) = wi∗1

(n)−α(n)[x(n)−wi∗1
(n)]

wi∗2
(n+1) = wi∗2

(n)+α(n)[x(n)−wi∗2
(n)]

(3.20)

3.4.2.1 Kohonen’s LVQ2.1

The variation of LVQ2 called LVQ2.1 is an improvement of the original LVQ2,

which allows either wi∗1
and wi∗2

to be the closest prototype vectors to an instance x (KOHONEN,

1997). Therefore, considering an instance x into the window. The adjustment will occur if one of

wi∗1
and wi∗2

belong to the correct class, as the other to the inccorect class. In constrast, LVQ2

requires wi∗2
to belong to the same class as x.

3.4.3 Kohonen’s LVQ3

The LVQ3 algorithm is an improved version of LVQ2 variation which consist of

introducing an additional rule component to ensure that wi∗1
continue approximating to the class

x, when wi∗1
and wi∗2

belong to the same class. The included component is:

wk(n+1) = wk(n)+ εα(n) [x(n)−wk(n)] (3.21)

for k ∈ {i∗1, i
∗
2}, if x(n), wi∗1

and wi∗2
(See Equation (3.20)). According to Kohonen (1997), the

recommended values for ε are between 0.1 and 0.5, relative to ws = 0.2 or 0.3

3.4.4 Fuzzy-LVQ

Fuzzy-LVQ is a hybrid algorithm which combine the LVQ’s learning rule with fuzzy

logic. The following discussed FLVQ variation was proposed by Chung (CHUNG; LEE, 1993).

This LVQ variation consists in optimizing a fuzzy objective function by minimizing the network

output error, calculated by the difference of the class membership of the target and actual values,

and minimizing the distances between training patterns and competing neurons. In their works,

Chung & Lee (1993) define the following objective function:

Qm(U,V) =
N

∑
j=1

P

∑
i=1

[(t ji)
m − (µ ji)

m]d(x j,wi) (3.22)

subject to the following constraints: ∑
c
i=1 µ ji = 1;∀ j and µ ji ∈ [0,1];∀ j, i. The term d(x j,wi)

represents the distance between the i-th prototype and the jth instance (See Equation (3.22)).

57

The fuzziness parameter m define weights for the membership functions for each prototype in a

manner that the greater the value of m, the smoother is the learning process. The target class

membership value of neuron i for input pattern j is represented by t ji ∈ {0,1}. Hence, the FLVQ

learning rule and the membership updating rule will be:

wi(n+1) = wi(n)+α(n)[(t ji)
m − (µ ji)

m][x j(n)−wi(n)];∀i (3.23)

µ ji =

[

P

∑
ℓ=1

(

d(x j,wi)

d(x j,wℓ)

) 1
m−1

]−1

(3.24)

In Figure 21 the FLVQ network is described.

Figure 21 – Fuzzy-LVQ Architecture

Source: The author.

In the figure, an input layer receives the instances from the dataset. The distance

layer calculates the distance between each prototype to the presented instance. Then, in the

competitive layer (called MIN layer by Chung & Lee (1993)), only the closest prototype from

each class is chosen to undergo the fuzzy competition. Therefore, the membership computations

and parametric vector modification will be applied at the maximum number of classes in the

problem or k prototypes.

3.4.5 Quantization Error (QE)

In prototype-based algorithms, the prototypes can be considered quantization vectors,

as they represent a specific region in the input data (PERES et al., 2012).

58

For evaluating the vector quantization in a prototype-based algorithm, a Quantization

Error (QE) can be used. This error metric is based on the average of the distances between

prototypes and the instances of the data.

QE =
1
N

N

∑
j=1

∥

∥xj −wi∗
∥

∥

2
(3.25)

where N is the number of instances, x j is the jth instance, and wi∗ is a prototype with the same

class as x j. Given a set of prototypes W = {w1,w2, . . . ,wP} , wi∗ represents the closest prototype

to the instance x j. The value w can be calculated by the Equation (3.15).

3.5 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a statistic-based learning method proposed by

Cortes & Vapnik (1995). SVM is a well-known machine learning technique, and has been widely

explored among the researchers in machine learning field (ŞTEFAN, 2012; LIU et al., 2013).

The learning process of SVM classifiers aims to increase the generalization capability of the

model by minimizing the empirical risk (Empirical Risk Minimization) and the structural risk

(Structural Risk Minimization).

In SVM classifiers, the main objective is to construct an optimal hyperplane as a

decision surface, which divides the patterns from training set in a manner which maximizes the

margin between data from different classes(HAYKIN et al., 2009). This chapter is devoted to

introducing the fundamentals of SVM-based learning. Concepts such as optimal hyperplane,

separation margin, hard and soft margin SVMs, and “kernel trick” will be addressed.

3.5.1 Fundamentals of SVM classification

Consider a labeled training set T = {(xi,di)}
N
i=1 where xi is the i-th input vector and

di is the corresponding desired class. Assuming that T is composed by patterns from two classes:

positive and negative, represented by the subsets di =+1 and di =−1, respectively. Assuming

that the training set T is linearly separable, the decision surface may be presented in the form of

a hyperplane:

wT x+b = 0 (3.26)

where x is an input vector, w is an adjustable weight vector (normal to the hyperplane), and b is

a bias. Note that x,w are vectors with the same dimension D, therefore x,w ∈ R
D.

59

The hyperplane defined by w and b is subjected to the following constraints:

wT xi +b ≥ 0, then di =+1

wT xi +b < 0, then di =−1
(3.27)

In a linearly separable problem, there are infinite solutions available (infinite hyper-

planes). Knowing that, what would be the optimal hyperplane to separate two classes? The

optimal hyperplane would be the hyperplane positioned equidistantly from the classes. In other

words, the optimal hyperplane will be the one that has the maximum distance in relation to the

closest training samples of both classes. The separation between the hyperplane and the nearest

training patterns is known as the margin of separation, denoted by ρ .

In SVM learning process, the main objective is to find the hyperplane that maximizes

the separation margin ρ . This particular hyperplane is reffered to as the optimal hyperplane

(HAYKIN et al., 2009). Figure 22 illustrates the optimal hyperplane and the margin of separation.

Figure 22 – Optimal hyperplane for linearly separable pat-
terns

Source: The author.

SVM-based algorithms aim to find an optimal weight vector wo and bias bo which

define the optimal hyperplane as

wT
o x+bo = 0 (3.28)

Once a SVM classifier is trained, a discriminant function can be obtained as follows

f (x) = wT
o x+bo, (3.29)

60

which provides an algebraic measure of the distance between x and the the optimal hyperplane.

x = xp + r
wo

‖wo‖
(3.30)

where xp is the normal projection of x onto the optiomal hyperplane and r is the distance between

xp and x. Notice that r is zero when x is on the hyperplane; r is positive if x is on the positive

side of the optimal hyperplane and negative if x is on the negative side. By definition f (xp) = 0,

as g(x) measures distance between a point x to the hyperplane (HAYKIN et al., 2009).

f (x) = wT
o x+bo

= wT
o

[

xp + r
wo

‖wo‖

]

+bo

= wT
o xp +bo +wT

o r
wo

‖wo‖

= 0+ r
wT

o wo

‖wo‖

= r
‖wo‖

2

‖wo‖

= r‖wo‖

Therefore, the distance r can be defined as

r =
f (x)
‖wo‖

(3.31)

Note that the distance from the origin (when x = 0) to the optimal hyperplane is given by

r =
g(0)
‖wo‖

=
wT

o 0+bo

‖wo‖

=
bo

‖wo‖

Therefore, in this particular case, if bo > 0, the origin is on the positive side of the optimal

hyperplane; if bo < 0, it is on the negative side; and if bo = 0, the optimal plane passes through

the origin. Figure 23 illustrates an geometric interpretation of the distance between a pattern x

and the optimal hyperplane.

ρ =
2

‖wo‖
(3.32)

Maximize the separation margin ρ = 2
‖w‖ is equivalent to minimize ρ = 1

2

∥

∥w2
∥

∥.

61

Figure 23 – SVM hyperplane for classes C1 and C2

Source: The author.

In other words, the optimal hyperplane of separation can be described as a optimiza-

tion problem where the goal is to minimize the loss function J(w)

J(w) =
1
2

wT w (3.33)

subject to di(wT xi +b)≥ 1, i = 1,2, ...,N (HAYKIN et al., 2009).

Note that the optimization problem defined in Equation (3.33) assumes the problem is

linear separable. When the optimization problem is formulated based on the linearity assumption,

the SVM classifier is known as SVM with hard margin.

3.5.2 Hard margin SVM classifier

The optimization problem defined in Equation (3.33) is known as primal problem.

The loss function J(w) is convex in w, and the constraints are linear in relation to w. Using

Lagrange for solving this constrained problem will result in the following Lagrangian function

L(w,b,α) =
1
2

wT w−
n

∑
i=1

αi(di(wT xi +b)−1), (3.34)

The expanded form of the Lagrangian function is given by

L(w,b,α) =
1
2

wT w−
n

∑
i=1

αidiwT xi −b
n

∑
i=1

αidi +
n

∑
i=1

αi (3.35)

where αi represents the Lagrange multipliers, which are non-negative real numbers.

62

Deriving L(w,b,α) in relation to w and b and equaling to zero, the following

optimization conditions are obtained:

∂L(w,b,α)

∂w
= 0 (3.36)

∂L(w,b,α)

∂b
= 0 (3.37)

resulting in

w =
n

∑
i=1

αidixi (3.38)

and

n

∑
i=1

αidi = 0 (3.39)

respectively. The term −b∑
n
i=1 αidi is equal 0 due to Equation (3.39). In this way, the Equation

can be rewritten:

L(w,b,α) =
1
2

wT w−
n

∑
i=1

αidiwT xi +
n

∑
i=1

αi (3.40)

Moreover, the term −∑
n
i=1 αidiwT xi can be simplified to −wT w. Then, the Lagrangian equation

will be

L(w,b,α) =
1
2

wT w−wT w+
n

∑
i=1

αi

=−
1
2

wT w+
n

∑
i=1

αi

. (3.41)

Substituting Equation (3.38) in Equation (3.41) the expression is reduced to

L(α) =
n

∑
i=1

αi −
n

∑
i=1

n

∑
j=1

αiα jdid jxT
i x j (3.42)

Note that Equation (3.42) depends only on Lagrangian multipliers. Hence, the optimization

problem is defined in a dual formulation as follows

max L(α) =
n

∑
i=1

αi −
n

∑
i=1

n

∑
j=1

αiα jdid jxT
i x j

s.t
n

∑
i=1

αidi = 0,

s.t αi ≥ 0, i = 1, . . . ,n

(3.43)

63

3.5.3 Soft margin SVM classifier

A hyperplane that separates correctly two classes rarely exists in real-world clas-

sification problems. Thus, it is necessary to adopt a specific formulation of the problem that

allows some data samples to be classified incorrectly in order to preserve the generalization

of the discriminant function and avoid overfitting. In other words, the discriminant function

should not be excessively complex. In general, complex classification models are subject to

overfitting as there is the model tends to fit the noise, mainly in problems containing discrepant

samples (outliers). This formulation is called soft margin SVM, and it allows a relaxation in the

constraints of the optimization problem by using threshold variables as described below:

di(wT xi +b)≥ 1−ξi, i = 1, . . .n, (3.44)

where ξi ≥ 0. The variables ξi are known as slack variables.

Solving a non-linear separable problem with a linear model results in three main

cases related to the classification of a pattern (or instance) x:

1. Instance outside the hyperplane margin with correct labels (Green region)

2. Instance inside the hyperplane region with correct labels (Yellow region)

3. Instance incorrectly classified (Red region)

Figure 23 illustrates the three classification cases in non-separable problems.

Figure 24 – SVM hyperplane classification cases

Source: The author.

The three cases cited previously is closely related to the slack variables values.

64

Data samples in separable region (Green region) will have ξi = 0; for 0 < ξi ≤ 1, the

instances x will be localized one the correct side, inside the hyperplane region (Yellow region).

Finally, in case ξi > 1, the data sample will be incorrectly positioned inside the hyperplane region

(Red region) (See Figure 23).

In order to solve the optimization problem using the soft margin formulation, the

primal problem must be rewritten as follows

min J(w,ξ) =
1
2

wT w+C
N

∑
i=1

ξi

s.t yi(wT xi +b)≥ 1−ξi, i = 1,2, ...,N

s.t ξi ≥ 0 i = 1,2, ...N

(3.45)

where ξi are variables for permitting margin failure and the hyper-parameter C is a constant

responsible to balance the trade-off between wide margin and small number of failures.

Similar to hard margin formulation, the solution will be defined by minimizing the

Lagrangian function L(w,b,ξ ,α,β , with respect to w,b and ξ , and maximized with respect to

α and β . The Langrangian function formulated for soft margin SVM is given by

L(w,b,ξ ,α,β) =
1
2

wT w−
n

∑
i=1

αi(di(wT xi +b)−1+ξi)−
n

∑
i=1

βiξi, (3.46)

The expanded form of the Langrangian function above is presented as

L(w,b,ξ ,α,β)=
1
2

wT w+C
n

∑
i=1

ξi−
n

∑
i=1

αidiwT xi−b
n

∑
i=1

αidi+
n

∑
i=1

αi−
n

∑
i=1

αiξi−
n

∑
i=1

βiξi, (3.47)

As in the hard margin SVM, the solution of the problem requires that the cost-function be

differentiated in relation to to w,b and ξ and equals zero, in order to obtain the following

optimization conditions:

∂L(w,b,ξ ,α,β)

∂w
= 0 (3.48)

∂L(w,b,ξ ,α,β)

∂b
= 0 (3.49)

∂L(w,b,ξ ,α,β)

∂ξ
= 0 (3.50)

The above equations result respectively in the following constraints:

w =
n

∑
i=1

αidixi (3.51)

n

∑
i=1

αidi = 0 (3.52)

C = αi +βi (3.53)

65

The simplification of Equation (3.46) from the above constraints results in the following Lan-

grangian equation

L(w,b,ξ ,α,β) =
1
2

wT w+
n

∑
i=1

ξi(αi +βi)−
n

∑
i=1

αidiwT xi −b
n

∑
i=1

αidi +
n

∑
i=1

αi −
n

∑
i=1

ξi(αi +βi)

(3.54)

It can be seen that the terms dependent on βi of Equation (3.54) can be eliminated, resulting in

L(w,b,ξ ,α) =
1
2

wT w−
n

∑
i=1

αidiwT xi −b
n

∑
i=1

αidi +
n

∑
i=1

αi (3.55)

The term −b∑
n
i=1 αidi is equal 0 due to Equation (3.52), and −∑

n
i=1 αidiwT xi can be simplified

to −wT w. Then, the Lagrangian equation will be

L(w,b,α) =
1
2

wT w−wT w+
n

∑
i=1

αi

=−
1
2

wT w+
n

∑
i=1

αi

. (3.56)

Substituting Equation (3.51) in Equation (3.56) the expression is reduced to

L(α) =
n

∑
i=1

αi −
n

∑
i=1

n

∑
j=1

αiα jdid jxT
i x j (3.57)

Consequently, the Equation (3.57) depends only on Lagrangian multipliers. Hence,

the optimization problem is defined in a dual formulation as follows

max L(α) =
n

∑
i=1

αi −
n

∑
i=1

n

∑
j=1

αiα jdid jxT
i x j

s.t
n

∑
i=1

αidi = 0,

s.t 0 ≤ αi ≤C, i = 1, . . . ,n

(3.58)

3.5.4 Kernel Function

The kernel function is essential for SVM-based algorithms. Non-linear transfor-

mation of the input to a higher dimensional feature space assists SVM algorithm in non-linear

separable cases, since the data points are more easily classified in higher dimensions (HAYKIN

et al., 2009). Thus, in order to obtain a linearly separable problem, the input space x ∈ R
d is

mapped to a feature space Φ(x) ∈ R
q, such that q > d.

66

Hence, the duty of kernel functions is to take inner product of the mapped data points.

Equation (3.59) defines the kernel function, which is commonly called the kernel trick, because

it avoids the need to find the mapping function Φ(·)

K(x,y) = Φ(x)T Φ(y). (3.59)

In this sense, it is possible to redefine the Equations (3.43) and (3.58) referring to the classifier

SVM with hard margin and with soft margin. Equations (3.60) and (3.61) present this redefinition,

after applying the kernel trick, for hard margin and soft margin, respectively.

max L(α) =
n

∑
i=1

αi −
n

∑
i=1

n

∑
j=1

αiα jdid jK(xi,x j)

s.t
n

∑
i=1

αidi = 0,

s.t αi ≥ 0, i = 1, . . . ,n

(3.60)

max L(α) =
n

∑
i=1

αi −
n

∑
i=1

n

∑
j=1

αiα jdid jK(xi,x j)

s.t
n

∑
i=1

αidi = 0,

s.t 0 ≤ αi ≤C, i = 1, . . . ,n

(3.61)

Using the kernel function avoids the calculation of transforming the input data to a

higher dimension. Kernel functions affect in classification performance. Hence, choosing the

proper kernel function is a important task for training SVM-based algorithms and usually requires

expert knowledge about the data. Some of the most common kernels used in the literature are

presented in the table bellow. Gaussian kernel is also known as Radial Basis Function (RBF)

kernel.

Table 1 – Examples of Kernel functions used in SVM algorithms (HAYKIN et al., 2009)

Kernel K(xi,x j) Observations

Linear xT
i ·x j -

Polynomial (xT
i ·x j +1)p Parameter p represents the degree of the polynomial

Gaussian exp
(

−
1

2σ2

∥

∥xi −x j

∥

∥

2)
Parameter σ2 is defined by the user

Sigmoidal tanh(β0xi ·x j +β1) Used only for several β0 and β1 values

67

3.5.5 Classifying approaches

As SVMs were initially designed to perform binary classification. Therefore, it is

necessary to apply techniques for adapting SVM-based classifiers for solving Multiple-class

classification problems. In the literature, two commonly techniques prevail: one-against-all

and one-against-one. These methods are used to solve the multiple classification problem using

several binary SVM-classifiers.

3.5.5.1 One-Against-All

This method consists on creating one model for each class. For example, in a problem

consisted by a set of classes C = {c1,c2, ...ck}, k binary classifiers are built, and each model mi is

responsible for classifying a pattern x as positive or negative for the class ci. A common problem

in this approach is when more than one model classifies a pattern x as positive. In this case,

only one model is correct and the others misclassified x (false positive). A solution for dealing

with this problem is to compare the models among them for deciding which one is classifying

correctly. One common used strategy is referred as Win Max, where the output selected is the

class which have the greatest value calculated.

3.5.5.2 One-Against-One

In this classification approach, for a problem with c classes, c(c−1)
2 classifiers are

built. Each classifier is trained using data of only two classes. Therefore, all possible pairwise

classifiers are evaluated (WANG; XUE, 2014). Testing each classifier to an instance x would

give one vote to the winning class. The class with more vote is assigned to x.

3.6 Summary

In this chapter, a naive method known as k-NN, considered a benchmark algorithm

for classifying time series,has been described. Furthermore, the fundamentals on Multi-Layer

Perceptron (MLP), Self-Organizing Map (SOM), Learning Vector Quantization (LVQ) and

Support Vector Machine (SVM) are discussed. Moreover, different variations of LVQ-based

algorithms are presented.

