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Abstract

There is solid evidence that rare variants contribute to complex disease etiology. Next-generation sequencing technologies
make it possible to uncover rare variants within candidate genes, exomes, and genomes. Working in a novel framework, the
kernel-based adaptive cluster (KBAC) was developed to perform powerful gene/locus based rare variant association testing.
The KBAC combines variant classification and association testing in a coherent framework. Covariates can also be
incorporated in the analysis to control for potential confounders including age, sex, and population substructure. To
evaluate the power of KBAC: 1) variant data was simulated using rigorous population genetic models for both Europeans
and Africans, with parameters estimated from sequence data, and 2) phenotypes were generated using models motivated
by complex diseases including breast cancer and Hirschsprung’s disease. It is demonstrated that the KBAC has superior
power compared to other rare variant analysis methods, such as the combined multivariate and collapsing and weight sum
statistic. In the presence of variant misclassification and gene interaction, association testing using KBAC is particularly
advantageous. The KBAC method was also applied to test for associations, using sequence data from the Dallas Heart Study,
between energy metabolism traits and rare variants in ANGPTL 3,4,5 and 6 genes. A number of novel associations were
identified, including the associations of high density lipoprotein and very low density lipoprotein with ANGPTL4. The KBAC
method is implemented in a user-friendly R package.
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Introduction

Currently there is great interest in investigating the etiology of

complex disease due to rare variants [1–6]. Until recently, indirect

mapping of common variants has been the emphasis of complex

trait association studies. It has been demonstrated that common

variants tend to have modest phenotypic effects while rare variants

are likely to have stronger phenotypic effects [7], although not

strong enough to cause familial aggregation [8]. For mapping

complex diseases due to common variants, instead of genotyping

functional variants, tagSNPs are genotyped which act as a proxy

for the underlying causal variants. For rare variant association

studies, indirect mapping is not an optimal approach due to low

correlations (r2) between tagSNPs and rare variants. Instead, direct

mapping should be used, where functional variants are analyzed.

In order to implement direct mapping, variants must first be

identified. Large scale sequencing efforts have begun including the

1000 Genome Project, which will provide a better understanding

of the allelic architecture of the genome and a detailed catalog of

human variants. Next-generation sequencing technologies e.g.

Roche 454, ABI SOLiD, and Illumina HiSeq, have made it

feasible to carry-out rare variant association studies of candidate

regions, exomes and genomes.

Gene interactions are believed to be involved in a broad spectrum

of complex disease etiologies [9]. Although a number of methods

have been developed to detect gene interactions between common

variants [10–13], their detection has been limited [10]. There is

evidence that rare variant interaction also plays a role in disease

etiology. In direct association mapping of rare variants, one or more

genetic loci are commonly jointly analyzed in order to aggregate

information, for example genes with similar functions or residing in

the same pathway [3,4]. Therefore it is necessary to account for

potential interactions between rare variants in different loci [14] and

interactions between common and rare variants [15,16].

Ideally, when carrying out direct mapping, only causal variants

should be tested for associations. When DNA samples are sequenced,

both causal and non-causal variants are uncovered. Bioinformatics

tools [17,18] or filters [1] can be used to predict functionality of
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variants, although tools such as PolyPhen [18] or SIFT [17]can have

low sensitivity and specificity [6,19]. Empirical studies have shown

that predictive errors can be as high as 47% and 37% for PolyPhen

and SIFT respectively [6]; therefore, their usefulness in selecting

variants to be included in association analysis is limited. Even when

functionality can be correctly inferred, whether the identified variants

affect the phenotype of interest is still unknown. Two types of

misclassifications of variant causality can frequently arise: 1.) non-

causal variants are included in the analysis: a.) sequencing incorrectly

identifies monomorphic sites as variant sites (false positive SNP

discovery), b.) variants are falsely predicted to be functional or c.)

variants are functional but non-causal; 2.) causal variants are

excluded from the analysis: a.) due to locus heterogeneity, not all

loci containing causal variants are included in the analysis, b.) region

not sequenced, e.g. intronic variants, c.) variants not detected by

sequencing assay (false negative SNP discovery) or d.) causal variants

are falsely predicted to be non-functional.