68

In Chapter 4, the concept of Adaptive-LVQ is introduced. In addition, three proposed

LVQ-based variations are detailed: dynamic learning rate LVQ (dLVQ) and adaptive clustering

LVQ (ALVQ), as well as the combination of dLVQ and ALVQ (dALVQ).

Finally, a framework for applying these adaptive characteristics to any LVQ-based is

proposed. Thus, the adaptive characteristics described in the proposed method can be combined

with several LVQ-based variations, including LVQ1, LVQ2 and LVQ3 proposed by Kohonen

(1997), and a Fuzzy-LVQ version, introduced by Chung & Lee (1993).

69

4 NOVEL APPROACHES FOR ADAPTIVE LVQ CLASSIFIERS

This chapter is devoted to present three novel approaches of Adaptive LVQ-based

classifiers designed in this work:

• ALVQ-SOM: Consist in a hybridization of an Adaptive-Learning Vector Quantization

with Self-Organizing Maps. In this approach, the inclusion of prototypes are based on

using SOM algorithms applied on misclassified samples, during training.

• dLVQ: The driven-LVQ is an Adaptive-Learning Vector Quantization, which adaptation

consist in identifying low representative prototypes and changing their learning rate for

creating chance of convergence during training process. The idea behind the dLVQ is to

boost prototypes of low representativity with the aim of converging to better positions

• dALVQ-SOM: It is a variation of ALVQ-SOM where the prototypes included with SOM

algorithms also changes their learning rate for improving the convergence during training.

Initially, the basic concepts of adaptive-LVQ are introduced by describing the diffe-

rences between classic algorithms and adaptive versions. Then, following the ideas introduced

by Grbovic & Vucetic (2009), an adaptive LVQ-based algorithm called ALVQ-SOM is proposed,

followed by two variations: dLVQ and dALVQ-SOM. Finally, the fundamentals of the proposed

methods are discussed, by focusing mainly on their operation, described in flowcharts and

pseudo-codes.

For describing the fundamentals on the methods, focusing mainly on its operation,

illustrated in flowcharts and pseudo-codes.

4.1 Adaptive LVQ (ALVQ)

Adaptive LVQ (ALVQ) neural networks is a category of LVQ-based algorithms that

have the capacity of making adjustments in their architecture during training in order to improve

the classification performance. In general, the adaptation consists of two basic operations:

prototypes inclusion and prototype removal. Strategies of including and/or removing prototypes

determines the Adaptive-LVQ performances. Moreover, in adaptive algorithms, it is necessary

to adopt a decision rule for determining when an adaptation should occur. Adaptive models

of classification with high adaptability can suffer from problems such as oscillations and non-

convergence of learning. Figure 25 presents two flowcharts that describe the difference between

traditional (non-adaptive) LVQ and adaptive LVQ.

70

Figure 25 – Classic and Adaptive LVQ training frameworks

(a) Classic LVQ training framework

(b) Adaptive-LVQ training framework

Source: The author.

A traditional LVQ algorithm, or non-adaptive, will always remain its structure. Note,

in Figure 25(a), that there is no step for adaptation. Therefore, only the prototype weights are

varying during training. In contrast, an adaptive LVQ may changes in terms of inclusion or

removal of prototypes, allowing the ANN to improve its performance. In Figure 25(b), the

adaptive steps are included and highlighted in green. First, an evaluation is performed on the

neural network in order to verify the need of adaptation. It is important to realize that adaptation

should only occur if needed. Once an adaptation is required, the adaptive method must include,

remove or modify some prototypes based on a strategy that improves the performance of the

neural network according to some criteria. In this work, the main criterion is the improvement in

classification performance. An Adaptive-LVQ can be divided in two main stages:

• Training: During the training stage, the instances from the training dataset is presented

to the neural network, and the prototypes are adjusted based on a learning rule from a

LVQ-based variation.

71

• Adaptation: After completing an epoch, the resulted LVQ-network is evaluated in order

to verify the need for adaptation. In this context, adaptation mean modify the LVQ

structure by including, removing or modifying prototypes in order to improve the neural

network’s performance. If a specific criterion for adaptation is satisfied, an algorithm

makes the necessary modifications accordingly to criterion that aim to improve the network

performance).

Figure 25(b) presents a flowchart describing the process of training an Adaptive-LVQ

model. First, the prototypes weights are initialized. In this work, the Kohonen’s Self-Organizing

Map is used for initializing the prototypes. Afterwards, the LVQ variation is executed during

a whole epoch k. In the end of each epoch, the algorithm verifies the need for adaptation.

Depending on this decision, the network is adapted (Wk(adapted)) or not (Wk). Then, the cycle

restarts in the next epoch. After each epoch, a stop criterion is verified, once it is satisfied, the

algorithm finishes, returning the trained model (Wtrained). An example of an Adaptive-LVQ was

proposed by Grbovic & Vucetic (2009), and it will be discussed next section.

4.2 ALVQ-GV

The Adaptive-LVQ proposed by Grbovic & Vucetic (2009) has contribute as an

inspiration in designing the algorithms proposed in this master thesis, and for simplicity, it will

be referred as Grbovic-Vucetic Adaptive LVQ (ALVQ-GV). Hence, the ALVQ-GV will be briefly

discussed. Figure 26 presents a flowchart describing the main step during ALVQ-GV operation.

In ALVQ-GV, after each epoch an adaptation occurs. Therefore, the authors have

not applied any decision rule, regarding the need for adaptation. The process of adaptation in

their work is based on firstly removing prototypes, by applying a threshold in a score calculated

during training. Each prototype wi has a score, and the prototypes which present negative scores

at the end of an epoch are removed.

For inclusion, the new prototypes are generated by applying a Hierarchical Clustering

method on the misclassified data. In ALVQ-GV, an variable called Budget (B) was used for

determining the maximum number of prototypes supported by the neural network. Therefore,

at the end of an epoch k, the number of prototypes available for inclusion is calculated by

PNew = B−Pk, where Pk is the actual number of prototypes. If PNew > 0, PNew prototypes will

be included. The variable B is useful to prevent too much growth of the network, also avoiding

overfitting. In the next subsections, the inclusion and removal strategies are discussed in detail.

72

Figure 26 – Flowchart operation of the Adaptive Learning Vector Quantization
proposed by Grbovic & Vucetic (2009) (ALVQ-GV)

Source: The author.

4.2.1 ALVQ-GV strategy for prototype inclusion

The ALVQ-GV uses hierarchy clustering applied to all misclassified samples in order

to decide the new prototypes that will be included in the network. The number of prototypes

to be included is controlled by two variables: max cluster, on the number of clusters, and min

cluster size, on the cluster size (GRBOVIC; VUCETIC, 2009). The quantity of new prototypes

is limited by a variable called Budget (B). This variable define the maximum prototype quantity

supported by the network.

The main increase in time complexity in ALVQ-GV is due the performance of

prototype inclusion function. As it uses a hierarchical clustering with average linkage, the

asymptotic time complexity is given by:

Θ

(

NC

∑
i=1

n2
i log ni

)

(4.1)

where ni is the number of misclassified data samples from ith class, and NC is the number of

classes.

73

4.2.2 ALVQ-GV strategy for prototype removal

During removal, the ALVQ-GV algorithm calculate a score based on the following

equation:

S
ALV Q−GV
j = A j −B j +C j (4.2)

where A j counts how many times a prototype p j correctly classified was not moved toward

the sample; B j counts how many times a prototype was moved far from for a misclassified

sample and C j counts how many times a prototype was moved toward the sample when correctly

classified. A prototype p j is removed when its score j is negative (GRBOVIC; VUCETIC, 2009).

Regarding the time complexity, as the removal is based only on scores calculated

over prototypes, its cost will mainly depend linearly on the number of prototypes P. The removal

cost is based on Θ(NS ·P ·NE), for increments of A, B and C, and Θ(P), for verification for

removing or not based on a threshold. As these operations are not time consuming, it can be

concluded that removal does not affect significantly the computational performance.

4.3 Proposed Adaptive-LVQ (ALVQ-SOM)

Based on the algorithm ALVQ-GV, a novel variation has been designed with several

modifications that may improve the overall classification performance. In general, the adaptive

characteristics implies the ability of making changes in the network’s structure by including or

removing prototypes (codebooks or neurons). Our proposed algorithm, Adaptive LVQ with Self-

Organizing Maps (ALVQ-SOM), consist of using Self-Organizing Maps (SOM) for generating

new prototypes. The unsupervised method Kohonen’s Map (KM-SOM) (KOHONEN, 1990)

is proposed for inclusion of new prototypes in the neural network. As for removing, a similar

strategy as the one adopted in ALVQ-GV is used, with several modifications. Figure 27 presents

a flowchart describing the main steps during ALVQ-SOM operation.

In ALVQ-SOM, at the end of each epoch an adaptation may or not occurs. The

decision will depend on a hyper-parameter called Adaptation Factor (a f). The justification for

including this hyper parameter is that frequent adaptation occurrences can result in an undesired

oscillatory behavior of neural network training. The adaptation is composed by removal and

inclusion of prototypes, respectively. The removal process in ALVQ-SOM consist in removing

prototypes, at the end of each epoch, by applying a threshold in a score calculated during training.

Any prototype wi which has a score score(wi)< rt is removed.

74

Figure 27 – Flowchart describing the operation of Adaptive Learning Vector Quantization
combined with Self-Organizing Map (ALVQ-SOM)

Source: The author.

For inclusion, the new prototypes are generated by applying a Self-Organizing Map

(SOM) method on the misclassified data. In ALVQ a variable called Budget (B) is employed

for determining the maximum number of prototypes supported by the neural network, as used

previously in ALVQ-GV. In the next subsections, the ALVQ-SOM is discussed in further details.

4.3.1 Proposed strategy for prototype inclusion

The strategy adopted for including new prototypes in a ALVQ-SOM neural network

consists in using a SOM algorithm applied on misclassified samples. Note that any other SOM

algorithm can be used. However, in this work only KM-SOM was employed. For simplicity, and

in order to reinforce that any SOM algorithm can be used, the step of the proposed algorithm

involving using KM-SOM will be described generally by SOM.

Figure 28, illustrates the process of including three prototypes, based on the misclas-

sified data. The neural network growth is restricted by a variable which define the maximum

number of prototypes supported by the neural network, known as Budget (B). Therefore, the

number of prototypes will not overstep the pre-defined architecture size. Two approaches for

including prototypes have been defined: All classes at once and One class at a time.

75

Figure 28 – Process of including three new prototypes to an adaptive LVQ

Source: The author.

Before getting into details of these approaches, a hyper-parameter named Growth

Factor (g f) must be introduced. This parameter is multiplicative factor that will be involved

in the calculation of how many prototypes is reasonable to include to our LVQ network, in

order to represent the misclassified points. This parameter will be used similarly in the two

inclusion approaches. Note that the number of prototype will always depend on the number of

misclassified points. Therefore, the better the classifier, the less prototypes will be included. The

Kohonen’s Map algorithm provides a solution for better representing poorly classified regions,

with the cost of increasing the computational effort.

4.3.1.1 All classes at once (v1)

In this approach, all misclassified data is considered as a single data set D. Hence,

the SOM algorithm is applied in all misclassified data, and then the class are assigned to each

prototype, based on their distance to misclassified data. Consider NMiss the total number of

misclassified points. The number of new prototypes (NPnew) to be included will be calculated by:

NPnew = NMiss ·g f (4.3)

76

Algorithm 3 presents the implementation steps for the process of inclusion using the all classes

at once strategy.

Algorithm 3: ALVQ-SOM include prototype function (All classes at once approach)

Input: LV Qold , XMiss, Nclasses, g f ; // LVQ network before adaptation,

Misclassified samples, Number of classes, growing factor

Output: LV Qnew ; // LVQ network after adaptation

NMiss = size(XMiss);

NPnew = NMiss ·g f ; // Number of prototypes to be included

pnew = SOM(XMiss,NPnew) ; // List of new prototypes to be included

pnew = f indClasses(pnew,XMiss) ; // Find for each prototype a proper class

LV Qnew = IncludeNewPrototypes(pnew, LV Qold); // Include new prototypes to

the original LVQ network

Notice that in Algorithm 3 there is a function called findClass (·). This function

represents the procedure for finding appropriate class labels for the new prototypes to be added.

This process is quite common when unsupervised algorithms are applied in classification pro-

blems. A typical strategy for labeling prototypes is based on the construction of clusters for each

prototype. In each cluster, a verification is performed to determine the most frequent class in the

cluster. The most frequent class in the cluster will be the one with the largest number of samples,

and this will be the class assigned to the prototype.

4.3.1.2 One class at a time (v2)

In this approach, each class has a set of misclassified data. Hence, the SOM algorithm

is applied in each data set Di, separately. Consider N
(i)
Miss the total number of misclassified points

for i-th class. The number of new prototypes to be included of class i will be calculated by:

N
(i)
Pnew

= N
(i)
Miss ·g f (4.4)

Hence, the greater the presence of misclassified instances of a class i, the greater the number

of new prototypes that will be included to represent this class. Algorithm 4 presents the

implementation steps for including prototypes using one class at a time approach.

77

Algorithm 4: ALVQ-SOM include prototype function (One class at a time approach)

Input: LV Qold , XMiss, Nclasses, g f ; // LVQ network before inclusion,

Misclassified samples, Number of classes, growing factor

Output: LV Qnew ; // LVQ network after inclusion of prototypes

for i = 1 to Nclasses do

N
(i)
Miss = size(X

(i)
Miss);

N
(i)
Pnew

= N
(i)
Miss ·g f ; // Number of prototypes to be included

p
(i)
new = SOM(X

(i)
Miss,N

(i)
Pnew

) ; // List of new prototypes of class i to be

included

LV Qnew = IncludeNewPrototypes(pnew, LV Qold); // Include new prototypes to

the original LVQ network

end

4.3.2 Proposed strategy for prototype removal

The prototype removal from the ALVQ-SOM is based on calculating a score for each

prototype (Equation (4.5)), which can quantify how useful a prototype is for a LVQ network.

A prototype p j will be removed when its score (SALV Q−SOM
j) is lower than a removal threshold

rt . Low scores may indicate that a prototype is degrading the model or it is not contributing

significantly to the classification performance. For example, prototypes that frequently classify

incorrectly instances will present low scores, hence they must be removed.

S
ALV Q−SOM
j = A j −B j +C j (4.5)

where A j counts how many times a prototype j classified correctly an instance and was not

moved. B j counts how many times the prototype j was moved away from a misclassified sample.

C j counts how many times the j− th prototype was moved toward a correctly classified sample.

A j and C j quantifies the contribution made by the j-th prototype to the classification

model performance. Hence, large values of A and C indicates that a certain prototype is highly

significant, as it has correctly classified a sample in many iterations, during an epoch. Prototypes

with low values of A and C may still be important, depending on the B j value.

B j quantities the degradation caused by a j-th prototype to the classification model’s

performance. Large values of B indicates that a certain prototype has frequently misclassified

samples, as it was multiple times chosen as the winner, but it belonged to a different class of the

samples. Algorithm 5 presents the pseudo-code for removing prototypes in ALVQ-SOM.

78

Note that the prototype removal process differs from the ALVQ-GV algorithm by the

adoption of a threshold that can be used to tuning the tolerance in accepting low representative

prototypes. In addition, it is important to notice that the term A is used only for the adaptive

variables of ALVQ2-SOM and ALVQ3-SOM. The adaptive variation ALVQ1-SOM and AFLVQ-

SOM only calculate the score based on terms A and B. The same goes for the ALVQ-GV

variations.

Algorithm 5: ALVQ-SOM removal prototypes function

Input: LV Qold , NP, rt ; // LVQ network before removal, Number of

prototypes, removal threshold

Output: LV Qnew ; // LVQ network after removal of prototypes

for j = 1 to NP do

S j = A j −B j ; // Score to evaluate the quality of a prototype

if S j < rt then

LV Qnew = removePrototype(j, LV Qold) ; // Remove prototype j

end

end

4.3.3 ALVQ-SOM implementation

The ALVQ-SOM constitutes a framework for transforming a classical LVQ learning

algorithms into an adaptive version. Therefore, the proposed algorithm still require the learning

rule of a classic LVQ algorithm. Algorithm 6 presents an example of pseudo-code which

implements an ALVQ-SOM classifier using LVQ1 learning strategy.

4.3.4 ALVQ-SOM Hyper-parameters

In order to design a LVQ-based classifier, several parameters must be previously

defined, depending on the LVQ variation. For any LVQ-based algorithm, parameter such as

number of prototypes (P) and initial learning rate (α0) are chosen by the designer. Similarly,

ALVQ-SOM architecture requires tuning other three hyper-parameters : growth factor (g f),

adaptation factor (a f) and removal threshold (rt). In order to properly choose these parameters,

it is important to understand how they can affect in training a LVQ neural network.

79

Algorithm 6: ALVQ1-SOM pseudo-code
Input:

α0 : Initial learning rate
X : Training input samples
Y : Desired output (classes)

Output:
Wopt : Optimal weights (All prototypes and their respective weights)

1. Initialization
(1.1) Initialize vector wi with random values from training set
(1.2) Initialize the learning rate α(1) = α0

(1.3) Initialize the rewarding and penalty scores Ai = 0 and Bi = 0, ∀i

2. Training
while (Termination criteria not satisfied) do

for n = 1 to N do
(2.1) Select an input pattern x(n) and its class y(n) from training set X
(2.2) Find the closest prototype from pattern x(n) (Winner prototype)

i∗(n) = argmin‖x(n) = wi∗(n)‖ ,∀i

(2.3) Adjust the winner neuron’s synaptic weights
if class(wi∗(n)) == y(n) then

wi∗(n)(n+1) = wi∗(n)(n)+α(n)∗ (x(n)−wi∗(n)(n)) ; // Move prototype

towards the pattern x(n)
Ai∗(n) = Ai∗(n)+1 ; // Increment the winner’s rewarding score

else
wi∗(n)(n+1) = wi∗(n)(n)−α(n)∗ (x(n)−wi∗(n)(n)) ; // Move prototype

away from the pattern x(n)
Bi∗(n) = Bi∗(n)+1 ; // Increment the winner’s penalty score

end
(2.4) Update learning rate
α = α0 ∗ (1− n

N
)

end
3. Adaptation
(3.1) Verify the need for adaptation based on a f

if adaptation is true then
(3.2) Remove prototypes which have score lower than rt

(3.3) Include prototypes based on g f and in the total of misclassified samples
end

end

4.3.4.1 Growth factor (g f)

This parameter, combined with the number of misclassified samples (NMiss), controls

the number of prototypes NPNew
included during adaptation. Depending on g f value, a ALVQ-

SOM may include excessively the number of prototypes, or may included none, as it still depends

on NMiss.

80

In order to avoid interpolation, g f ∈ [0,1]. Therefore, that maximum number of

prototype to be included, during adaptation, is the number of misclassified points itself, as the

minimum number of new prototypes is zero. Low values of g f represent a method that will

tolerate more error during training. As large values of g f tend to overfitting. Regarding time

complexity, the larger g f the greater the computational cost.

4.3.4.2 Removal threshold (rt)

Removal threshold hyper-parameter controls when a prototype should be removed.

For negative values of rt , only poor prototypes are removed. The lower the rt , the more flexible

the algorithm will be. In order words, rt may work as a tolerance threshold for deciding among

poor prototypes which one of them may be acceptable to remain in the network.

For positive values (rt > 0), the ALVQ-SOM tend to remove prototypes that contri-

bute with the overall classification performance, even if slightly. The greater rt the more strict

will be the algorithm in selecting prototypes. In other words, for large positive values of rt ,

only extremely representative prototypes will be selected during training. As for small positive

values of rt , fairly representative prototypes will be considered. It is important to highlight that

high values of the removal threshold can cause underfitting, since the definition of unreachable

values of rt will result in the removal of many or even all prototypes during adaptation, causing

oscillation and non-convergence of learning.

Note, that rt can decide the number of prototypes that remain in the network. For

example, consider a binary classification problem. Let a dataset D be composed by 50 samples

for each class. If an ALVQ-SOM algorithm is configured with rt = 50, the algorithm will try to

find a prototype which present a score equals or greater than 50. This can only be achieved if

the network have only 2 prototypes, one for each class. If the algorithm find these prototypes,

it is guaranteed they will be positioned in a way that will maximize the training classification

performance.

4.3.4.3 Adaptation factor (a f)

Adaptation factor is a parameter which determines how often an adaptation should

occur. In other words, a f defines the intervals that an adaptation is taking place. For example,

if a f = 10 then every ten epochs, one adaptation occurs. Therefore, a f ∈ [1,NE pochs], where

NE pochs is the number of epochs.

81

For a f = 1, at the end of each epoch, an adaptation occurs. In contrast, for a f =

NE pochs, there will be only an adaptation at the last epoch. In this case, it is recommended to

ignore this adaptation, as there will be none epoch for letting the new prototypes to converge

and to be trained properly. Therefore, for a f = NE pochs, the ALVQ-SOM is equivalent to a

non-adaptive LVQ.

In summary, a f is inversely proportional to the number of adaptations. Thus, the

lower the a f , the more adaptations will occur and these adaptations increase the exploration

of new prototypes. However, frequent adaptations will prevent the prototype to be adjusted

by the learning rule, which may cause the prototype to not converge to a proper position. As

more adaptations will occur, the exploration of new prototypes will increase, raising the chance

of finding a good prototypes. However, multiple adaptations will allow less iterations for the

prototypes to converge. For example, if a set of new prototypes are included, they may not

converge to satisfactory position during one epoch.

Considering the worst case scenario, where every epoch the new included prototypes

will not converge. On the other hand, large values of a f reduce the exploration, but allows the

prototype to be adjusted by the learning rule. The problem of low values of a f is that newly

included prototypes need to be adjusted, and it may take more than one epoch.

4.4 Driven-LVQ (dLVQ)

Driven-LVQ (dLVQ) is a specific variation of Adaptive-LVQ-based method which

has the capability of varying the learning rate of poorly trained prototypes. The dLVQ method

uses the same strategy for qualifying the importance of a prototype as the algorithm ALVQ-SOM

(See section 4.3.2). In ALVQ-SOM, when a prototype is qualified as poorly trained, it is removed.

In dLVQ, instead of removing prototypes, new learning rates (higher than before) are assigned to

low score prototypes, so they can be adjusted significantly and converge to a better location.

Figure 29 illustrates the flowchart framework for training a classifier based on dLVQ.

Note that in this approach there is no prototype inclusion, and the removal step is replaced by a

process of changing the learning rates of low quality prototypes.

82

Figure 29 – Driven-Learning Vector Quantization (dLVQ) flowchart

Source: The author.

In dLVQ, each adaptation creates a new generation. Prototypes that were modified

in a specific generation will have the same learning rate. Therefore, each generation will have a

specific learning rate.

α =
(

α(0) α(1) · · · α(G)
)

(4.6)

where G is the last generation created. Note that α(0) is the initial learning rate of the network,

and α(i) is the learning rate of prototypes generated in i-th generation.

It is important to notice that each learning rate still decreases monotonically. Howe-

ver, they must decrease accordingly to each generation. Therefore, the linearly decreasing

learning rate for the ith generation would be:

α(i)(n) = α(0) · (1−
n

N
) (4.7)

For example, in Figure 30 there are three different learning rates for different genera-

tions of prototypes. Note that at the blue line, the LVQ network training starts with an initial

learning rate, which decreases linearly over the epochs. Then, at the epoch 100 an adaptation

occurs and a new generation is created.

83

Figure 30 – Generation-based learning decay in Driven Adaptive Learning Vector Quanti-
zation (dALVQ)

Source: The author.

Hence, prototypes are modified and new learning rates are assigned, referring to the

orange line. Subsequently, new adaptations will occur and new generations will be created. In

the example shown in Figure 30 two adaptations resulted in the inclusion of two new generations.

In summary, there will be three learning rates: one for the initial prototypes of the network

(represented by the blue color), and two for the prototypes included in the adaptations (represented

by the colors orange and gray). The hyper-parameter Adaptation Factor (a f) will be responsible

for dictating the frequency of network adaptations.

4.5 Driven-Adaptive-LVQ (dALVQ)

The driven-learning rate can also be applied in an adaptive-LVQ. In driven Adaptive

LVQ with Self-Organizing Maps (dALVQ), both characteristic of ALVQ and dLVQ are combined.

Therefore, the dALVQ adaptation consists in removing poor representative prototypes, and

including new prototypes, with generation-based learning rates. Figure 31 illustrates the flowchart

framework for training a classifier based on dALVQ.

84

Figure 31 – Example of multiple learning rate per prototype generation

Source: The author.

4.6 Summary

In this chapter, fundamental concepts on Adaptive-LVQ were introduced. Moreover,

two novel approaches for Adaptive-LVQ supervised learning were introduced: ALVQ-SOM

and dLVQ. Besides that, a combination of the previous variations, called dALVQ, was also

introduced. All presented methods can be combined with any LVQ-based variation, since it does

not affects the algorithm’s learning rule. Furthermore, the ALVQ framework for designing and

training a classifier were presented.

Chapter 5 details the methodology for evaluating the novel proposed methods, as

well as the other methods evaluated in this works.

85

5 EXPERIMENT METHODOLOGY

The main objectives of this work is to design, build and compare multiple neural

network based classifiers, employed in different time series classification problems. In the

context of time series classification, the experiments have been designed in order to achieve the

following goals:

• Evaluate and compare the proposed LVQ-based method to other LVQ variations.

• Compare the efficiency of different learning approaches, among MLP, SVM and LVQ, in

time series classification problems.

• Compare ANN-based algorithms to a benchmark naive method called k nearest neighbor.

In order to achieve those goals, it is necessary to define a proper testing methodology.

In this chapter, the methodology applied in the experiments comparing different classifiers for

time series classification is presented. Furthermore, the criteria used for evaluating performances

and comparing different neural network models are detailed.

Finally, the methodology adopted for designing experiments is covered, including

the main aspects considered for neural network analysis, such as number of neurons, training

parameters, learning rate, pre-processing input data.

5.1 Performance Metrics

For evaluating a classifier, a set of metrics must be chosen properly, in order to

asses the classifier quality. In this section, the general used performance metrics for evaluating

classifiers are described.

5.1.1 Confusion matrix

A Confusion Matrix (CM) is a structure which provides general information about a

supervised classifier performance, based on the class assignments to every sample of a specific

dataset (MARTIN-DIAZ et al., 2016). A CM is built by comparing desired, or actual, labels

with predicted class labels. In Table 2, a two class problem confusion matrix is shown. Note that

TP and TN stand for correctly labelled positive and negative samples. FN and FP symbolizes

wrongly labelled negative and observations respectively. In a two-class classification problem,

there are two classes: positive class and negative class. Each row from a CM represents the

samples in the actual class, as each column represents the samples in predicted classes.

86

Table 2 – Confusion matrix for a two-class problem

Actual Prediction

Positive (+) Negative (-)
Positive (+) True Positive (TP) False Negative (FN) Pactual

Negative (-) False Positive (FP) True Negative (TN) Nactual

Ppredicted Npredicted NTotal

The total number of actual positive and negative samples are denoted by Pactual

and Nactual , respectively. Similarly, the total of sample which have been predicted to classes

positive and negative are denoted by by Ppredicted and Npredicted . Finally, NTotal represents the

total number of samples for this problem. In order to evaluate the classification performances of

any method, it is interesting to evaluate measures such as accuracy, precision and recall. These

measures can be extracted from a confusion matrix.

A common used score for assessing a classifier is the classification accuracy. Ac-

curacy is the overall fraction of all correctly predicted samples among the whole data. This

measure indicates the percentage of correct classifications relative to the total of samples. This

measures can be calculated by the following equation:

Accuracy =
T P+T N

T P+T N +FP+FN
=

T P+T N

NTotal

(5.1)

Consider NCorrect the number of correct classifications. The accuracy equation may

be simplified as follows:

Accuracy =
NCorrect

NTotal

(5.2)

Another form of measuring the accuracy, is by classification error, which is given

by 1−Accuracy. Even though accuracy is commonly used, it is an optimistic assumption,

since it measures the overall classification performance. This may be a problem when dealing

with imbalanced data, where each class have different number of samples. For evaluating the

performance for each class, separately, it is necessary to use other metrics such as precision and

recall. Precision can be defined as the fraction of positive results that are correctly identified

among the positive predictions.

Precision =
T P

T P+FP
(5.3)

Recall, also known as sensitivity, is a fraction of positive results that are correctly

identified among the actual positive values.

Recall =
T P

T P+FN
(5.4)

87

F-measure is a score which solves any contradiction between precision and recall

(MARTIN-DIAZ et al., 2016). For β ∈ R,β > 0, the expression is:

Fβ =
(1+β)(precision× recall)

(β × precision)+ recall
(5.5)

5.2 Cross-Validation

Cross-validation, or out-of-sample testing, are techniques used for evaluating models,

by analyzing their performance on independent data sets. In a classification problem, a model

uses the training set for learning patterns in the data, so it can generalize this information for

predicting class of unknown data. The testing set is used for validating the model, as this set is

composed by independent data, that is, data that have not been used for training the classifier.

5.2.1 Hold Out

The hold out cross-validation technique consist in randomly partitioning the data in

two sets: training set and testing set. Usually, the testing set is smaller than the training set. The

original Hold Out method involves only a single run. However, in order to evaluate statistically

a model, this method will be applied several times for producing multiple independent results,

which can used for extracting statistic measures such as mean and standard deviation.

For classification models, the commonly used evaluation measure is the accuracy.

For instance, consider NRounds the number of rounds that a hold out cross validation will be

applied on a classifier. Hence, NRounds classifiers will be built, from different training set, and

each one will produce a hit rate result based on different testing sets. Then, the mean of all these

accuracy results can be calculated as follows:

Mean(accuracy) =
1

NRounds

NRounds

∑
i=1

accuracy(i) (5.6)

5.2.2 K-Fold

The k-fold cross-validation technique consists in dividing a dataset in K folds. For

each iteration, a model will be trained using one fold as the testing set, and the remaining will

form the training set. Therefore, k-fold method produces K models derived from K independent

training/testing sets.

88

The k-fold may be more adequate for small datasets, as it can produce sets with

higher variance. For calculating the mean in k-fold method, the average is calculated considering

the accuracy measure of K models:

Mean(Accuracy) =
1
K

K

∑
i=1

accuracy(i) (5.7)

Figure 32 illustrates how the Hold Out (Figure 32(a)) and K-Fold (Figure 32(b))

cross validation techniques separate the training and testing sets.

Figure 32 – Cross-validation techniques

Source: The author.

5.3 Experiment description

The experiments were designed for comparing multiple classifier models in different

scenarios. A 10-Fold Cross-Validation technique was employed in order to increase the indepen-

dence of the data for better evaluation of the proposed algorithm. From the execution, statistical

measures were computed for summarizing the experiments. Mean and standard deviation have

been used for comparing the accuracy among distinct classifiers. Boxplot diagrams were em-

ployed for analyzing the accuracy distribution for each LVQ-based algorithm. The experiment

process is summarized in Figure 33.

Regarding data set pre-processing, the input attributes for all datasets used in our

experiments were normalized between [0,1]. Considering a dataset with N samples, each sample

n is normalized by the following equation:

x j(n) =
x j(n)− xmin

j

xmax
j − xmin

j

,n = 1, ...,N (5.8)

where x j(n) is the j-th attribute of the n-th sample, as xmax
j and xmin

j are the maximum and

minimum value of attribute j, respectively.

89

Figure 33 – Cross-validation techniques

Source: The author.

The selection of hyper-parameters of the models were performed in different ways,

considering their influence on the classifier training. The hyper-parameters learning rate (α)

and number of epochs (NE pochs) for the LVQ and MLP models were defined empirically, from

the convergence check in terms of classification error. The specific hyper-parameters of the

LVQ2, LVQ3 and FLVQ algorithms were chosen based on the recommendations in the literature.

The remaining hyper-parameters were selected using Grid Search. The cost function used in

the search, for evaluating the classification models trained with different parameters, was the

classification accuracy. In Table 3 the parameter for each classifier is summarized. Parameter

optimization using Grid Search was applied only to parameters defined by closed intervals

(See Table 3). Note that for LVQ-based algorithms, simulations were performed by varying

the number of prototypes per class (Nppc), by starting with Nppc = 1 until Nppc = 10. Thus,

the number of prototypes in a LVQ network will be Nppc ×NClasses, where NClasses denotes the

number of classes of the problem.

Regarding the ALVQ-SOM, adaptive factor (a f) and removal threshold (rt) were

tuning in order to maintain the equivalence between the ALVQ-SOM algorithm and the ALVQ-

GV. Therefore, the ALVQ parametric values are: rt = 0 and a f = 1. The Growth Factor (g f)

has been arbitrarily selected g f = 0.05 to ensure small additions of prototypes. As for a f = 1,

every epoch will be followed by an adaptation. Selecting the sub-optimal hyper-parameters for

LVQ-SOM is a difficult task, since they strongly depend on the dataset used. Poorly selection of

LVQ-SOM hyper-parameters can lead to problems in convergence and classification performance

(overfitting). Ideally, an optimization algorithm should be used for optimizing the LVQ-SOM

hyper-parameters. However, this methodology is extremely time consuming when applied

90

Table 3 – Parameters used in experimenting different classification models

k-NN
k ∈ [1,10] : Number of k- nearest neighbors
Euclidean distance : Distance metric

LVQ
Nppc ∈ [1,10] : Number of prototypes per class
α0 = 0.09 : Learning rate
NE pochs = 200 : Number of epochs
Euclidean distance : Distance metric
w = 0.2 : LVQ2 and LVQ3 parameter
ε = 0.1 : LVQ3 parameter
m = 0.2 : FLVQ parameter

MLP
Ne ∈ [1,15] : Number of hidden neurons
α = 0.2 : Learning rate
NE pochs = 4000 : Number of epochs

SVM
C ∈ [2−3,23] : Number of C
γ ∈ [2−4,2−2] : γ =− 1

2σ2

RBF Kernel : Kernel

to multiple datasets. The k-NN method will be used as a reference for comparing the other

algorithms. Eight datasets with distinct characteristics have been used in this comparative study.

The experiment is composed of several executions of the algorithms, using 10-Fold

cross validations, repeated several executions (10 times). Multiple experiments were conducted

with different number of prototypes per class (Nppc) in order to find the best results for each

classifier. The sub-optimal parameters for each classifier is presented in Appendix A. For each

execution, the original data set is shuffled, in order to create independent sets in each execution.

After all executions, statistics have been computed for summarizing the performance of the

methods, resulting in a distribution of accuracy. The statistic-based measures used for expressing

the result of accuracy was: mean and standard deviation.

During the following sections, ALVQ will be considered as an abbreviation of ALVQ-

SOM. Moreover, two SOM-based methods of inclusion of prototypes (v1 and v2) are adopted

(See subsection 4.3.1), and the hierarchy clustering used in the work of Grbovic & Vucetic

(2009) will be referred as gv. For example, a dALVQ1gv is a driven-Adaptive Learning Vector

Quantization algorithm, applied on LVQ1 variation, which adopt the hierarchical clustering for

inclusion of prototypes, as proposed in ALVQ-GV.

91

5.4 Summary

In this chapter, several techniques and methods for evaluating the classification

models were described. Common used performance metrics such as accuracy, recall, and

precision were discussed. Furthermore, two cross-validation methodologies known as Hold

Out and K-Fold were introduced, as they are interesting methods for evaluating classifiers on

independent datasets.

Finally, a brief description on the experimentation methodology was presented,

covering the hyper-parameters selections and normalization of input vectors. In the following

chapter, the experimental procedures will be detailed, and the main results will be discussed.

92

6 EXPERIMENTS AND RESULTS

In this chapter, the experimental results obtained from computational simulations

are presented and discussed. Several experiments have been conducted with different datasets

for fairly analyzing the performance of studied algorithms. All simulations were developed and

executed using Matlab. For SVM implementation, a toolbox called libsvm was used (CHANG;

LIN, 2011).

For general performance evaluation of the proposed method, the classifiers with the

best results have been selected in order to compare the classification performance, considering

metrics such as accuracy, recall, precision and F1 score. This is the main experimental step of

this work. In this experiment, the classical variations of the LVQ with the adaptive versions are

compared, considering sub-optimal parameters of network configuration, found experimentally.

The comparison takes place in two aspects: classification performance, memory cost and

execution time. The main objective of the proposed algorithm is to improve classification

performance. However, a cost analysis was performed with the objective of evaluating the

feasibility of using this algorithm in practical engineering problems.

The processing cost was compared considering the execution time spent during the

training. In the evaluation of memory cost, the final amount of prototypes generated by the

network was verified. Finally, the accuracy was adopted as the main measure for evaluating

classification performance.

Considering P0 as the initial number of prototypes, the simulations were performed

using Budget = P0 (Section 4.3) in order to verify the classification performance when the

number of prototypes is limited by initial architecture. In the next section, the presented results

are summarized. More details on the results can be found in Appendix B.

Furthermore, a study on the influence of Adaptive Factor (a f) in training a ALVQ

algorithm was realized. In this experiment, the influence of the adaptation fact in the training

an adaptive LVQ network is evaluated. For this, the experiments have been tested with the

following adaptation values a f ∈ {1,2,5,10,20,30,50,70,100}. In this experiment, the behavior

of learning curves as well as the variation in computational cost were evaluated, since each

adaptation has a computational cost involved.

93

6.1 General performance evaluation

For general performance evaluation, seven benchmark datasets for times series

classification were selected from UCR Repository (CHEN et al., 2015) for being used in

simulations for comparative purposes. Each dataset present distinct characteristics, as the aim is

to evaluate the performance of the proposed method and other different classification models

over different circumstances. The datasets have been chosen by varying the number of input

attributes (or time series’ window length), number of classes and quantity of samples. Table 4

shows these datasets and their characteristics:

Table 4 – Description of UCR datasets

Dataset No. Classes No. Samples Input length

Synthetic Control 6 600 60
Gun-Point 2 200 150
CBF 3 930 128
Trace 4 200 275
ECG200 2 200 96
Italy Power Demand 2 1096 24
Computers 2 500 720

In the next subsections, each experiment, involving a single database, will be descri-

bed and discussed. The general results of classification performance and accuracy distribution

will be presented. As a general classification performance, accuracy, recall and precision are

presented in terms of mean and standard deviation.