Driven by the advancement of sequencing technologies and

availability of data, statistical and computational methods are

needed for analyzing sequence data. It has been demonstrated that

methods used to analyze common variants are low powered when

applied to the analysis of rare variants [20,21]. Methods to analyze

rare variants have been proposed [20,21]; although they have

clear advantages over implementing common variant analysis

approaches, more powerful and robust methods need to be

developed to analyze rare variant data, especially in the presence

of variant misclassification or gene interactions.

The Kernel Based Adaptive Cluster (KBAC) was developed to

overcome the problems of detecting rare variant associations in the

presence of misclassification and gene interaction. Under the

KBAC framework, data-based adaptive variant classification and

testing of association are unified. The sample risk of a multi-site

genotype is modeled using a mixture distribution with two

components, where one component represents the distribution of

sample risk of genotype if it is non-causal and the other component

represents distribution of sample risks of causal genotypes. Ideally,

if distributions for causal components were known, classification

could first be performed and only the causal genotypes would be

used in association studies. However, when searching for

genotype-phenotype associations, it is usually unknown which

variants are causal. Instead of performing an unrealistic two-step

procedure, variant classification and association testing are unified

in the KBAC framework. Continuous adaptive weighting which is

implemented in the KBAC is preferable, particularly for low

frequency alleles, than classifying variants and carrying out a

stratified analysis, because increasing classification and shrinking

size of strata can increase both type I and II error. For the KBAC,

adaptive weighting procedure is implemented using the cumula-

tive distribution functions for the multi-site genotype counts.

Distributions of multi-site genotype counts are compared between

cases and controls. Those multi-site genotypes that are enriched in

cases will be up-weighted. Under the null hypothesis, the assigned

weights asymptotically follow a uniform distribution. While under

the alternative hypothesis, disease causal multi-site genotypes tend

to be more frequent in cases than in controls. Therefore they are

more likely to be adaptively up-weighted. The weighted multi-site

genotype frequencies are aggregated and contrasted between cases

and controls. In order to evaluate whether there is an association,

significance of the KBAC can be assessed using either permutation

or Monte Carlo approximation (See Methods and Figure S1).

The performance of the KBAC was compared to the weighted

sum statistic (WSS) [21] the combined multivariate and collapsing

(CMC) method [20], and the comparison of rare variants found

exclusively in cases to those found only in controls (RVE) [3] using

simulated data sets. Forward time simulation [22] assuming

infinite-site Wright-Fisher model was used to generate population

genetic data. Demographic change and purifying selection were

both incorporated in the simulation, using parameters estimated

from re-sequencing datasets from studies of African Americans

(AA) and European Americans (EA) [23]. In addition to forward

time simulation, population genetic data was also generated

according to estimated site frequency spectrums (SFS) in AA and

EA from the Dallas Heart Study (DHS) re-sequencing data of the

ANGPTL3, 4, 5, and 6 genes.

For the simulated population data phenotypes were generated

separately and motivated by epidemiological disease studies. Two

types of main effects phenotypic model are considered: 1.) constant

genetic effects for each causal variant and 2.) genetic effects

inversely correlated with minor allele frequencies (MAF) of causal

genetic variants. In order to evaluate the impact of variant

misclassification, a variety of scenarios were examined where 1.)

different proportions of non-causal variants were included in the

analysis and 2.) different proportions of causal variants were

excluded from the analysis.

Two disease models of gene interactions were also evaluated.

The example of with-in gene interaction was motivated by

Hirschsprung’s disease [15,16], where an interaction between a

common polymorphism in the promoter region and multiple rare

non-synonymous (NS) mutations in exonic regions of the RET

gene is hypothesized [15,16]. The example of between gene

interaction is based on the observation that rare variants within the

CHEK2 gene increase risk of breast cancer in the absence of

BRCA1 and BRCA2 mutations, but because of a shared pathway,

the same CHEK2 variants in the presence of high risk BRCA

variants do not further increase risk [14,24,25].

Under each of the above scenarios, phenotype-genotype

association testing is performed for rare NS variants. It is

demonstrated that the KBAC has a clear advantage in power

and robustness over other existing methods and this benefit is

especially strong, when rare variant data is analyzed where there is

either variant misclassification or gene interactions.

In order to further illustrate applications of the KBAC and

other statistical methods, i.e., WSS, CMC, and RVE to carry-out

Author Summary

It has been demonstrated that both rare and common
variants are involved in complex disease etiology. Until
recently it was only possible to perform large scale analysis
of common variants. With the development of next-
generation sequencing technologies, detection and map-
ping of rare variants have been made possible. However,
methods used to analyze common variants are not
powerful for the analysis of rare variants. To address the
problems of rare variant analysis working in a novel
framework, the kernel-based adaptive cluster (KBAC)
method was developed to perform gene/locus based
analysis. The KBAC combines variant classification and
association testing in a coherent framework. Through
simulations motivated by population genetic and disease
data, it is demonstrated that the KBAC has superior power
to other rare variant analysis methods, especially in the
presence of variant misclassification and gene interaction.
Using data from the Dallas Heart Study, the KBAC method
was applied to test for associations between energy
metabolism traits and rare variants in ANGPTL 3,4,5 and 6
genes. A number of novel associations were identified. The
KBAC method is implemented in a user-friendly R package.
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association studies, energy metabolism traits and rare variants in

ANGPTL 3, 4, 5 and 6 genes obtained from sequence data were

analyzed. In addition to identifying the originally reported

association between triglyceride levels and ANGPTL 4, KBAC

identified associations for a.) body mass index and ANGPTL 5, b.)

diastolic blood pressure with ANGPTL 6, c.) high density

lipoprotein with ANGPTL 4, d.) triglyceride levels with ANGPTL

3 e.) very low density lipoprotein with ANGPTL 3 and ANGPTL 4.

Results

The results presented focus on simulations using simulated SFS

from AA sequence data. Similar results are found for simulations

using simulated SFS for EA and estimated SFS for AA and EA

(Text S1 and Figures S2, S3, S4, S5, S6, S7, S8.). Although the

power varies dependent on the underlying model used to generate

the data, in all cases the KBAC is the most powerful method

followed by the WSS, CMC and then the RVE.

Rare Variant Frequency Distributions in Generated
Case-Control Samples
Rare NS variants carrier information is summarized (Table 1)

for replicates used in power comparisons in the presence of

misclassifications. Under the phenotypic model with variable

genetic effects, when all variants (both non-causal and causal

variants) were analyzed, 5.5% of cases and 3.4% of controls are

carriers, with carrier frequency in cases 61% higher than in

controls. When only causal variants are included, the fractions of

carriers in cases and in controls are 3.8% and 1.7% respectively.

The case rare variant frequency is approximately 2.3 times of the

controls frequency, which implicates that average ORs of

uncovered rare variants lie between 2 to 3. For the phenotypic

model with fixed genetic effects, the results are similar. The carrier

frequency observed in cases is around 2.5 times the frequency in

controls. Compared to the model with fixed effects, lower

frequency rare causal variants have larger ORs for variable effects

model. The probability that these low frequency rare variants are

uncovered in a case-control sample is higher. Therefore, in all

scenarios examined, more rare variants sites are uncovered for the

model with variable effects. When all the variants are included,

11% more rare NS variants sites are uncovered for the model with

variable effects. The number of rare variants sites that are

exclusive to cases or controls is also higher under the variable

effect model. For example, when 100% of the variant sites are

included in the analysis, 47.4% and 41.1% of the sites are found

exclusively in either cases or controls for the variable and the fixed

effects model, respectively. For both models, within a single gene,

very few cases and controls carry more than one rare variant.

Table 1. Rare variant summary statistics.