Furthermore, the accuracy distribution considering multiple experiments is presented

using boxplots. Regarding the neural network training evolution over the epochs, learning curves

are presented and interpreted. The results will be presented as follows: first the dataset is briefly

described, then the obtained results are shown, including comparative tables between LVQ

variations and among all classifiers. Moreover, tables containing quantity of prototypes and

execution time are presented and discussed. Note that the execution time involves the process

of training the model using training set, and testing the test set. Finally, boxplots of accuracy

distribution for each variation of LVQ are shown and analyzed.

94

6.1.1 Synthetic Control Dataset

This dataset is composed by control charts synthetically generated by different proces-

ses, introduced in Alcock et al. (1999). There are six different classes of control charts: Normal

(1), Cyclic (2), Increasing trend (3), Decreasing trend (4), Upward shift (5) and Downward

shift(6) (BAGNALL et al., 2018). Figure 34 illustrates the times series for each class of synthetic

control dataset.

Figure 34 – Synthetic control time series

Source: The author.

Table 5 presents the comparison of the LVQ-based classification performance of the

algorithms for each evaluated variation in the classification problem using the Synthetic Control

dataset. In all cases, the adaptive LVQ version presented a higher average accuracy than the

respective traditional LVQ models. The standard deviation of accuracy of the adaptive models

LVQ1 and FLVQ were lower than the original models. However, the standard deviation of the

accuracy of adaptive versions LVQ2 and LVQ3 is greater than their original versions.

95

Table 5 – Overall LVQ-based classification performance results (Synthetic Control).

Algorithms Accuracy Precision Recall F1 Score

LVQ1 82.33±7.79 74.52 82.82 78.36
dALVQ1v2 97.33±1.79 97.57 97.31 97.44

LVQ2 63.17±11.15 45.55 61.14 51.79
dALVQ2gv 83.67±21.78 79.58 83.67 80.99

LVQ3 59.67±14.61 42.24 59.46 48.96
ALVQ3v2 92.17±15.48 89.70 92.63 90.76

FLVQ 93.83±06.26 94.24 92.95 93.59
dAFLVQgv 95.67±01.96 95.93 95.92 95.92

Table 6 shows the time interval for training and testing, and the final network quantity

of prototypes Pci
for each class ci. The largest reductions in the number of prototypes occur

precisely in the adaptive versions of LVQ2 and LVQ3 - which possibly influenced the largest

standard deviation.

Table 6 – Overall cost regarding number of prototype and execution time of LVQ-based classifi-
cation algorithms (Synthetic Control).

Algorithms Pc1 Pc2 Pc3 Pc4 Pc5 Pc6 NP Execution time (s)

LVQ1 2 2 2 2 2 2 12 3.71
dALVQ1v2 1 2 1 1 2 2 9 4.58

LVQ2 2 2 2 2 2 2 12 3.80
dALVQ2gv 1 1 1 1 1 1 6 0.19

LVQ3 2 2 2 2 2 2 12 3.88
ALVQ3v2 1 1 2 1 2 1 8 2.99

FLVQ 2 2 2 2 2 2 12 19.42
dAFLVQgv 4 2 2 1 1 1 11 21.98

Note that adaptive LVQ classifiers generally have higher execution time values. This

is because adaptive LVQ training tends to be more time costly than static LVQ, due to their

adaptation steps. However, there are cases where adaptive convergence is more efficient. For

example, dALVQ2gv presented a significant lower execution time compared to classic LVQ2.

This case is a typical example where the adaptation improves the classifier’s training convergence.

Regarding statistical distribution of accuracy indices, Figure 35 presents the boxplots

of accuracy for each cross-validation round.

96

Figure 35 – Accuracy distribution for LVQ-based classifiers (Synthetic Control)

(a) LVQ1 (b) LVQ2

(c) LVQ3 (d) FLVQ

Source: The author.

Table 7 shows the comparative accuracy performance between the best accuracy

adaptive LVQ and three other classifiers: dALVQ1 presented higher performance than MLP and

KNN, and performance close to SVM.

Table 7 – Overall classification performance results (Synthetic Control).

Algorithms Accuracy Precision Recall F1 Score

dALVQ1v2 97.33±1.79 97.57 97.31 97.44
KNN 93.33±3.04 93.49 93.24 93.35
SVM 98.50±1.66 98.39 98.70 98.54
MLP 93.72±02.86 92.54 93.02 92.77

97

6.1.2 Gun-Point Dataset

The Gun-Point dataset involves two actors (one female and other male) making a

motion with their hand. The two classes are: Gun-Draw(1) and Point(2). For Gun-Draw the

actors have their hands by their sides. They draw a replicate gun from a hip-mounted holster,

point it at a target for approximately one second, then return the gun to the holster, and their

hands to their sides. For Point the actors have their gun by their sides. They point with their

index fingers to a target for approximately one second, and then return their hands to their sides.

The time series consist of recordings on the centroid X of the actor’s right. (BAG-

NALL et al., 2018). Figure 36 illustrates the times series for each class of Gun-Point dataset.

Figure 36 – Gun-Point time series

Source: The author.

Table 8 and Figure 37 show that in all cases there is an adaptive LVQ version that

has a higher average accuracy than the respective traditional LVQ models. However, in the case

of LVQ2, only one of the adaptive versions (Figure 37) surpassed the accuracy of the original

model. The standard deviation of accuracy of the adaptive models LVQ2, LVQ3 and FLVQ

were smaller than the original models. However, the standard deviation of accuracy of the LVQ1

adaptive version is close to the deviation of its original versions.

98

Table 8 – Overall LVQ-based classification performance results (Gun-Point).

Algorithms Accuracy Precision Recall F1 Score

LVQ1 76.50±07.47 78.63 76.50 77.54
dALVQ1gv 88.00±07.89 89.55 88.00 88.76

LVQ2 82.50±14.58 88.36 82.50 85.14
ALVQ2v2 84.50±11.89 88.73 84.50 86.45

LVQ3 73.00±10.59 82.11 73.00 77.16
dALVQ3v1 93.50±06.26 93.97 93.50 93.73

FLVQ 88.50±07.09 89.04 88.50 88.77
dAFLVQv1 92.00±05.37 92.49 92.00 92.25

Figure 37 – Accuracy distribution for LVQ-based classifiers (Gun-Point)

(a) LVQ1 (b) LVQ2

(c) LVQ3 (d) FLVQ

Source: The author.

99

Table 9 shows that the adaptive versions of LVQ1 and LVQ3 had little prototype

reduction, reducing only 1 prototype in both cases. The LVQ2 variation has reduced 2 prototypes,

and the accuracy performance increased slightly. As for FLVQ, the reduction was significant,

considering that with 50% less prototypes the adaptive LVQ classifier presented higher accuracy

then LVQ.

Table 9 – LVQ-based Overall cost (Gun-Point).

Algorithms Pc1 Pc2 NP Execution time (s)

LVQ1 5 5 10 0.89
dALVQ1gv 5 4 9 1.02

LVQ2 5 5 10 0.70
ALVQ2v2 3 5 8 0.76

LVQ3 5 5 10 0.95
dALVQ3v1 3 6 9 1.22

FLVQ 5 5 10 2.83
dAFLVQv1 2 3 5 2.62

It can be seen from the Table 9 that the execution time does not vary much between

classic and adaptive versions of LVQ. This may be an indication that the classification problem

in question is not of a high complexity. Therefore, it does not require the use of adaptive methods

to ensure better data separation.

The table below (Table 10) shows the comparative performance between the best

adaptive LVQ and three other classifiers: dALVQ3 presented the worst comparative performance,

pointing out that the other classifiers were more efficient in establishing a boundary between the

two class standards (dichotomy) of this dataset.

Table 10 – Overall classification performance results (Gun-Point).

Algorithms Accuracy Precision Recall F1 Score

dALVQ3v1 93.50±6.26 93.97 93.50 93.73
KNN 94.50±3.69 95.09 93.80 94.43
SVM 98.50±0.42 98.44 98.67 98.56
MLP 100.00±0.00 100.00 100.00 100.00

An interesting result is that MLP-based classifier presented maximum accuracy of

100%. This may indicate that the problem has a nonlinear solution which was found by the MLP

classifier in all training/test rounds. Therefore, in this case, the MLP model showed higher ability

to transform temporal data into an proper feature space for data separation from this data set.

100

6.1.3 CBF Dataset

Cylinder-Bell-Funnel (CBF) is a simulated dataset introduced by Saito (2000). This

problem consist in classify time series in cylinder, bell and funnel (BAGNALL et al., 2018).

Figure 38 illustrates the times series for each class of CBF dataset.

Figure 38 – CBF time series

Source: The author.

Table 11 and Figure 39 show that in all cases there is an adaptive LVQ version

that has a higher average accuracy than the respective traditional LVQ models. The standard

deviation of accuracy of the adaptive models LVQ1 and FLVQ were smaller than the original

models. However, the standard deviation of the accuracy of adaptive versions LVQ2 and LVQ3 is

greater than their original versions. This significant difference in accuracy between the proposed

Adaptive LVQ and the classical LVQ models is due to the fact that non-adaptive LVQ may not

converge properly if there is a poor initialization of the network prototypes.

101

Table 11 – Overall LVQ-based classification performance results (CBF).

Algorithms Accuracy Precision Recall F1 Score

LVQ1 81.83±11.72 80.21 82.95 81.06
ALVQ1v1 98.92±1.13 98.99 99.01 99.00

LVQ2 66.56±6.64 46.93 66.54 54.95
dALVQ2v2 89.68±14.58 83.17 89.13 85.65

LVQ3 66.56±6.64 46.93 66.54 54.95
dALVQ3v1 89.89±14.70 83.47 89.23 85.85

FLVQ 88.49±4.27 88.15 88.30 88.22
dAFLVQv1 98.60±1.25 98.57 98.62 98.59

Figure 39 – Accuracy distribution for LVQ-based classifiers (CBF)

(a) LVQ1 (b) LVQ2

(c) LVQ3 (d) FLVQ

Source: The author.

102

Table 12 shows that there was no change in the number of prototypes of adaptive

versions. The number of prototypes (3) in all LVQ models was equal to the number of classes

(3). Note that with only one prototype per class, it is possible to define classification models

with high classification performance. This shows that a linear solution can be used to solve this

problem, considering that an LVQ network with only one prototype per class, with Euclidean

distance measurement, is only able to perform a linear separation between the data.

Table 12 – Overall cost regarding number of prototype and execution time of LVQ-based classi-
fication algorithms (CBF).

Algorithms Pc1 Pc2 Pc3 NP Execution time (s)

LVQ1 1 1 1 3 5.90
ALVQ1v1 1 1 1 3 8.44

LVQ2 1 1 1 3 0.14
dALVQ2v2 1 1 1 3 0.26

LVQ3 1 1 1 3 0.13
dALVQ3v1 1 1 1 3 0.27

FLVQ 1 1 1 3 18.66
dAFLVQv1 1 1 1 3 23.90

The table below (Table 16) shows the comparative performance between the best

accuracy adaptive LVQ and three other classifiers: ALVQ1 presented the worst comparative

performance (98.92), but very close to the performance of the other classifiers (99.46; 99.68 and

99.68).

Table 13 – Overall classification performance results (CBF).

Algorithms Accuracy Precision Recall F1 Score

ALVQ1v1 98.92±1.13 98.99 99.01 99.00
KNN 99.46±0.26 99.47 99.46 99.47
SVM 99.68±0.21 99.67 99.68 99.67
MLP 99.68±0.21 99.70 99.68 99.69

From the general results of the classifiers, it is noteworthy that the problem tends

to be solvable by linear or “slightly” nonlinear models, since all classifiers presented almost

optimal results.

103

6.1.4 Trace Dataset

The Trace dataset is a subset of the Transient Classification Benchmark (Trace

project). It is composed by a synthetic dataset designed to simulate instrumentation failures in a

nuclear power plant, created by Davide Roverso. The dataset contains 200 instances of synthetic

failures, divided in 4 classes, 50 samples per class (BAGNALL et al., 2018). Figure 40 illustrates

the times series for each class of synthetic control dataset.

Figure 40 – Trace time series

Source: The author.

Table 14 and Figure 41 show that in the LVQ1 and FLVQ cases the adaptive version

presented a higher average accuracy than the respective traditional LVQ models. In cases LVQ2

and LVQ3, the adaptive versions performed very closely with slightly lower accuracy. The

standard deviation of accuracy of the adaptive LVQ1 and FLVQ models was smaller than the

original models. However the standard deviation of the accuracy of the adaptive versions LVQ2

and LVQ3 are close to the deviations of the original versions.

104

Table 14 – Overall LVQ-based classification performance results (Trace).

Algorithms Accuracy Precision Recall F1 Score

LVQ1 47.00±11.60 39.47 50.99 44.20
ALVQ1v2 76.00±08.43 77.60 77.05 77.19

LVQ2 69.50±24.99 68.58 71.66 69.38
dLVQ2 67.00±24.52 61.87 67.80 64.00
LVQ3 69.50±24.99 68.58 71.66 69.38

ALVQ3v2 67.00±25.08 71.06 71.48 70.66
FLVQ 59.00±15.06 58.14 58.27 58.17

dAFLVQv1 80.50±7.98 84.47 80.82 82.57

Figure 41 – Accuracy distribution for LVQ-based classifiers (Trace)

(a) LVQ1 (b) LVQ2

(c) LVQ3 (d) FLVQ

Source: The author.

105

Table 36 shows that there was no change in the number of prototypes between the

adaptive LVQ versions and their original versions. The number of prototypes (4) in all LVQ

models was equal to the number of classes (4). Note that with only one prototype per class, it is

possible to define classification models. However, the accuracy performance would probably

increase if new prototypes were included properly. This shows that a non-linear solution would be

more efficient to solve this problem, considering that an LVQ networks with multiple prototype

per class are able to perform non-linear separations between the data.

Table 15 – LVQ-based overall cost (Trace).

Algorithms Pc1 Pc2 Pc3 Pc4 NP Execution time (s)

LVQ1 1 1 1 1 4 1.52
ALVQ1v2 1 1 1 1 4 2.57

LVQ2 1 1 1 1 4 0.77
dLVQ2 1 1 1 1 4 1.40
LVQ3 1 1 1 1 4 0.76

ALVQ3v2 1 1 1 1 4 2.24
FLVQ 1 1 1 1 4 4.98

dAFLVQv1 1 1 1 1 4 6.40

The table below (Table 16) shows the comparative performance between the best

adaptive LVQ and three other classifiers: dAFLVQv1 presented the worst comparative perfor-

mance.

Table 16 – Overall classification performance results (Trace).

Algorithms Accuracy Precision Recall F1 Score

dAFLVQv1 80.50±7.98 84.47 80.82 82.57
KNN 87.50±4.86 90.45 87.32 88.83
SVM 95.00±2.27 95.66 94.99 95.29
MLP 85.50±7.62 84.92 85.17 85.02

From the general results of the classifiers, it is noteworthy that the problem tends

to be solvable by non-linear models. The higher results were presented by SVM, MLP, and

KNN, which in this case are non-linear classifiers. However, the linear classifier constructed

by one prototype per class in LVQ approach has not achieved high accuracy. In that case, the

hyper-parameter Budget could be set to allow increasing the number of prototypes per class in

order to improve the non-linearity of the model and increase its classification performance.

106

6.1.5 ECG200 Dataset

The ECG200 dataset was introduced by Olszewski (2001). Each series is composed

by the electrical activity recorded during one heartbeat. The two classes are a normal heartbeat(1)

and a Myocardial Infarction(2) (BAGNALL et al., 2018). Figure 42 illustrates the times series

for each class of ECG200 dataset.

Figure 42 – ECG200 time series

Source: The author.

Table 37 and Figure 43 show that in all cases the adaptive version presented a higher

average accuracy than the respective traditional LVQ models. The standard deviation of accuracy

of all adaptive models was smaller than the original models.

107

Table 17 – Overall LVQ-based classification performance results (ECG200).

Algorithms Accuracy Precision Recall F1 Score

LVQ1 78.00±11.83 76.35 74.47 75.24
dALVQ1v2 89.00±7.75 89.29 86.00 87.46

LVQ2 81.50±10.29 79.32 79.32 79.29
dALVQ2v2 88.50±4.12 87.76 89.88 88.76

LVQ3 79.00±11.25 83.53 72.57 77.04
dALVQ3gv 87.00±8.56 86.31 83.18 84.55

FLVQ 80.00±10.33 79.24 79.82 79.52
AFLVQv2 92.00±7.89 91.66 92.04 91.84

Figure 43 – Accuracy distribution for LVQ-based classifiers (ECG200)

(a) LVQ1 (b) LVQ2

(c) LVQ3 (d) FLVQ

Source: The author.

108

Table 38 shows that there was a small reduction in the number of prototypes between

the adaptive LVQ versions and their original versions (from 8 to 7 in all cases). The number of

prototypes in all LVQ models (7 or 8) was higher than the number of dataset classes (2), which

may have contributed to a better definition of the boundary between the two classes.

Table 18 – Overall cost regarding number of prototype and execution time of LVQ-based classi-
fication algorithms (ECG200).

Algorithms Pc1 Pc2 NP Execution time (s)

LVQ1 4 4 8 1.53
dALVQ1v2 2 5 7 2.57

LVQ2 4 4 8 1.20
dALVQ2v2 1 6 7 2.20

LVQ3 4 4 8 1.58
dALVQ3gv 5 2 7 2.20

FLVQ 4 4 8 4.59
AFLVQv2 2 5 7 5.57

The table below (Table 19) shows the comparative performance between the best

adaptive LVQ and three other classifiers: AFLVQ comparative performance similar to the SVM

classifier, inferior to the MLP model and superior to the KNN.

Table 19 – Overall classification performance results (ECG200).

Algorithms Accuracy Precision Recall F1 Score

AFLVQv2 92.00±7.89 91.66 92.04 91.84
KNN 90.50±6.85 90.26 88.12 89.13
SVM 92.50±6.35 91.73 91.77 91.71
MLP 95.00±4.77 95.22 94.98 95.08

From the general results of the classifiers, it can be noted that the problem tends

to be solvable by non-linear models. In this cases, all classification models are non-linear and

presented similar high accuracy. The classifier constructed by MLP approach presented the

highest result, which suggests that this model presented greater capacity to transform the data

into a non-linear space of greater data separability.

109

6.1.6 Italy Power Demand Dataset

The Italy Power Demand dataset is composed of data derived from twelve monthly

electrical power demand time series from Italy, firstly introduced in Keogh et al. (2006). The

classification problem consists in distinguishing days from the months from October to March

(1) and from April to September (BAGNALL et al., 2018). Figure 44 illustrates the times series

for each class of Italy Power Demand dataset.