Scenario

Rare Variant Carrier

Frequencies in Cases/

Controls

Mean Number

of Rare Variant

Sites

Mean number of Rare Variant

Sites Observed Exclusively in

Cases/Controls

Proportions of Rare Variant

Carriers with More than One

Rare Variant in Case/Controls

Phenotypic Model with Variable Genetic Effects Inversely Correlated with MAFs

Percentage of Causal
Variants Excluded

20% 0.033/0.014 5.791 2.978 0.013/0.006

40% 0.025/0.011 4.396 2.285 0.009/0.004

60% 0.017/0.008 3.048 1.556 0.006/0.003

Percentage of Non-
causal Variants Included

0% 0.038/0.017 6.942 3.609 0.016/0.006

20% 0.041/0.02 7.614 3.859 0.018/0.008

40% 0.044/0.023 8.501 4.274 0.019/0.009

60% 0.048/0.027 9.535 4.645 0.021/0.012

80% 0.051/0.03 10.539 5.044 0.022/0.014

100% 0.055/0.034 11.665 5.53 0.025/0.016

Phenotypic Model with Fixed Genetic Effects Unrelated to MAFs

Percentage of Causal
Variants Excluded

20% 0.034/0.014 4.455 1.797 0.014/0.005

40% 0.027/0.011 3.449 1.39 0.01/0.004

60% 0.019/0.008 2.36 0.956 0.006/0.003

Percentage of Non-
causal Variants Included

0% 0.041/0.017 5.325 2.158 0.017/0.007

20% 0.043/0.019 5.996 2.439 0.018/0.008

40% 0.047/0.023 7.058 2.875 0.02/0.01

60% 0.05/0.027 8.007 3.259 0.022/0.013

80% 0.054/0.03 8.931 3.565 0.024/0.013

100% 0.057/0.034 10.047 4.132 0.026/0.015

The summary statistics are displayed for the generated replicates under main effects model with fixed and variable genetic effects using simulated SFS from AA
population. Scenarios with different proportions of causal variants excluded and scenarios with different proportions of non-causal variants included were considered.
The table displays for a given sample, the information on a) the average proportion of rare NS variant carriers among cases and controls; b) the mean number of rare NS
variant sites; c) the mean number of rare NS variant sites that are exclusive to cases or controls; d) the average proportion of case and control rare NS variant carriers
with more than one rare variant. For each scenario, a sample size of 1,000 cases and 1,000 controls were used. 2,000 replicates were generated for each scenario.
doi:10.1371/journal.pgen.1001156.t001
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For the within gene interaction model (Table 2), similar

patterns of NS variants sites and carrier frequencies are observed.

When 100% of the rare variants are causal, 5.5% of the cases and

3.2% of the controls are carriers on average for a case-control

sample. Due to interaction, frequency differences between cases

and controls are mitigated. In the between gene interaction

model (Table 2), higher case carrier frequency and more rare

variants sites are observed for the high risk gene than for the low

risk gene. The proportions of rare variants carriers for the two

genes combined can be high, e.g. when 100% of the variants are

causal, up to 12% of the cases can be rare variant carriers. Rare

variants distributions can be found in the (Text S1) for main

effects models (Table S1) and within and between gene

interactions models (Table S2) using simulated SFS for EA, and

for main effects models using estimated SFS for AA (Table S3)

and EA (Table S4) with re-sequencing data from ANGPTL3, 4, 5,

and 6 genes.

Evaluation of Type I Error
When permutation was used to evaluate significance for the

KBAC, type I error was well controlled, because p-values were

obtained empirically. Additionally, in order to ensure that the type

I error for RVE is well controlled permutation is also used to

obtain empirical p-values. For the WSS [21], CMC [20] method,

it was previously demonstrated that for the analysis of rare

variants, their type I errors are well controlled [20]. For moderate

sample sizes e.g. 400 cases/400 controls, the distributions of

p-values for the Monte Carlo approximation are very close to

those obtained using permutations and theoretical expectations

(Figure 1) and additionally type I error is well controlled.

Power Comparison
Main effects model without misclassification. For main

effects model with fixed genetic effects and no misclassification

(Figure 2), the power 1{bð Þ for KBAC, WSS CMC and RVE are

respectively given by 82.5%, 77.7%, 73.9% and 14.8%. The

power for RVE is much lower than the power for the other three

methods. For the main effects model with variable genetic effects

(Figure 3), the power for the four methods is given by 83.1%,

78.8%, 74.2% and 44.8%. The power of the RVE improves for

the variable genetic effects model compared to the fixed genetics

effect model; while the power for the other methods remains

relatively unchanged. KBAC is consistently more powerful than

WSS, CMC and RVE, e.g. for fixed effect model, KBAC is 6.1%

more powerful than WSS, 11.6% more powerful than CMC, and

457.4% more powerful than RVE.

Impact of misclassification. Under both models (Figure 2,

Figure 3), the power of all methods is negatively impacted by

exclusions of causal variants and inclusions of non-causal

variants at a varying degree. When non-causal variants are

included in the analysis, KBAC is consistently more powerful

and more robust than the other three methods. For example,

when 100% of the non-causal variants are included, under the

variable effects model, KBAC 1{bKBAC~69:9%ð Þ is 19.3%

more powerful than WSS 1{bWSS~58:6%ð Þ, 27.6% more

powerful than CMC 1{bCMC~54:8%ð Þ, and 91.0% more

powerful than RVE 1{bRVE~36:6%ð Þ. When compared under

the fixed effects model, the advantage of KBAC 1{bKBACð
~71:2%Þ over WSS 1{bWSS~61:1%ð Þ, CMC 1{bCMC~ð
58:2%Þ and RVE 1{bRVE~13:9%ð Þ remains largely unchanged.

For the scenarios where causal variants are missing, the relative

Table 2. Rare variant summary statistics.

Scenario

Rare Variant Carrier

Frequencies in Cases/

Controls

Mean Number

of Rare Variant

Sites

Mean number of Rare Variant

Sites Observed Exclusively in

Cases/Controls

Proportions of Rare Variant

Carriers with More than One

Rare Variant in Case/Controls

Between Gene Interaction Model

Percentage of
Causal Variants:

25% Gene 1 0.049/0.035 7.348 3.612 0.022/0.015

Gene 2 0.038/0.035 7.023 3.39 0.018/0.016

50% Gene 1 0.065/0.035 7.699 3.749 0.029/0.015

Gene 2 0.042/0.034 7.174 3.475 0.019/0.016

75% Gene 1 0.079/0.034 8.146 4.024 0.035/0.015

Gene 2 0.046/0.034 7.259 3.509 0.021/0.015

100% Gene 1 0.096/0.034 8.622 4.276 0.043/0.015

Gene 2 0.049/0.035 7.432 3.553 0.023/0.016

Within Gene Interaction Model

Percentage of
Causal Variants

25% 0.037/0.032 9.109 2.999 0.016/0.014

50% 0.043/0.032 9.295 3.026 0.02/0.014

75% 0.048/0.031 9.352 3.003 0.022/0.014

100% 0.055/0.032 9.627 3.042 0.028/0.014

The summary statistics are displayed for the generated replicates under within gene interaction model and between gene interaction model using simulated SFS from
AA population. Scenarios with different proportions of causal variants were considered. The table displays for a given sample, the information on a) the average
proportion of rare NS variant carriers among cases and controls; b) the mean number of rare NS variant sites; c) the mean number of rare NS variant sites that are
exclusive to cases or controls; d) the average proportion of case and control rare NS variant carriers with more than one rare variant. For within gene interaction model,
a sample size of 1,000 cases and 1,000 controls were used, and for the between gene interaction model, a sample size of 300 cases and 300 controls were used. 2,000
replicates were generated for each scenario.
doi:10.1371/journal.pgen.1001156.t002
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performances of the methods remain to be in the order

KBAC.WSS.CMC.RVE. For the variable effects model, the

power advantage of WSS over CMC is greater than the advantage

observed for the fixed effects model. For example, when 60% of the

causal variants are excluded from the analysis, under the fixed effects

model, the power for WSS drops 40.1% and the power of CMC

drops 45.1%, while under the variable effects model, the power

decreases for WSS and CMC are respectively 39.1%, 47.8%. The

KBAC is more robust than the other methods: the power decreases

under the fixed and variable effects models are respectively 34.1%

and 35.6%, which are smaller than the decreases in power for WSS

and CMC. Exclusion of causal variants from the analysis is more

detrimental to power than inclusion of non-causal variants. Power

comparisons with simulated SFS for EA can be found in (Figure S2)

for fixed effects model and in (Figure S3) for variable effects model.