Figure 44 – Italy Power Demand time series

Source: The author.

Table 39 and Figure 45 show that in all cases the adaptive version had a higher

average accuracy than the respective traditional LVQ models. The standard deviation of accuracy

of the adaptive LVQ1, LVQ2 and LVQ3 models was smaller than the original models. The

standard deviation of the adaptive FLVQ model was greater than the deviation from the original

version.

110

Table 20 – Overall LVQ-based classification performance results (Italy Power Demand).

Algorithms Accuracy Precision Recall F1 Score

LVQ1 96.15±2.11 96.14 96.14 96.14
ALVQ1v2 96.61±1.37 96.56 96.65 96.61

LVQ2 96.51±1.49 96.46 96.56 96.51
dLVQ2 96.97±1.37 96.96 97.01 96.98
LVQ3 58.44±1.89 70.59 58.25 63.69

dALVQ3v2 96.88±1.38 96.84 96.89 96.87
FLVQ 96.88±1.79 96.89 96.86 96.88

AFLVQv2 97.16±2.85 97.18 97.12 97.15

Figure 45 – Accuracy distribution for LVQ-based classifiers (Italy Power Demand)

(a) LVQ1 (b) LVQ2

(c) LVQ3 (d) FLVQ

Source: The author.

111

Table 42 shows that there was little (from 18 to 17 in cases LVQ1 and LVQ3) or no

reduction in the number of prototypes between adaptive LVQ versions and their original versions.

The number of prototypes in all LVQ models (17 or 18) was higher than the number of dataset

classes (2), which may have contributed to a better definition of the boundary between the two

classes.

Table 21 – Overall cost regarding number of prototype and execution time of LVQ-based classi-
fication algorithms (Italy Power Demand).

Algorithms Pc1 Pc2 NP Execution time (s)

LVQ1 9 9 18 9.55
ALVQ1v2 8 9 17 13.54

LVQ2 9 9 18 9.71
dLVQ2 9 9 18 9.78
LVQ3 9 9 18 10.36

dALVQ3v2 5 12 17 17.10
FLVQ 9 9 18 29.82

AFLVQv2 8 10 18 35.95

The table below (Table 22) shows the comparative performance between the best

adaptive LVQ and three other classifiers: AFLVQ had a comparative performance similar to the

KNN classifier, close to the SVM, and inferior to the MLP model.

Table 22 – Overall classification performance results (Italy Power Demand).

Algorithms Accuracy Precision Recall F1 Score

AFLVQv2 97.16±1.21 97.06 97.03 97.05
KNN 97.16±2.00 97.19 97.14 97.17
SVM 97.52±1.79 97.53 97.48 97.50
MLP 98.35±1.28 98.35 98.33 98.34

The general results of the classifiers shows that the problem tends to be solvable

by non-linear models. In this cases, all classification models are non-linear and presented high

accuracy (close to 100%). The classifier constructed by MLP approach presented a slightly

higher accuracy then the other classifiers. However, all classifiers have presented approximate

classification performance.

112

6.1.7 Computers

Computers dataset is composed by recordings of behavioural data about how con-

sumers use electricity within the home to help reduce the UK’s carbon footprint, as part of

government sponsored study called Powering the Nation. The data contains readings from 251

households, sampled in two-minute intervals over a month. Each series is length 720 (24 hours

of readings taken every 2 minutes). The problem consist in identify two classes: Desktop (1)

and Laptop (2) (BAGNALL et al., 2018). Figure 46 illustrates the times series for each class of

Computers dataset.

Figure 46 – Computers time series

Source: The author.

Table 41 and Figure 47 show cases in which the adaptive version presented a higher

average accuracy than the respective traditional LVQ models. The standard deviation of accuracy

of the adaptive LVQ1 and FLVQ models was smaller than the original models. The standard

deviation of the adaptive LVQ2 and LVQ3 models was greater than the deviations of the original

versions.

113

Table 23 – Overall LVQ-based classification performance results (Computers).

Algorithms Accuracy Precision Recall F1 Score

LVQ1 54.20±4.94 55.00 55.00 55.00
dALVQ1gv 61.00±3.43 61.62 61.49 61.56

LVQ2 55.20±5.18 55.37 55.30 55.33
dALVQ2gv 61.00±9.85 60.99 60.95 60.97

LVQ3 52.60±6.04 51.92 52.67 51.95
ALVQ3v2 56.80±9.62 56.96 56.83 56.90

FLVQ 54.00±8.74 54.54 54.39 54.47
dAFLVQv2 60.80±5.27 61.24 61.07 61.15

Figure 47 – Accuracy distribution for LVQ-based classifiers (Computers)

(a) LVQ1 (b) LVQ2

(c) LVQ3 (d) FLVQ

Source: The author.

114

Table 42 shows that there was a small reduction (from 12 to 11) in the number of

prototypes between the adaptive LVQ versions and their original versions.

Table 24 – Overall cost regarding number of prototype and execution time of LVQ-based classi-
fication algorithms (Computers).

Algorithms Pc1 Pc2 NP Execution time (s)

LVQ1 6 6 12 19.14
dALVQ1gv 8 3 11 39.23

LVQ2 6 6 12 17.60
dALVQ2gv 7 4 11 35.67

LVQ3 6 6 12 24.44
ALVQ3v2 3 8 11 44.73

FLVQ 6 6 12 34.71
dAFLVQv2 6 5 11 49.86

The table below (Table 25) shows the comparative performance between the best

adaptive LVQ and three other classifiers: dAFLVQ had comparative performance similar to the

KNN classifier, superior to SVM, and inferior to the MLP model. The number of prototypes in

all LVQ models (11 or 12) was higher than the number of dataset classes (2), which may have

contributed to a better definition of the boundary between the two classes.

Table 25 – Overall classification performance results (Computers).

Algorithms Accuracy Precision Recall F1 Score

dALVQ1gv 61.00±3.43 61.62 61.49 61.56
KNN 60.60±2.50 60.83 60.49 60.66
SVM 56.27±4.63 56.27 57.89 57.06
MLP 67.80±4.76 67.80 68.61 68.20

The general performance of the classifiers show that the classification models, in this

case all nonlinear, were not able to classify the data and reach high accuracy indexes. This shows

the disadvantage of using raw time series in model classification. In this case, it would be more

interesting to apply feature extraction techniques to prepare the input vector for classification, so

the classifiers would be able to better separate the data.

115

6.2 Discussion

The results have shown an enhanced improvement by employing the adaptive LVQ

methods in comparison with the classic LVQs (LVQ1, LVQ2, LVQ3, and FLVQ). In all experi-

ments, the best results in accuracy were attributed to one of the adaptive versions. Moreover,

the results have shown that the precision and recall relationship calculated from the F1-score

metric is balanced in the LVQ results, highlightning the method capacity in the detecting both

false positive and false negative samples.

Figure 48 summarizes the comparison of the results obtained for each database,

considering the best results obtained with the classic LVQ and the adaptive LVQ approach.

As it can be seen, in the figure, the ALVQ has presented better results in all cases. However,

in some scenarios, the ALVQ and LVQ presented very close results. Like for example in

ItalyPowerDemand, whose difference in accuracy is only 0.28%.

Figure 48 – Comparison between the Adaptive-LVQ and classic LVQ approach

Source: The author.

Considering the accuracy distribution presented in the boxplots, it can be verified, in

most graphs, a behavior where the first two boxes are practically equivalent, while others tend to

increase in terms of accuracy. This shows that the dLVQ method presents results very similar to

the classic versions, showing slight improvements. However, the other adaptive methods, based

on ALVQ-SOM and ALVQ-GV, using strategies of removal and inclusion of prototypes, show

very relevant improvements. Also, it is possible to notice that there are cases where there is

overfitting using adaptive methods.

116

The results of the Trace dataset show that LVQ2 and LVQ3 variations outperformed

their respective adaptive versions. This exemplifies an occurence of overfitting caused by the

ALVQ (See Table 35).

By comparing each LVQ-based non-adaptive variation and the respective adaptive

versions, it can be seen that the adaptive method present varieties in effectiveness, depending

on the LVQ variation. For example, FLVQ variation applied on the dataset Synthetic Control

has resulted similar results of best AFLVQ and FLVQ, varying only by 1.84% (See Figure 50).

In contrast, the variation LVQ1 has presented a large diffence of 15%, comparing ALVQ1 and

LVQ1 (See Figure 49). This variation is caused by the influence of the learning rule of each

variation in classification performance.

Figure 49 – Comparison between the Adaptive-LVQ1 and classic LVQ1 approach

Source: The author.

Figure 50 – Comparison between the Adaptive-FLVQ and classic FLVQ approach

Source: The author.

117

In general comparison among all classifiers, based on the results, it can be concluded

that the LVQ methods has been more effective in comparison to the K-NN. However, LVQ-based

classifiers seems to present lower accuracies than SVM and MLP, in most scenarios. However,

the results show a certain equivalence between the outcomes obtained by the LVQ in comparison

to the MLP and SVM, once in the majority dataset results their differences are not significantly

high. The higher accuracy presented by MLP might be due to their capacity to perform non-

linear transformations in input data, extracting abstract features that contribute to classification

performance. Regarding SVM, its expressive results may be due to its capacity of dealing with

high-dimensional input vectors.

As LVQ networks do not use any non-linear transformation strategy, it is expected

that this method will show inferiority in some cases. In addition, LVQ-based classifiers depends

on similarity measures, which may have a high degree of uncertainty in the context of time series,

which is a important issue to be considered. Figure 51 presents a comparative bar graph of LVQ,

MLP, SVM and KNN classifiers.

Figure 51 – Overall results of ALVQ, KNN, SVM and MLP classifiers for all 7 datasets

Source: The author.

In Figure 52, an illustration of comparative graphs comaring LVQ networks against

all (a), LVQ against KNN (b), LVQ against MLP (c) and LVQ against SVM (d) is shown. These

bar chars were built based on a rank comparision between classifiers, where it is verified how

many times each classifier presented the best result. Regarding computational processing cost

of non-adaptive and adaptive versions of LVQ, it was noticed that there is a trade-off between

classification performance and execution time.

118

Figure 52 – Comparison between classifiers, considering a rank of best results

(a) Comparison between all classifiers (b) Comparison between LVQ and KNN classifiers

(c) Comparison between MLP classifiers (d) Comparison between SVM classifiers

Source: The author.

In general, the adaptive algorithms have a higher computational cost in terms of

processing time. However, the improvement in classification performance compensates this cost.

In addition, it has been noticed that, in some cases, the adaptive methods execute in less time

than the classic ones. This depends on the stopping criterion chosen in the classifier training

process. In the experiments carried out in this work, the training stop criterion was based on

the number of epochs and a desired training accuracy. Therefore, the adaptive algorithms that

obtained fast convergence, that is, achieve the desired accuracy, may fininsh the training in less

time than a slow classic LVQ algorithms that do not converge. As an example, in Table 30 the

dALVQ2gv has taken only 0.19 seconds for training, as the classic LVQ2 required 3.80 seconds.

Considering memory cost, reflected in the number of prototypes in the trained

network, when B > P0 there is more insertion of prototypes, therefore the memory cost increases.

However, this may reflect in the improvement of the classification accuracy. In cases where

B = P0, the adaptive methods also outperformed non-adaptive algorithms, in spite of the limi-

tation imposed by the hyper-parameter B. In fact, in some cases, besides having improved the

classification performance, it was also verified the reduction of the quantity prototypes in the

adaptive methods.

119

6.3 Adaptive factor (a f) influence in training

For evaluating the influence of the hyperparamter Adaptive Factor (a f) in learning,

an experiment was conducted considering different values of a f in order to analyze the learning

curves convergences during adaptations. Figure 53 illustrates the evolution of the classification

performance (train accuracy) over the epochs, considering multiple a f values. The solid lines

represent the algorithms which does not adapt by removing and/or including prototypes (LVQ

and dLVQ). The dashed lines represent the adaptive algorithms without driven-learning strategy

(ALVQ), and the line with stars are adaptive driven learning versions (dALVQ).

Figure 53 – Learning evolution for varying the hyperparameter a f

(a) a f = 1 (b) a f = 20

(c) a f = 50 (d) a f = 100

Source: The author.

In Figure 53(a), the learning curve does not clearly show the presence of adaptations.

As a f = 1, every epoch will be followed by an adaptation, producing an oscillatory learning.

120

The great advantage of using a f = 1 lies in the velocity of convergence, which is

quite superior compared to high values of a f . However, the oscillatory behavior may cause

a non-convergence of learning. The general behavior of the adaptive learning curve consists

of radical growths at adaptation points. The lower the a f , the greater will be the presence of

"peaks"of learning. On the other hand, less frequent adaptations usually generate more expressive

growths. Note that when the epoch is 100 the accuracy suddenly increases. This behaviour is

caused by the process of adaptation.

Regarding processing cost (execution time), the obtained results have shown that

increasing the number of adaptations during training increases the computational cost. As it can

be seen in Figure 54, the lower the a f the greater the training execution time. This increase in

execution time is expected, since there is a computational cost involved in each adaptation. For

low values of a f , there will be more adaptations, so it will be more costly.

Figure 54 – Influence of Adaptive Factor (a f) in execution time

Source: The author.

6.4 Summary

In this chapter, the results obtained in simulations using 7 datasets have been presen-

ted. Initially, the overall classification results were discussed, highlighting the best classifiers for

each evaluated dataset. The performance regarding 10-Fold cross-validation tests were detailed

in box-plots for analyzing the accuracy distribution among classifiers. Overall results have

evidenced the efficiency of the adaptive-LVQ comparing to ordinary LVQ classifiers.

121

7 CONCLUSION AND FUTURE WORK

In this master thesis, the ALVQ-SOM have been proposed with the object to be

applied in time series classification problems. This novel LVQ-based method is an alternative

learning model for dealing with high-dimensional and complex datasets, where it is difficult

to determine how many prototypes will be needed to build a classifier. ALVQ-SOM adopt a

strategy for iterative verify the quality of prototypes. Therefore, it has the ability to preserve

highly representative prototypes, while discards poorly adjusted prototypes.

The proposed ALVQ-SOM has outperformed in almost all scenarios, considering

the LVQ variations tested. For several cases, certain LVQ variations presented poorly effective.

In fact, the dLVQ variation has shown to be equivalent to classic version in most simulations. In

contrast, the variations based on ALVQ-SOM and ALVQ-GV have shown significant improve-

ments. For some datasets, the proposed adaptive LVQ method have surpassed more than 15%

in test accuracy, which is a huge progress. Although ALVQ-SOM have outperform the classic

LVQ variation, there are still some issues that must be addressed. For example, by analyzing the

box-plots in the previous chapter, it can be seen that, in some cases, there is a trade-off between

classification performance and accuracy variability. In other words, increasing the accuracy may

lead to a increase in variability of the results.

Furthermore, the applicability of different neural network techniques to time series

classification have been evaluated and compared. For this comparative study, the main focus

was the classification accuracy. The experiment’s results shown the artificial neural network

are excellent alternative for dealing with time series classification problems. Among the ANN-

based, the Multi-Layer Perceptron (MLP) have presented higher accuracy in almost all datasets.

The k-NN benchmark classifier has also been evaluated. In our experiments, the ANN-based

outperformed k-NN. In most cases the LVQ has shown general lower accuracy performance in

comparing to MLP and SVM.

The underperform of the LVQ in comparison to the MLP and SVM methods can

be explained by the importance of non-linear transformations of input pattern for time series

classification. In addition, it is important to note that although the LVQ presented lower values

than the MLP and SVM networks, in the majority of the results, their differences were small,

around 2% difference, which makes this conclusion questionable.

122

Considering the computational effort of training, it can be concluded that there is

an increased cost in processing when using the adaptive-LVQ versions. However, despite the

inclusion of computational effort, improvements in classification performance are justifiable. In

addition, considering the memory consumption, from the amount of prototypes resulting from

the training, the proposed adaptive algorithm is an interesting choice to train LVQ-based methods

with resource limitation, since even limiting the growth of network, the algorithm achieved

expressive results.

Finally, this work confirms the viability of using ANN-based classifiers for time

series classification problems. Furthermore, the experiment suggest that the proposed ALVQ-

SOM have the potential of outperforming significantly the classic LVQ variations.

7.1 Future works

The proposed ALVQ-SOM models are quite flexible to allow various modifications

for further increase the generalization accuracy. Some possible ideas for future works are listed

below:

• To investigate alternative methods for inclusion of new prototypes. The classic Kohonen’s

SOM and hierarchical clustering have been tested. In this dissertation it was verified

experimentally that the choice of such method directly reflects the quality of the obtained

adaptive classifier. Therefore, an interesting direction for exploring the proposed ALVQ is

to experiment the state-of-the-art time series clustering methods.

• To investigate alternative methods for evaluating prototype’s quality. In this work, a

score measure has been defined for evaluating prototypes in order to remove poorly

representative neurons. This step in ALVQ-SOM is very important, as it is directly related

to classification performance. By finding a more effective way of evaluating prototypes

will improve the proposed algorithm’s robustness.

• To deepen the studies on the hyper-parameters of the ALVQ-SOM network. Investigate

alternative methods for selecting proper values of adaptive factor, growth factor and

threshold removal.

• For further evaluate the classifiers studied in this work, it is intended to apply the algorithms

in an real time application for evaluating it performances on online classification. For

future researches, a suggestion is to adopt a problem called Human Activity Recognition

(HAR) where human activities are classified based on data from motion sensors.

123

Furthermore, within machine learning area, a research field that is rapidly growing

is the Deep Learning. Specifically in neural network approaches, several recent works employ

Deep Learning network approaches (Deep Neural Networks) for solving TSC problems (WANG

et al., 2018; GU et al., 2018; XIA et al., 2018; KIM et al., 2018; QI et al., 2016). As discussed

previously, time series are complex data. Generally, simpler classification methods require feature

extraction techniques to prepare the input data in order to acquire a satisfactory performance.

Working with temporal raw data usually requires more sophisticated algorithms. Therefore, Deep

Learning-based algorithms are suitable for this goal. Hence, another objective for future works

is in exploring deep learning approaches for complex time series classification problems.

124

REFERENCES

ADNANE, M.; JIANG, Z.; YAN, Z. Sleep–wake stages classification and sleep efficiency
estimation using single-lead electrocardiogram. Expert Systems with Applications, Elsevier,
v. 39, n. 1, p. 1401–1413, 2012.

AGHABOZORGI, S.; SHIRKHORSHIDI, A. S.; WAH, T. Y. Time-series clustering–a decade
review. Information Systems, Elsevier, v. 53, p. 16–38, 2015.

AHA, D. W. Lazy Learning. Norwell, MA, USA: Kluwer Academic Publishers, 1997. ISBN
0-7923-4584-3.

ALCOCK, R. J.; MANOLOPOULOS, Y. et al. Time-series similarity queries employing a
feature-based approach. In: 7th Hellenic conference on informatics. Ioannina, Greece: [s.n.],
1999. p. 27–29.

ANGUITA, D.; GHIO, A.; ONETO, L.; PARRA, X.; REYES-ORTIZ, J. L. A public domain
dataset for human activity recognition using smartphones. In: ESANN. [S.l.: s.n.], 2013.