Additionally, power comparisons with estimated SFS for AA are

Figure 1. Quantile-Quantile (QQ) plot of p-values obtained fromMonte Carlo approximation (left panel), permutation (right panel),
and theoretical expectations. P-values were estimated using 10,000 iterations and 10,000 permutations for Monte Carlo approximation and
permutation, respectively. Four sample sizes were investigated: 200 cases/200 controls; 300 cases/300 controls, 400 cases/400 controls, and 500
cases/500 controls. A total of 3,000 replicates were used to generate the QQ plot for each sample size.
doi:10.1371/journal.pgen.1001156.g001

Figure 2. Impact of misclassifications under main effects model with fixed genetic effects using simulated SFS for AA. Each causal
rare variant has an OR= 3.0. Power comparisons were made for the KBAC, WSS, CMC, and RVE when 0%,60% of causal rare variants are excluded
from the analysis (left panel) and when 0%,100% of non-causal rare variants are included (right panel). A sample size of 1000 cases and 1000
controls was used for each scenario. P-values were empirically estimated using 5,000 permutations and power was evaluated for a significance level
of a~0:05 using 2,000 replicates for each scenario.
doi:10.1371/journal.pgen.1001156.g002

A Novel Adaptive Method for Rare Variant Analysis
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shown in (Figure S4) for fixed effects and in (Figure S5) variable effects

models and that with estimated SFS for EA are displayed in (Figure

S6) for fixed and in (Figure S7) for variable genetic effects models.

Within gene interaction model. Under the within gene

interaction model, KBAC is consistently the most powerful

method for all scenarios with different proportions of causal

variants (Figure 4). The advantage of KBAC in the presence of

interactions is apparent and its advantage over other methods

becomes greater with increasing proportion of non-causal variants.

For example, when all variants are causal, the power of KBAC is

8.4% higher than WSS, which is the second most powerful

method. But when only 50% of all variants are causal, KBAC is

Figure 3. Impact of misclassifications under main effects model with variable genetic effects using simulated SFS for AA. The disease
odds for causal variants are inversely correlated with their MAFs and within the range of 2,20. Power comparisons were made for the KBAC, WSS,
CMC, and RVE when 0%,60% of causal rare variants are excluded from the analysis (left panel) and when 0%,100% of non-causal rare variants are
included (right panel). A sample size of 1000 cases and 1000 controls was used for each scenario. P-values were empirically estimated using 5,000
permutations and power was evaluated for a significance level of a~0:05 using 2,000 replicates for each scenario.
doi:10.1371/journal.pgen.1001156.g003

Figure 4. Power comparisons for within gene (left panel) and between gene interaction model (right panel) with simulated SFS for
AA. Power was evaluated for the KBAC, WSS, CMC and RVE. A sample size of 1000 cases and 1000 controls were used for the within interaction
model, and a sample size of 300 cases and 300 controls were used for the between gene interaction model. Scenarios with different proportions of
causal variants were considered. P-values were empirically estimated using 5,000 permutations and power was evaluated for a significance level of
a~0:05 using 2,000 replicates.
doi:10.1371/journal.pgen.1001156.g004

A Novel Adaptive Method for Rare Variant Analysis
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30.7% more powerful than WSS. RVE is the least powerful

methods for all scenarios compared.

Between gene interaction model. In the between gene

interaction model, power comparisons between the four methods

remain similar (Figure 4). KBAC is consistently the most powerful

method and is robust against inclusion of non-causal rare variant sites.

Comparing the scenario where all variants are causal with the scenario

where only 50% of the variants are causal, the power for KBAC drops

36.3%, while the power for WSS drops 48.2%. Power comparisons

for within and between gene interaction models using simulated SFS

based on sequence data from EA can be found in (Figure S8).