ATALLAH, L.; LO, B.; KING, R.; YANG, G.-Z. Sensor positioning for activity recognition
using wearable accelerometers. IEEE transactions on biomedical circuits and systems,
IEEE, v. 5, n. 4, p. 320–329, 2011.

AYU, M. A.; ISMAIL, S. A.; MANTORO, T.; MATIN, A. F. A. Real-time activity recognition
in mobile phones based on its accelerometer data. In: 2016 International Conference on
Informatics and Computing (ICIC). [S.l.: s.n.], 2016. p. 292–297.

BAGNALL, A.; LINES, J.; BOSTROM, A.; LARGE, J.; KEOGH, E. The great time series
classification bake off: a review and experimental evaluation of recent algorithmic advances.
Data Mining and Knowledge Discovery, Springer, v. 31, n. 3, p. 606–660, 2017.

BAGNALL, A.; LINES, J.; VICKERS, W.; KEOGH, E. The UEA and UCR time series
classification repository. 2018.

BAO, L.; INTILLE, S. Activity recognition from user-annotated acceleration data. Pervasive
computing, Springer, p. 1–17, 2004.

BERNDT, D. J.; CLIFFORD, J. Using dynamic time warping to find patterns in time series. In:
SEATTLE, WA. KDD workshop. [S.l.], 1994. v. 10, n. 16, p. 359–370.

BHATIA, G.; RANI, S. Disease recognition and classification from movement patterns. In:
2016 3rd International Conference on Computing for Sustainable Global Development
(INDIACom). [S.l.: s.n.], 2016. p. 3682–3687.

BISWAL, B.; BISWAL, M.; HASAN, S.; DASH, P. K. Nonstationary power signal time series
data classification using lvq classifier. Applied Soft Computing, Elsevier, v. 18, p. 158–166,
2014.

BLOOMFIELD, P. Fourier analysis of time series: an introduction. [S.l.]: John Wiley &
Sons, 2004.

BROCKWELL, P. J.; DAVIS, R. A. Time series: theory and methods. [S.l.]: Springer Science
& Business Media, 2013.

125

BUENAVENTURA, C. V. S.; TIGLAO, N. M. C. Basic human activity recognition based on
sensor fusion in smartphones. In: 2017 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM). [S.l.: s.n.], 2017. p. 1182–1185.

BUNTINE, W. Myths and legends in learning classification rules. 1990.

BURGES, C. J. A tutorial on support vector machines for pattern recognition. Data mining and
knowledge discovery, Springer, v. 2, n. 2, p. 121–167, 1998.

CASALE, P.; PUJOL, O.; RADEVA, P. Human activity recognition from accelerometer data
using a wearable device. Pattern Recognition and Image Analysis, Springer, p. 289–296,
2011.

CHAN, K.-P.; FU, A. W.-C. Efficient time series matching by wavelets. In: Proceedings 15th
International Conference on Data Engineering (Cat. No.99CB36337). [S.l.: s.n.], 1999. p.
126–133. ISSN 1063-6382.

CHANDOLA, V.; BANERJEE, A.; KUMAR, V. Anomaly detection: A survey. ACM
computing surveys (CSUR), ACM, v. 41, n. 3, p. 15, 2009.

CHANDOLA, V.; CHEBOLI, D.; KUMAR, V. Detecting anomalies in a time series database.
Computer Science Department, University of Minnesota, Tech. Rep, 2009.

CHANG, C.-C.; LIN, C.-J. Libsvm: a library for support vector machines. ACM transactions
on intelligent systems and technology (TIST), Acm, v. 2, n. 3, p. 27, 2011.

CHAVAN, A.; KOLTE, M. Eeg signals classification and diagnosis using wavelet transform
and artificial neural network. In: 2017 International Conference on Nascent Technologies in
Engineering (ICNTE). [S.l.: s.n.], 2017. p. 1–6.

CHEN, Y.; KEOGH, E.; HU, B.; BEGUM, N.; BAGNALL, A.; MUEEN, A.; BATISTA, G. The
UCR Time Series Classification Archive. 2015. <www.cs.ucr.edu/~eamonn/time_series_data/
>.

CHUNG, F.-L.; LEE, T. Fuzzy learning vector quantization. In: Proceedings of 1993
International Conference on Neural Networks (IJCNN-93-Nagoya, Japan). [S.l.: s.n.],
1993. v. 3, p. 2739–2743 vol.3.

CINLAR, E. Introduction to stochastic processes. [S.l.]: Courier Corporation, 2013.

CORTES, C.; VAPNIK, V. Support-vector networks. Machine learning, Springer, v. 20, n. 3, p.
273–297, 1995.

DELGADO, L.; HERNANDEZ, G.; ZAMORA, E.; SOSSA, H.; BARRETO, A.; RAMOS,
F.; REYES, R. Classification of the estrous cycle through texture and shape features. In: 2017
IEEE Symposium Series on Computational Intelligence (SSCI). [S.l.: s.n.], 2017. p. 1–7.

DO, C.-T.; DOUZAL-CHOUAKRIA, A.; MARIÉ, S.; ROMBAUT, M.; VARASTEH, S.
Multi-modal and multi-scale temporal metric learning for a robust time series nearest neighbors
classification. Information Sciences, Elsevier, v. 418, p. 272–285, 2017.

DOBROWOLSKI, A.; SUCHOCKI, M.; TOMCZYKIEWICZ, K.; MAJDA-ZDANCEWICZ, E.
Classification of auditory brainstem response using wavelet decomposition and svm network.
Biocybernetics and Biomedical Engineering, Elsevier, v. 36, n. 2, p. 427–436, 2016.

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/

126

DOUC, R.; MOULINES, E.; STOFFER, D. Nonlinear time series: Theory, methods and
applications with R examples. [S.l.]: CRC Press, 2014.

DUARTE, F.; LOURENÇO, A.; ABRANTES, A. Classification of physical activities using a
smartphone: evaluation study using multiple users. Procedia Technology, Elsevier, v. 17, p.
239–247, 2014.

EKICI, S. Support vector machines for classification and locating faults on transmission lines.
Applied Soft Computing, Elsevier, v. 12, n. 6, p. 1650–1658, 2012.

ESLING, P.; AGON, C. Time-series data mining. ACM Computing Surveys (CSUR), ACM,
v. 45, n. 1, p. 12, 2012.

FAKHRAZARI, A.; VAKILZADIAN, H. A survey on time series data mining. In: 2017 IEEE
International Conference on Electro Information Technology (EIT). [S.l.: s.n.], 2017. p.
476–481.

FEJFAR, J.; ŠT’ASTNỲ, J.; CEPL, M. et al. Time series classification using k-nearest
neighbours, multilayer perceptron and learning vector quantization algorithms. Acta
Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University
Press, v. 60, n. 2, p. 69–72, 2013.

FU, T.-c. A review on time series data mining. Engineering Applications of Artificial
Intelligence, Elsevier, v. 24, n. 1, p. 164–181, 2011.

GIUSTI, R. Classicação de séries temporais utilizando diferentes representações de dados
e ensembles. Tese (Doutorado) — Universidade de São Paulo, 2017.

GRBOVIC, M.; VUCETIC, S. Learning vector quantization with adaptive prototype addition and
removal. In: IEEE. Neural Networks, 2009. IJCNN 2009. International Joint Conference
on. [S.l.], 2009. p. 994–1001.

GU, J.; WANG, Z.; KUEN, J.; MA, L.; SHAHROUDY, A.; SHUAI, B.; LIU, T.; WANG,
X.; WANG, G.; CAI, J.; CHEN, T. Recent advances in convolutional neural networks.
Pattern Recognition, v. 77, p. 354 – 377, 2018. ISSN 0031-3203. Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0031320317304120>.

HAJINOROOZI, M.; MAO, Z.; JUNG, T.-P.; LIN, C.-T.; HUANG, Y. Eeg-based prediction
of driver’s cognitive performance by deep convolutional neural network. Signal Processing:
Image Communication, Elsevier, v. 47, p. 549–555, 2016.

HAN, J.; PEI, J.; KAMBER, M. Data mining: concepts and techniques. [S.l.]: Elsevier, 2011.

HAYKIN, S. S.; HAYKIN, S. S.; HAYKIN, S. S.; HAYKIN, S. S. Neural networks and
learning machines. [S.l.]: Pearson Upper Saddle River, NJ, USA:, 2009. v. 3.

HILLS, J.; LINES, J.; BARANAUSKAS, E.; MAPP, J.; BAGNALL, A. Classification of time
series by shapelet transformation. Data Mining and Knowledge Discovery, 2013.

IGLESIAS, F.; KASTNER, W. Analysis of similarity measures in times series clustering for the
discovery of building energy patterns. Energies, Multidisciplinary Digital Publishing Institute,
v. 6, n. 2, p. 579–597, 2013.

http://www.sciencedirect.com/science/article/pii/S0031320317304120

127

ISCAN, Z.; DOKUR, Z.; DEMIRALP, T. Classification of electroencephalogram signals with
combined time and frequency features. Expert Systems with Applications, Elsevier, v. 38, n. 8,
p. 10499–10505, 2011.

JAIN, B. J.; SCHULTZ, D. Asymmetric learning vector quantization for efficient nearest
neighbor classification in dynamic time warping spaces. Pattern Recognition, Elsevier, v. 76, p.
349–366, 2018.

JEN, K.; HWANG, Y. et al. Ecg feature extraction and classification using cepstrum and neural
networks. Journal of Medical and Biological Engineering, WALTER H CHANG, v. 28, n. 1,
p. 31, 2008.

JENSEN, F. V. An introduction to Bayesian networks. [S.l.]: UCL press London, 1996.
v. 210.

JEONG, Y.-S.; JAYARAMAN, R. Support vector-based algorithms with weighted dynamic
time warping kernel function for time series classification. Knowledge-based systems, Elsevier,
v. 75, p. 184–191, 2015.

JIAO, Z.; GAO, X.; WANG, Y.; LI, J.; XU, H. Deep convolutional neural networks for mental
load classification based on eeg data. Pattern Recognition, Elsevier, v. 76, p. 582–595, 2018.

JIMéNEZ Álvaro B.; LáZARO, J. L.; DORRONSORO, J. R. Finding optimal model
parameters by deterministic and annealed focused grid search. Neurocomputing, v. 72,
n. 13, p. 2824 – 2832, 2009. ISSN 0925-2312. Hybrid Learning Machines (HAIS
2007) / Recent Developments in Natural Computation (ICNC 2007). Disponível em:
<http://www.sciencedirect.com/science/article/pii/S0925231209001222>.

KAVITHA, V.; PUNITHAVALLI, M. Clustering time series data stream-a literature survey.
arXiv preprint arXiv:1005.4270, 2010.

KEOGH, E.; CHAKRABARTI, K.; PAZZANI, M.; MEHROTRA, S. Dimensionality reduction
for fast similarity search in large time series databases. Knowledge and information Systems,
Springer, v. 3, n. 3, p. 263–286, 2001.

KEOGH, E.; WEI, L.; XI, X.; LONARDI, S.; SHIEH, J.; SIROWY, S. Intelligent icons:
Integrating lite-weight data mining and visualization into gui operating systems. In: Sixth
International Conference on Data Mining (ICDM’06). [S.l.: s.n.], 2006. p. 912–916. ISSN
1550-4786.

KIM, H. B.; LEE, W. W.; KIM, A.; LEE, H. J.; PARK, H. Y.; JEON, H. S.; KIM, S. K.; JEON,
B. S.; PARK, K. S. Wrist sensor-based tremor severity quantification in parkinson’s disease
using convolutional neural network. Computers in Biology and Medicine, Elsevier, 2018.

KIRCHGÄSSNER, G.; WOLTERS, J. Introduction to modern time series analysis. [S.l.]:
Springer Science & Business Media, 2007.

KLEIST, C. Time series data mining methods. Dissertação (Mestrado) — Humboldt-
Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät, 2015.

KOHONEN, T. The self-organizing map. Proceedings of the IEEE, IEEE, v. 78, n. 9, p.
1464–1480, 1990.

http://www.sciencedirect.com/science/article/pii/S0925231209001222

128

KOHONEN, T. Self-Organizing Maps. [S.l.]: Springer Berlin Heidelberg, 1997.

KOHONEN, T.; BARNA, G.; CHRISLEY, R. Statistical pattern recognition with neural
networks: Benchmarking studies. In: IEEE International Conference on Neural Networks.
[S.l.: s.n.], 1988. v. 1, p. 61–68.

KOTSIANTIS, S. B.; ZAHARAKIS, I. D.; PINTELAS, P. E. Machine learning: a review of
classification and combining techniques. Artificial Intelligence Review, Kluwer Academic
Publishers, v. 26, n. 3, p. 159–190, 2006.

KUMAR, S.; SHARMA, A.; MAMUN, K.; TSUNODA, T. A deep learning approach for motor
imagery eeg signal classification. In: 2016 3rd Asia-Pacific World Congress on Computer
Science and Engineering (APWC on CSE). [S.l.: s.n.], 2016. p. 34–39.

LEE, Y.-H.; WEI, C.-P.; CHENG, T.-H.; YANG, C.-T. Nearest-neighbor-based approach to
time-series classification. Decision Support Systems, Elsevier, v. 53, n. 1, p. 207–217, 2012.

LESTER, J.; CHOUDHURY, T.; BORRIELLO, G. A practical approach to recognizing physical
activities. Pervasive Computing, Springer, p. 1–16, 2006.

LIAO, T. W. Clustering of time series data—a survey. Pattern recognition, Elsevier, v. 38,
n. 11, p. 1857–1874, 2005.

LIN, J.; KEOGH, E.; WEI, L.; LONARDI, S. Experiencing sax: a novel symbolic representation
of time series. Data Mining and knowledge discovery, Springer, v. 15, n. 2, p. 107–144, 2007.

LIU, D.; QIAN, H.; DAI, G.; ZHANG, Z. An iterative svm approach to feature selection
and classification in high-dimensional datasets. Pattern Recognition, Elsevier, v. 46, n. 9, p.
2531–2537, 2013.

LIU, X.; DU, H.; WANG, G.; ZHOU, S.; ZHANG, H. Automatic diagnosis of premature
ventricular contraction based on lyapunov exponents and lvq neural network. Computer
methods and programs in biomedicine, Elsevier, v. 122, n. 1, p. 47–55, 2015.

MANNINI, A.; SABATINI, A. M. Machine learning methods for classifying human physical
activity from on-body accelerometers. Sensors, Molecular Diversity Preservation International,
v. 10, n. 2, p. 1154–1175, 2010.

MANTARAS, R. L. D.; ARMENGOL, E. Machine learning from examples: Inductive and lazy
methods. Data & Knowledge Engineering, Elsevier, v. 25, n. 1-2, p. 99–123, 1998.

MARTIN-DIAZ, I.; MORINIGO-SOTELO, D.; DUQUE-PEREZ, O.; ROMERO-TRONCOSO,
R. D. J. Advances in classifier evaluation: Novel insights for an electric data-driven motor
diagnosis. IEEE Access, IEEE, v. 4, p. 7028–7038, 2016.

MATTOS, C. L. C. Comitês de Classificadores Baseados nas Redes SOM e Fuzzy ART
com Sintonia de Parâmetros e Seleção de Atributos via Metaheurísticas Evolucionárias.
Tese (Doutorado) — Dissertação, Universidade Federal do Ceará, 2011.

MELGANI, F.; BAZI, Y. Classification of electrocardiogram signals with support vector
machines and particle swarm optimization. IEEE transactions on information technology in
biomedicine, IEEE, v. 12, n. 5, p. 667–677, 2008.

129

MELIN, P.; AMEZCUA, J.; VALDEZ, F.; CASTILLO, O. A new neural network model
based on the lvq algorithm for multi-class classification of arrhythmias. Information sciences,
Elsevier, v. 279, p. 483–497, 2014.

MERRIAM-WEBSTER. Merriam-Webster’s collegiate dictionary. [S.l.]: Merriam-Webster,
2004.

MOKBEL, B.; PAASSEN, B.; SCHLEIF, F.-M.; HAMMER, B. Metric learning for sequences
in relational lvq. Neurocomputing, Elsevier, v. 169, p. 306–322, 2015.

MÜLLER, M. Information retrieval for music and motion. [S.l.]: Springer, 2007. v. 2.

MURTHY, S. K. Automatic construction of decision trees from data: A multi-disciplinary
survey. Data mining and knowledge discovery, Kluwer academic publishers, v. 2, n. 4, p.
345–389, 1998.

NAKANO, K.; CHAKRABORTY, B. Effect of dynamic feature for human activity recognition
using smartphone sensors. In: 2017 IEEE 8th International Conference on Awareness
Science and Technology (iCAST). [S.l.: s.n.], 2017. p. 539–543.

NASIBOV, E. N.; PEKER, S. Time series labeling algorithms based on the k-nearest neighbors’
frequencies. Expert Systems with Applications, Elsevier, v. 38, n. 5, p. 5028–5035, 2011.

NOVIYANTO, A.; ARYMURTHY, A. M. Sleep stages classification based on temporal pattern
recognition in neural network approach. In: The 2012 International Joint Conference on
Neural Networks (IJCNN). [S.l.: s.n.], 2012. p. 1–6. ISSN 2161-4407.

OLSZEWSKI, R. T. Generalized feature extraction for structural pattern recognition in
time-series data. [S.l.], 2001.

ORHAN, U.; HEKIM, M.; OZER, M. Eeg signals classification using the k-means clustering
and a multilayer perceptron neural network model. Expert Systems with Applications,
Elsevier, v. 38, n. 10, p. 13475–13481, 2011.

ORSENIGO, C.; VERCELLIS, C. Combining discrete svm and fixed cardinality warping
distances for multivariate time series classification. Pattern Recognition, Elsevier, v. 43, n. 11,
p. 3787–3794, 2010.

PARVINNIA, E.; SABETI, M.; JAHROMI, M. Z.; BOOSTANI, R. Classification of eeg
signals using adaptive weighted distance nearest neighbor algorithm. Journal of King Saud
University-Computer and Information Sciences, Elsevier, v. 26, n. 1, p. 1–6, 2014.

PERES, S. M.; ROCHA, T.; BISCARO, H. H.; MADEO, R. C. B.; BOSCARIOLI, C. Tutorial
sobre fuzzy-c-means e fuzzy learning vector quantization: Abordagens híbridas para tarefas
de agrupamento e classificação. Revista de Informática Teórica e Aplicada, v. 19, n. 1, p.
120–163, 2012.

QI, Z.; WANG, B.; TIAN, Y.; ZHANG, P. When ensemble learning meets deep learning: a new
deep support vector machine for classification. Knowledge-Based Systems, Elsevier, v. 107, p.
54–60, 2016.

RABINER, L. R.; JUANG, B.-H. Fundamentals of speech recognition. [S.l.]: PTR Prentice
Hall Englewood Cliffs, 1993. v. 14.

130

RAJESH, K. N.; DHULI, R. Classification of ecg heartbeats using nonlinear decomposition
methods and support vector machine. Computers in biology and medicine, Elsevier, v. 87, p.
271–284, 2017.

RALANAMAHATANA, C. A.; LIN, J.; GUNOPULOS, D.; KEOGH, E.; VLACHOS, M.;
DAS, G. Mining time series data. In: Data mining and knowledge discovery handbook. [S.l.]:
Springer, 2005. p. 1069–1103.

RONAO, C. A.; CHO, S. Human activity recognition using smartphone sensors with two-stage
continuous hidden markov models. In: 2014 10th International Conference on Natural
Computation (ICNC). [S.l.: s.n.], 2014. p. 681–686. ISSN 2157-9563.

ROSA, I. C. R. da; MATTA, C. E. da. Classificação de sinais eletrocardiográficos usando redes
neurais artificiais. 2000.

SAITO, N. Local feature extraction and its applications using a library of bases. In: Topics in
Analysis and Its Applications: Selected Theses. [S.l.]: World Scientific, 2000. p. 269–451.

SALAHSHOOR, K.; KORDESTANI, M.; KHOSHRO, M. S. Fault detection and diagnosis of
an industrial steam turbine using fusion of svm (support vector machine) and anfis (adaptive
neuro-fuzzy inference system) classifiers. Energy, Elsevier, v. 35, n. 12, p. 5472–5482, 2010.

SENIN, P. Dynamic time warping algorithm review. Information and Computer Science
Department University of Hawaii at Manoa Honolulu, USA, Citeseer, v. 855, p. 1–23, 2008.

SHARMA, R.; PACHORI, R. B. Classification of epileptic seizures in eeg signals based on
phase space representation of intrinsic mode functions. Expert Systems with Applications,
Elsevier, v. 42, n. 3, p. 1106–1117, 2015.

SMITH, A.; EVANS, M.; DOWNEY, J. Modulation classification of satellite communication
signals using cumulants and neural networks. In: IEEE. Cognitive Communications for
Aerospace Applications Workshop (CCAA), 2017. [S.l.], 2017. p. 1–8.

SORS, A.; BONNET, S.; MIREK, S.; VERCUEIL, L.; PAYEN, J.-F. A convolutional neural
network for sleep stage scoring from raw single-channel eeg. Biomedical Signal Processing
and Control, Elsevier, v. 42, p. 107–114, 2018.

SORZANO, C. O. S.; VARGAS, J.; MONTANO, A. P. A survey of dimensionality reduction
techniques. arXiv preprint arXiv:1403.2877, 2014.

SU, W.-T.; PING, X.-O.; TSENG, Y.-J.; LAI, F. Multiple time series data processing for
classification with period merging algorithm. Procedia Computer Science, Elsevier, v. 37, p.
301–308, 2014.

TAQI, A. M.; AL-AZZO, F.; MARIOFANNA, M.; AL-SAADI, J. M. Classification and
discrimination of focal and non-focal eeg signals based on deep neural network. In: 2017
International Conference on Current Research in Computer Science and Information
Technology (ICCIT). [S.l.: s.n.], 2017. p. 86–92.

VLACHOS, M.; KOLLIOS, G.; GUNOPULOS, D. Discovering similar multidimensional
trajectories. In: Proceedings 18th International Conference on Data Engineering. [S.l.:
s.n.], 2002. p. 673–684. ISSN 1063-6382.

131

WANG, J.; CHEN, Y.; HAO, S.; PENG, X.; HU, L. Deep learning for sensor-based activity
recognition: A survey. Pattern Recognition Letters, p. –, 2018. ISSN 0167-8655. Disponível
em: <https://www.sciencedirect.com/science/article/pii/S016786551830045X>.

WANG, X.; MUEEN, A.; DING, H.; TRAJCEVSKI, G.; SCHEUERMANN, P.; KEOGH, E.
Experimental comparison of representation methods and distance measures for time series data.
Data Mining and Knowledge Discovery, Springer, v. 26, n. 2, p. 275–309, 2013.

WANG, Z.; XUE, X. Multi-class support vector machine. In: Support Vector Machines
Applications. [S.l.]: Springer, 2014. p. 23–48.

XI, X.; KEOGH, E.; SHELTON, C.; WEI, L.; RATANAMAHATANA, C. A. Fast time series
classification using numerosity reduction. In: ACM. Proceedings of the 23rd international
conference on Machine learning. [S.l.], 2006. p. 1033–1040.

XIA, Y.; WULAN, N.; WANG, K.; ZHANG, H. Detecting atrial fibrillation by deep
convolutional neural networks. Computers in biology and medicine, Elsevier, v. 93, p. 84–92,
2018.

XING, Z.; PEI, J.; KEOGH, E. A brief survey on sequence classification. ACM Sigkdd
Explorations Newsletter, ACM, v. 12, n. 1, p. 40–48, 2010.

XU, J.; TANG, L.; LI, T. System situation ticket identification using svms ensemble. Expert
Systems with Applications, Elsevier, v. 60, p. 130–140, 2016.

ZHANG, G. P. Neural networks for classification: a survey. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), IEEE, v. 30, n. 4, p. 451–462,
2000.

ŞTEFAN, R.-M. A comparison of data classification methods. Procedia Economics and
Finance, v. 3, p. 420 – 425, 2012. ISSN 2212-5671. International Conference Emerging
Markets Queries in Finance and Business, Petru Maior University of Tîrgu-Mures, ROMANIA,
October 24th - 27th, 2012. Disponível em: <http://www.sciencedirect.com/science/article/pii/
S2212567112001748>.

https://www.sciencedirect.com/science/article/pii/S016786551830045X
http://www.sciencedirect.com/science/article/pii/S2212567112001748
http://www.sciencedirect.com/science/article/pii/S2212567112001748

132

APPENDIX A – SUB-OPTIMAL PARAMETERS FOR K-NN, MLP AND SVM

This appendix contain the tables composing all the experiments performed with the

LVQ-based algorithms..

Table 26 – Sub-optimal parameters for k-NN classifier for each dataset

Datasets k∗ Accuracy

Synthetic Control 2 93.33±03.04
Gun-Point 1 94.50±03.69
CBF 9 99.68±00.26
Trace 1 87.50±04.86
ECG200 3 90.50±06.85
Italy Power Demand 5 97.16±02.00
Computers 9 60.60±2.50

Table 27 – Sub-optimal parameters for SVM classifier for each dataset

Datasets C∗ γ∗ Accuracy

Synthetic Control 2−1 2−4 98.50±00.66
Gun-Point 22 2−4 98.50±00.41
CBF 23 2−4 99.67±00.52
Trace 23 2−3 95.00±02.27
ECG200 21 2−3 92.50±05.40
Italy Power Demand 2−1 2−3 97.52±01.78
Computers 2−1 21 56.27±04.63

Table 28 – Sub-optimal parameters for MLP classifier for each dataset

Datasets N∗
e Accuracy

Synthetic Control 5 93.72±02.86
Gun-Point 14 100.00±00.00
CBF 9 99.67±00.21
Trace 15 85.50±07.62
ECG200 3 97.00±01.50
Italy Power Demand 14 96.79±1.55
Computers 10 67.80±4.75

133

APPENDIX B – OVERALL RESULT TABLES (B = P0)

Table 29 – Overall LVQ-based classification performance results (Synthetic Control).

Algorithms Accuracy Precision Recall F1 Score

LVQ1 82.33±7.79 74.52 82.82 78.36
dLVQ1 88.17±9.41 89.02 89.55 89.24

ALVQ1v1 96.83±1.66 97.27 96.79 97.02
ALVQ1v2 97.17±2.23 97.72 97.27 97.49
ALVQ1gv 96.17±2.09 96.54 96.34 96.44

dALVQ1v1 96.83±3.37 97.05 97.07 97.06
dALVQ1v2 97.33±3.53 97.61 97.58 97.59
dALVQ1gv 96.50±3.64 96.57 96.52 96.54

LVQ2 63.17±11.15 45.55 61.14 51.79
dLVQ2 70.33±17.70 58.20 69.59 62.88

ALVQ2v1 66.67±12.67 50.53 63.99 55.95
ALVQ2v2 67.33±13.41 50.78 64.51 56.33
ALVQ2gv 67.83±14.08 52.42 65.20 57.52
dALVQ2v1 79.00±21.26 71.61 79.13 74.58
dALVQ2v2 81.67±22.40 75.69 82.31 78.22
dALVQ2gv 83.67±21.78 79.58 83.67 80.99

LVQ3 59.67±14.61 42.24 59.46 48.96
dLVQ3 61.00±9.72 46.36 62.48 53.18

ALVQ3v1 88.17±16.54 83.24 87.99 85.09
ALVQ3v2 92.17±15.48 89.70 92.63 90.76
ALVQ3gv 88.67±17.12 84.66 88.77 86.16
dALVQ3v1 91.00±16.33 87.89 91.57 89.43
dALVQ3v2 89.00±16.14 85.18 89.42 86.96
dALVQ3gv 89.67±15.69 86.74 90.19 88.16

FLVQ 93.83±2.84 94.11 93.71 93.91
dFLVQ 93.83±2.84 94.11 93.71 93.91

AFLVQv1 95.17±2.54 95.33 95.10 95.21
AFLVQv2 95.67±2.51 95.83 95.47 95.64
AFLVQgv 95.33±2.46 95.62 95.45 95.54
dAFLVQv1 95.50±2.09 95.78 95.69 95.73
dAFLVQv2 94.83±2.88 94.89 94.84 94.86
dAFLVQgv 95.67±1.96 95.93 95.92 95.92

134

Table 30 – Overall cost regarding number of prototype and execution time of LVQ-based classi-
fication algorithms (Synthetic Control).

Algorithms Pc1 Pc2 Pc3 Pc4 Pc5 Pc6 NP Execution time (s)

LVQ1 2 2 2 2 2 2 12 3.71
dLVQ1 2 2 2 2 2 2 12 3.75

ALVQ1v1 1 2 1 1 1 3 9 3.59
ALVQ1v2 1 2 1 1 1 2 8 3.34
ALVQ1gv 2 2 2 2 1 1 10 5.60

dALVQ1v1 1 2 1 1 1 4 10 5.67
dALVQ1v2 1 2 1 1 2 2 9 4.58
dALVQ1gv 2 4 1 1 1 1 10 4.69

LVQ2 2 2 2 2 2 2 12 3.80
dLVQ2 2 2 2 2 2 2 12 3.79

ALVQ2v1 1 1 1 2 1 1 7 2.80
ALVQ2v2 1 1 1 1 1 1 6 2.66
ALVQ2gv 1 1 2 2 1 1 8 2.06

dALVQ2v1 1 1 1 2 1 1 7 1.05
dALVQ2v2 1 1 1 1 1 1 6 0.55
dALVQ2gv 1 1 1 1 1 1 6 0.19

LVQ3 2 2 2 2 2 2 12 3.88
dLVQ3 2 2 2 2 2 2 12 3.89

ALVQ3v1 1 1 3 1 2 1 9 3.26
ALVQ3v2 1 1 2 1 2 1 8 2.99
ALVQ3gv 1 1 2 1 2 1 8 3.17

dALVQ3v1 1 1 3 1 1 2 9 2.74
dALVQ3v2 1 1 3 1 1 1 8 3.57
dALVQ3gv 3 1 2 1 1 1 9 3.64

FLVQ 2 2 2 2 2 2 12 19.42
dFLVQ 2 2 2 2 2 2 12 19.41

AFLVQv1 2 1 1 3 1 1 9 21.17
AFLVQv2 3 1 2 1 1 1 9 19.12
AFLVQgv 4 2 2 1 1 1 11 22.27

dAFLVQv1 2 1 1 3 1 1 9 19.43
dAFLVQv2 2 1 2 2 1 1 9 23.87
dAFLVQgv 4 2 2 1 1 1 11 21.98

135

Table 31 – Overall LVQ-based classification performance results (Gun-Point).

Algorithms Accuracy Precision Recall F1 Score

LVQ1 76.50±7.47 78.63 76.50 77.54
dLVQ1 76.50±11.56 79.47 76.50 77.93

ALVQ1v1 86.00±5.68 87.85 86.00 86.90
ALVQ1v2 82.00±4.83 83.46 82.00 82.72
ALVQ1gv 81.00±11.25 83.36 81.00 82.14
dALVQ1v1 86.00±9.37 87.08 86.00 86.53
dALVQ1v2 83.00±11.35 84.30 83.00 83.64
dALVQ1gv 88.00±7.89 89.55 88.00 88.76

LVQ2 82.50±14.58 88.36 82.50 85.14
dLVQ2 76.50±13.34 83.96 76.50 79.88

ALVQ2v1 84.50±12.79 89.14 84.50 86.64
ALVQ2v2 84.50±11.89 88.73 84.50 86.45
ALVQ2gv 81.00±13.29 87.37 81.00 83.89
dALVQ2v1 80.50±13.83 86.18 80.50 83.11
dALVQ2v2 79.50±12.57 85.18 79.50 82.11
dALVQ2gv 78.50±11.56 84.48 78.50 81.26

LVQ3 73.00±10.59 82.11 73.00 77.16
dLVQ3 73.00±10.06 82.06 73.00 77.15

ALVQ3v1 90.50±4.97 91.22 90.50 90.86
ALVQ3v2 88.50±6.26 89.51 88.50 89.00
ALVQ3gv 88.50±5.80 88.98 88.50 88.74

dALVQ3v1 93.50±6.26 93.97 93.50 93.73
dALVQ3v2 91.00±6.58 91.45 91.00 91.23
dALVQ3gv 93.00±7.53 93.33 93.00 93.16

FLVQ 88.50±7.09 89.04 88.50 88.77
dFLVQ 88.50±7.09 89.04 88.50 88.77

AFLVQv1 92.00±5.37 92.33 92.00 92.16
AFLVQv2 89.50±5.99 89.99 89.50 89.74
AFLVQgv 91.50±6.26 92.26 91.50 91.87
dAFLVQv1 92.00±5.37 92.49 92.00 92.25
dAFLVQv2 89.50±5.99 89.99 89.50 89.74
dAFLVQgv 91.50±5.30 92.27 91.50 91.88

136

Table 32 – Overall cost regarding number of prototype and execution time of LVQ-based classi-
fication algorithms (Gun-Point).

Algorithms Pc1 Pc2 NP Execution time (s)

LVQ1 5 5 10 0.89
dLVQ1 5 5 10 0.88

ALVQ1v1 3 6 9 1.42
ALVQ1v2 2 4 6 6.77
ALVQ1gv 5 4 9 1.09
dALVQ1v1 3 5 8 1.53
dALVQ1v2 2 4 6 6.55
dALVQ1gv 5 4 9 1.02

LVQ2 5 5 10 0.70
dLVQ2 5 5 10 0.73

ALVQ2v1 3 5 8 0.73
ALVQ2v2 3 5 8 0.76
ALVQ2gv 4 4 8 0.94
dALVQ2v1 4 5 9 0.71
dALVQ2v2 4 4 8 0.79
dALVQ2gv 4 4 8 0.82

LVQ3 5 5 10 0.95
dLVQ3 5 5 10 0.94

ALVQ3v1 3 5 8 0.86
ALVQ3v2 3 5 8 3.67
ALVQ3gv 4 5 9 1.09
dALVQ3v1 3 6 9 1.22
dALVQ3v2 3 4 7 6.32
dALVQ3gv 4 6 10 0.89

FLVQ 5 5 10 2.83
dFLVQ 5 5 10 2.85

AFLVQv1 3 4 7 2.73
AFLVQv2 2 3 5 4.12
AFLVQgv 5 3 8 2.72

dAFLVQv1 2 3 5 2.62
dAFLVQv2 2 3 5 4.26
dAFLVQgv 5 3 8 2.73

137

Table 33 – Overall LVQ-based classification performance results (CBF).

Algorithms Accuracy Precision Recall F1 Score

LVQ1 81.83±11.72 80.21 82.95 81.06
dLVQ1 80.00±12.19 78.68 81.22 79.52

ALVQ1v1 98.92±1.13 98.99 99.01 99.00
ALVQ1v2 98.49±1.26 98.50 98.57 98.53
ALVQ1gv 98.82±0.94 98.74 98.83 98.78

dALVQ1v1 93.98±14.93 92.65 95.42 93.61
dALVQ1v2 93.87±14.87 92.39 95.35 93.45
dALVQ1gv 93.98±14.93 92.54 95.49 93.60

LVQ2 66.56±6.64 46.93 66.54 54.95
dLVQ2 88.71±13.88 82.34 88.01 84.67

ALVQ2v1 66.56±6.64 46.93 66.54 54.95
ALVQ2v2 66.56±6.64 46.93 66.54 54.95
ALVQ2gv 66.56±6.64 46.93 66.54 54.95

dALVQ2v1 89.68±14.55 83.23 89.02 85.62
dALVQ2v2 89.68±14.58 83.17 89.13 85.65
dALVQ2gv 89.46±14.42 82.92 88.91 85.41

LVQ3 66.56±6.64 46.93 66.54 54.95
dLVQ3 88.60±13.81 82.20 87.92 84.56

ALVQ3v1 66.56±6.64 46.93 66.54 54.95
ALVQ3v2 66.56±6.64 46.93 66.54 54.95
ALVQ3gv 66.56±6.64 46.93 66.54 54.95

dALVQ3v1 89.89±14.70 83.47 89.23 85.85
dALVQ3v2 89.46±14.42 83.04 88.84 85.43
dALVQ3gv 89.68±14.56 83.22 89.01 85.61

FLVQ 88.49±4.27 88.15 88.30 88.22
dFLVQ 88.49±4.27 88.15 88.30 88.22

AFLVQv1 98.49±1.04 98.49 98.49 98.49
AFLVQv2 98.49±1.16 98.42 98.58 98.50
AFLVQgv 97.85±1.76 97.85 97.78 97.81
dAFLVQv1 98.60±1.25 98.57 98.62 98.59
dAFLVQv2 98.17±1.14 98.19 98.08 98.13
dAFLVQgv 98.17±1.61 98.16 98.07 98.11

138

Table 34 – Overall cost regarding number of prototype and execution time of LVQ-based classi-
fication algorithms (CBF).

Algorithms Pc1 Pc2 Pc3 NP Execution time (s)

LVQ1 1 1 1 3 5.90
dLVQ1 1 1 1 3 5.96

ALVQ1v1 1 1 1 3 8.44
ALVQ1v2 1 1 1 3 8.41
ALVQ1gv 1 1 1 3 8.32

dALVQ1v1 1 1 1 3 6.53
dALVQ1v2 1 1 1 3 6.54
dALVQ1gv 1 1 1 3 6.54

LVQ2 1 1 1 3 0.14
dLVQ2 1 1 1 3 0.17

ALVQ2v1 1 1 1 3 0.82
ALVQ2v2 1 1 1 3 0.82
ALVQ2gv 1 1 1 3 0.85

dALVQ2v1 1 1 1 3 0.26
dALVQ2v2 1 1 1 3 0.26
dALVQ2gv 1 1 1 3 0.27

LVQ3 1 1 1 3 0.13
dLVQ3 1 1 1 3 0.17

ALVQ3v1 1 1 1 3 0.84
ALVQ3v2 1 1 1 3 0.92
ALVQ3gv 1 1 1 3 0.85

dALVQ3v1 1 1 1 3 0.27
dALVQ3v2 1 1 1 3 0.27
dALVQ3gv 1 1 1 3 0.26

FLVQ 1 1 1 3 18.66
dFLVQ 1 1 1 3 18.66

AFLVQv1 1 1 1 3 23.92
AFLVQv2 1 1 1 3 23.49
AFLVQgv 1 1 1 3 23.41

dAFLVQv1 1 1 1 3 23.90
dAFLVQv2 1 1 1 3 23.46
dAFLVQgv 1 1 1 3 23.10

139

Table 35 – Overall LVQ-based classification performance results (Trace).

Algorithms Accuracy Precision Recall F1 Score

LVQ1 47.00±11.60 39.47 50.99 44.20
dLVQ1 43.50±12.26 35.29 50.57 41.20

ALVQ1v1 75.50±10.66 75.60 74.37 74.91
ALVQ1v2 76.00±08.43 77.60 77.05 77.19
ALVQ1gv 71.50±10.29 67.58 69.25 68.23
dALVQ1v1 64.50±15.17 62.16 63.10 61.92
dALVQ1v2 70.50±13.63 65.85 69.98 67.10
dALVQ1gv 67.50±12.53 68.23 68.30 67.53

LVQ2 69.50±24.99 68.58 71.66 69.38
dLVQ2 67.00±24.52 61.87 67.80 64.00

ALVQ2v1 61.00±22.09 60.69 64.57 61.76
ALVQ2v2 63.00±23.83 64.50 63.42 63.32
ALVQ2gv 60.00±21.60 60.61 61.96 60.64
dALVQ2v1 52.50±17.52 53.45 55.31 53.64
dALVQ2v2 64.50±22.29 67.73 68.20 67.21
dALVQ2gv 60.00±23.21 58.71 63.14 60.13

LVQ3 69.50±24.99 68.58 71.66 69.38
dLVQ3 66.50±25.06 63.85 68.48 65.35

ALVQ3v1 60.50±21.92 59.33 63.66 60.67
ALVQ3v2 67.00±25.08 71.06 71.48 70.66
ALVQ3gv 61.50±22.37 62.04 62.99 61.86
dALVQ3v1 53.00±20.30 52.97 58.12 54.58
dALVQ3v2 66.50±23.93 66.05 66.43 65.62
dALVQ3gv 57.50±23.83 56.36 60.15 57.60

FLVQ 59.00±15.06 58.14 58.27 58.17
dFLVQ 59.00±15.06 58.14 58.27 58.17

AFLVQv1 76.50±10.01 78.84 76.10 77.39
AFLVQv2 75.50±10.12 76.06 73.61 74.75
AFLVQgv 78.00±8.23 80.75 78.87 79.76
dAFLVQv1 80.50±7.98 84.47 80.82 82.57
dAFLVQv2 77.00±12.52 79.87 77.88 78.83
dAFLVQgv 79.50±9.26 81.49 79.66 80.51

140

Table 36 – Overall cost regarding number of prototype and execution time of LVQ-based classi-
fication algorithms (Trace).

Algorithms Pc1 Pc2 Pc3 Pc4 NP Execution time (s)

LVQ1 1 1 1 1 4 1.52
dLVQ1 1 1 1 1 4 1.52

ALVQ1v1 1 1 1 1 4 2.53
ALVQ1v2 1 1 1 1 4 2.57
ALVQ1gv 1 1 1 1 4 2.52

dALVQ1v1 1 1 1 1 4 2.67
dALVQ1v2 1 1 1 1 4 2.62
dALVQ1gv 1 1 1 1 4 2.65

LVQ2 1 1 1 1 4 0.77
dLVQ2 1 1 1 1 4 1.40

ALVQ2v1 1 1 1 1 4 2.27
ALVQ2v2 1 1 1 1 4 2.22
ALVQ2gv 1 1 1 1 4 2.23

dALVQ2v1 1 1 1 1 4 1.95
dALVQ2v2 1 1 1 1 4 1.98
dALVQ2gv 1 1 1 1 4 1.96

LVQ3 1 1 1 1 4 0.76
dLVQ3 1 1 1 1 4 1.43

ALVQ3v1 1 1 1 1 4 2.24
ALVQ3v2 1 1 1 1 4 2.24
ALVQ3gv 1 1 1 1 4 2.25

dALVQ3v1 1 1 1 1 4 1.96
dALVQ3v2 1 1 1 1 4 1.96
dALVQ3gv 1 1 1 1 4 1.97

FLVQ 1 1 1 1 4 4.98
dFLVQ 1 1 1 1 4 5.01

AFLVQv1 1 1 1 1 4 6.11
AFLVQv2 1 1 1 1 4 6.11
AFLVQgv 1 1 1 1 4 6.12

dAFLVQv1 1 1 1 1 4 6.40
dAFLVQv2 1 1 1 1 4 6.16
dAFLVQgv 1 1 1 1 4 6.18

141

Table 37 – Overall LVQ-based classification performance results (ECG200).

Algorithms Accuracy Precision Recall F1 Score

LVQ1 78.00±11.83 76.35 74.47 75.24
dLVQ1 78.00±12.52 76.28 74.38 75.03

ALVQ1v1 88.50±5.80 88.22 87.67 87.81
ALVQ1v2 87.00±7.89 87.03 83.31 85.05
ALVQ1gv 83.00±8.23 86.11 76.25 80.54

dALVQ1v1 88.00±7.15 87.95 87.51 87.51
dALVQ1v2 89.00±7.75 89.29 86.00 87.46
dALVQ1gv 86.50±9.73 88.50 81.39 84.62

LVQ2 81.50±10.29 79.32 79.32 79.29
dLVQ2 85.00±9.13 84.62 83.89 84.17

ALVQ2v1 78.00±4.83 78.48 79.03 78.66
ALVQ2v2 83.50±8.18 83.11 80.86 81.86
ALVQ2gv 82.00±8.88 82.35 77.75 79.83

dALVQ2v1 80.50±9.56 80.28 77.82 78.90
dALVQ2v2 88.50±4.12 87.76 89.88 88.76
dALVQ2gv 81.00±9.94 81.71 76.51 78.86

LVQ3 79.00±11.25 78.03 72.57 75.07
dLVQ3 77.50±8.58 76.12 71.10 73.28

ALVQ3v1 77.00±11.11 76.85 79.46 78.06
ALVQ3v2 80.00±9.13 78.76 81.14 79.87
ALVQ3gv 83.50±6.26 81.64 84.08 82.79

dALVQ3v1 84.00±8.43 83.65 87.05 85.28
dALVQ3v2 86.50±8.83 85.76 87.60 86.62
dALVQ3gv 87.00±8.56 86.31 83.18 84.55

FLVQ 80.00±10.33 79.24 79.82 79.52
dFLVQ 80.00±10.33 79.24 79.82 79.52

AFLVQv1 90.00±5.77 90.45 87.47 88.88
AFLVQv2 92.00±7.89 91.66 92.04 91.84
AFLVQgv 87.50±4.25 87.51 84.98 86.13
dAFLVQv1 87.00±4.83 86.70 84.05 85.28
dAFLVQv2 88.50±4.74 89.39 85.70 87.42
dAFLVQgv 90.50±4.97 91.09 88.92 89.91

142

Table 38 – Overall cost regarding number of prototype and execution time of LVQ-based classi-
fication algorithms (ECG200).

Algorithms Pc1 Pc2 NP Execution time (s)

LVQ1 4 4 8 1.53
dLVQ1 4 4 8 1.54

ALVQ1v1 2 6 8 2.78
ALVQ1v2 2 5 7 2.63
ALVQ1gv 5 2 7 1.97
dALVQ1v1 2 5 7 2.89
dALVQ1v2 2 5 7 2.57
dALVQ1gv 5 2 7 2.19

LVQ2 4 4 8 1.20
dLVQ2 4 4 8 1.38

ALVQ2v1 1 5 6 2.64
ALVQ2v2 2 4 6 2.72
ALVQ2gv 3 4 7 1.87
dALVQ2v1 2 5 7 2.67
dALVQ2v2 1 6 7 2.20
dALVQ2gv 3 3 6 1.63

LVQ3 4 4 8 1.58
dLVQ3 4 4 8 1.58

ALVQ3v1 3 3 6 2.93
ALVQ3v2 3 3 6 2.88
ALVQ3gv 3 3 6 2.37
dALVQ3v1 4 3 7 3.01
dALVQ3v2 4 3 7 2.69
dALVQ3gv 5 2 7 2.20

FLVQ 4 4 8 4.59
dFLVQ 4 4 8 4.54

AFLVQv1 2 6 8 5.60
AFLVQv2 2 5 7 5.57
AFLVQgv 6 1 7 5.20

dAFLVQv1 2 6 8 5.65
dAFLVQv2 3 5 8 5.45
dAFLVQgv 6 1 7 5.20

143

Table 39 – Overall LVQ-based classification performance results (Italy Power Demand).

Algorithms Accuracy Precision Recall F1 Score

LVQ1 96.15±2.11 96.14 96.14 96.14
dLVQ1 95.50±2.05 95.60 95.43 95.52

ALVQ1v1 95.32±1.53 95.52 95.28 95.40
ALVQ1v2 96.61±1.37 96.56 96.65 96.61
ALVQ1gv 95.96±1.31 96.03 96.03 96.03

dALVQ1v1 95.50±2.05 95.60 95.43 95.52
dALVQ1v2 95.50±2.05 95.60 95.43 95.52
dALVQ1gv 95.50±2.05 95.60 95.43 95.52

LVQ2 96.51±1.49 96.46 96.56 96.51
dLVQ2 96.97±1.37 96.96 97.01 96.98

ALVQ2v1 96.61±1.44 96.66 96.52 96.59
ALVQ2v2 96.51±1.88 96.47 96.54 96.51
ALVQ2gv 95.50±2.78 95.64 95.54 95.59

dALVQ2v1 96.33±1.50 96.32 96.32 96.32
dALVQ2v2 96.33±1.78 96.34 96.34 96.34
dALVQ2gv 95.78±2.49 95.87 95.72 95.79

LVQ3 58.44±1.89 70.59 58.25 63.69
dLVQ3 63.30±11.91 74.37 63.91 68.60

ALVQ3v1 93.30±10.98 95.13 92.49 93.56
ALVQ3v2 93.49±10.98 95.34 92.64 93.74
ALVQ3gv 90.28±10.05 92.52 89.66 90.84
dALVQ3v1 96.51±1.28 96.55 96.50 96.52
dALVQ3v2 96.88±1.38 96.84 96.89 96.87
dALVQ3gv 95.50±1.70 95.58 95.57 95.57

FLVQ 96.88±1.79 96.89 96.86 96.88
dFLVQ 96.88±1.79 96.89 96.86 96.88

AFLVQv1 96.97±1.37 96.94 96.96 96.95
AFLVQv2 97.16±2.85 97.18 97.12 97.15
AFLVQgv 96.88±1.69 96.83 96.90 96.86
dAFLVQv1 96.97±1.68 96.94 96.96 96.95
dAFLVQv2 96.79±1.74 96.78 96.76 96.77
dAFLVQgv 96.88±1.63 96.84 96.89 96.86

144

Table 40 – Overall cost regarding number of prototype and execution time of LVQ-based classi-
fication algorithms (Italy Power Demand).

Algorithms Pc1 Pc2 NP Execution time (s)

LVQ1 9 9 18 9.55
dLVQ1 9 9 18 9.54

ALVQ1v1 13 4 17 13.72
ALVQ1v2 8 9 17 13.54
ALVQ1gv 12 6 18 12.09
dALVQ1v1 9 9 18 11.01
dALVQ1v2 9 9 18 11.26
dALVQ1gv 9 9 18 10.99

LVQ2 9 9 18 9.71
dLVQ2 9 9 18 9.78

ALVQ2v1 8 7 15 56.90
ALVQ2v2 6 9 15 11.39
ALVQ2gv 9 6 15 12.05
dALVQ2v1 8 8 16 14.35
dALVQ2v2 8 8 16 12.34
dALVQ2gv 10 5 15 10.58

LVQ3 9 9 18 10.36
dLVQ3 9 9 18 10.71

ALVQ3v1 7 9 16 36.43
ALVQ3v2 4 12 16 16.06
ALVQ3gv 12 3 15 12.80
dALVQ3v1 3 10 13 28.05
dALVQ3v2 5 12 17 17.10
dALVQ3gv 13 4 17 13.71

FLVQ 9 9 18 29.82
dFLVQ 9 9 18 29.78

AFLVQv1 7 10 17 36.02
AFLVQv2 8 10 18 35.95
AFLVQgv 12 6 18 35.41

dAFLVQv1 8 9 17 35.28
dAFLVQv2 6 7 13 31.41
dAFLVQgv 11 6 17 35.95

145

Table 41 – Overall LVQ-based classification performance results (Computers).

Algorithms Accuracy Precision Recall F1 Score

LVQ1 53.60±5.06 53.49 53.44 53.46
dLVQ1 54.40±7.88 55.06 55.17 55.11

ALVQ1v1 56.20±5.85 55.74 55.79 55.76
ALVQ1v2 56.60±3.89 56.53 56.41 56.47
ALVQ1gv 54.60±4.53 54.77 54.73 54.75

dALVQ1v1 56.00±6.18 56.21 56.27 56.24
dALVQ1v2 58.20±5.29 58.11 58.08 58.09
dALVQ1gv 61.00±3.43 61.62 61.49 61.56

LVQ2 55.20±5.18 55.37 55.30 55.33
dLVQ2 54.40±5.95 54.86 54.78 54.82

ALVQ2v1 54.60±5.50 54.46 54.41 54.44
ALVQ2v2 54.60±5.58 54.99 54.95 54.97
ALVQ2gv 55.60±4.88 56.00 55.88 55.94

dALVQ2v1 59.20±6.05 59.89 59.85 59.87
dALVQ2v2 57.60±8.21 57.58 57.49 57.54
dALVQ2gv 61.00±9.85 60.99 60.95 60.97

LVQ3 52.60±6.04 51.92 52.67 51.95
dLVQ3 55.00±6.06 54.30 54.65 54.16

ALVQ3v1 53.00±6.75 52.93 53.04 52.98
ALVQ3v2 56.80±9.62 56.96 56.83 56.90
ALVQ3gv 54.60±8.75 54.82 54.77 54.80

dALVQ3v1 52.80±7.55 52.80 52.81 52.81
dALVQ3v2 55.00±7.20 55.13 55.20 55.16
dALVQ3gv 54.20±4.37 53.78 53.63 53.70

FLVQ 54.00±8.74 54.54 54.39 54.47
dFLVQ 54.00±8.74 54.54 54.39 54.47

AFLVQv1 56.80±6.68 57.35 56.97 57.16
AFLVQv2 56.00±7.94 56.60 56.70 56.65
AFLVQgv 60.00±8.49 60.22 60.37 60.29

dAFLVQv1 56.40±5.56 56.72 56.73 56.73
dAFLVQv2 60.80±5.27 61.24 61.07 61.15
dAFLVQgv 57.00±5.75 57.07 57.05 57.06

146

Table 42 – Overall cost regarding number of prototype and execution time of LVQ-based classi-
fication algorithms (Computers).

Algorithms Pc1 Pc2 NP Execution time (s)

LVQ1 6 6 12 19.14
dLVQ1 6 6 12 19.21

ALVQ1v1 6 5 11 40.11
ALVQ1v2 6 5 11 40.04
ALVQ1gv 6 5 11 35.64
dALVQ1v1 7 4 11 44.45
dALVQ1v2 7 4 11 45.60
dALVQ1gv 8 3 11 39.23

LVQ2 6 6 12 17.60
dLVQ2 6 6 12 18.75

ALVQ2v1 5 6 11 21.92
ALVQ2v2 5 6 11 21.22
ALVQ2gv 6 5 11 21.25
dALVQ2v1 5 6 11 48.31
dALVQ2v2 6 5 11 47.16
dALVQ2gv 7 4 11 35.67

LVQ3 6 6 12 24.44
dLVQ3 6 6 12 23.15

ALVQ3v1 4 7 11 50.13
ALVQ3v2 3 8 11 44.73
ALVQ3gv 4 7 11 36.62
dALVQ3v1 5 6 11 51.38
dALVQ3v2 4 7 11 46.58
dALVQ3gv 5 6 11 40.96

FLVQ 6 6 12 34.71
dFLVQ 6 6 12 34.05

AFLVQv1 9 3 12 51.57
AFLVQv2 6 5 11 50.81
AFLVQgv 9 3 12 47.69

dAFLVQv1 9 3 12 54.35
dAFLVQv2 6 5 11 49.86
dAFLVQgv 9 3 12 49.53

	Title page
	Acknowledgements
	Resumo
	Abstract
	List of Symbols
	Contents
	Introduction
	Motivation
	Objectives
	Methodology
	List of Publications
	Organization of the Thesis

	Time series classification
	Fundamentals of Time Series
	Univariate and Multivariate Time Series
	Time Series Definition

	Time Series Data Mining
	Similarity and Dissimilarity Measures
	Euclidean Distance (ED)
	Dynamic Time Warping (DTW)

	Data representation and dimensionality reduction
	Applications
	Classification
	Clustering
	Anomaly Detection

	Time Series Classification Problem (TSC)
	State-of-the-art
	Summary

	Theoretical Basis
	k-Nearest Neighbor classifier
	Multi-Layer Perceptron (MLP)
	MLP Training Process
	Feedforward
	Backpropagation

	Self-Organizing Map (SOM)
	SOM neural network training process

	Learning Vector Quantization (LVQ)
	Kohonen's LVQ1
	Kohonen's LVQ2
	Kohonen's LVQ2.1

	Kohonen's LVQ3
	Fuzzy-LVQ
	Quantization Error (QE)

	Support Vector Machine (SVM)
	Fundamentals of SVM classification
	Hard margin SVM classifier
	Soft margin SVM classifier
	Kernel Function
	Classifying approaches
	One-Against-All
	One-Against-One

	Summary

	Novel approaches for Adaptive LVQ classifiers
	Adaptive LVQ (ALVQ)
	ALVQ-GV
	ALVQ-GV strategy for prototype inclusion
	ALVQ-GV strategy for prototype removal

	Proposed Adaptive-LVQ (ALVQ-SOM)
	Proposed strategy for prototype inclusion
	All classes at once (v1)
	One class at a time (v2)

	Proposed strategy for prototype removal
	ALVQ-SOM implementation
	ALVQ-SOM Hyper-parameters
	Growth factor (gf)
	Removal threshold (rt)
	Adaptation factor (af)

	Driven-LVQ (dLVQ)
	Driven-Adaptive-LVQ (dALVQ)
	Summary

	Experiment methodology
	Performance Metrics
	Confusion matrix

	Cross-Validation
	Hold Out
	K-Fold

	Experiment description
	Summary

	Experiments and Results
	General performance evaluation
	Synthetic Control Dataset
	Gun-Point Dataset
	CBF Dataset
	Trace Dataset
	ECG200 Dataset
	Italy Power Demand Dataset
	Computers

	Discussion
	Adaptive factor (af) influence in training
	Summary

	Conclusion and Future Work
	Future works

	REFERENCES
	APPENDICES
	Sub-optimal parameters for k-NN, MLP and SVM
	Overall result tables (B = P0)