ANGPTL Variants and Energy Metabolism in Humans
In order to further illustrate the application of KBAC and other

rare variant analysis methods (i.e. WSS, CMC and RVE), rare

variants in the ANGTPL 3,4,5 and 6 genes were analyzed to

determine whether they are associated with energy metabolism

traits (Table 3). As in the original DHS study [26], the association

of rare variants in the ANGPTL3,4,5 and 6 genes with triglyceride

(TG), low density lipoprotein (LDL), very low density lipoprotein

(VLDL), high density lipoprotein (HDL), cholesterol, glucose,

body mass index (BMI), systolic (SysBP) and diastolic blood

pressure (DiasBP) were investigated. In the original DHS study,

NS variants were analyzed using RVE, and significant associations

were found between ANGPTL3, ANGPTL 4 and TG as well as

between ANGPTL 6 and cholesterol [5,6]. In this article NS

variants, most of which are very rare [5,6], were analyzed.

Individuals with confounding factors (lipid lowering drugs,

diabetes mellitus and heavy alcohol use) were removed for all

analyses. Multiple associations were identified with KBAC but not

with other approaches, i.e. the novel associations between

ANGPTL 6 and DiaBP pKBAC~0:045,pWSS~0:084,pCMC~ð
0:088,pRVE~0:405Þ, as well as between ANGPTL 3 and TG

levels pKBAC~0:015,pWSS~0:053,pCMC~0:058,pRVE~0:312ð Þ.
Additionally multiple novel associations were observed for analyses

carried out with KBAC, WSS and CMC: 1.) ANGPTL4 and VLDL

pKBAC~0:001,pWSS~0:006,pCMC~0:010,pRVE~0:141ð Þ; 2.)

ANGPTL5 and BMI pKBAC~0:001,pWSS~0:003,pCMC~0:006,ð
pRVE~0:263Þ; 3.) ANGPTL4 and HDL pKBAC~0:021,pWSS~ð
0:041,pCMC~0:045,pRVE~0:681Þ and 4.) the previously reported

association between ANGPTL4 and TG levels pKBAC~ð
0:004,pWSS~0:005,pCMC~0:006,pRVE~0:087Þ. It should be

noted that HDL and TG levels are negatively correlated (20.42)

and individuals with HDL levels in the lower quartile had an excess

of rare variants in ANGPTL4 compared to those individuals with

HDL levels in the upper quartile, while those individuals with TG

levels in the upper quartile had an excess of rare variants in

ANGPTL4 compared to those with TG levels in the lower quartile.

The association detected by KBAC between ANGPTL4 and VLDL

and between ANGPTL5 and BMI remains significant after

correcting for multiple testing. RVE, on the other hand, detected

associations between ANGPTL 5, 6 and glucose while the other three

methods did not. We further investigated this association by

applying a more stringent MAF cutoff 0.1% for the NS variants

analyzed in ANGPTL 5 and 6. Using this new criterion both

associations were detected by all methods (for ANGPTL 5,

pKBAC~0:001,pWSS~0:006,pCMC~0:011,pRVE~0:011ð Þ and for

ANGPTL 6, pKBAC~0:002,pWSS~0:008,pCMC~0:012,pRVE~ð
0:012Þ).

Discussion

The KBAC method developed for association mapping of rare

variants combines genotype classification and hypothesis testing in

a coherent framework. The risk of each multi-site genotype is

modeled as a mixture distribution with two components, among

which only the component representing a non-causal genotype is

known and is used in the adaptive weighting. Each multi-site

genotype is continuously weighted using the non-causal compo-

nent. The power of the KBAC as well as the other methods

investigated can be affected by inclusion of non-causal mutations

or exclusion of causal variants in the sample, to a varying degree.

When non-causal variants are included in the analysis, the

difference in rare variant carrier frequencies observed between

cases and controls is mitigated. On the other hand, when causal

variants are excluded from the association analysis, the marginal

effect size of existing variants can vary considerably depending on

whether missing causal variants exist on the same multi-site

genotype. As a result, treating each variant (or multi-site genotype)

interchangeably will incur loss of power, the severity of which will

depend on the proportion of misclassified variants in the data. The

performance of the KBAC is superior to the other approaches that

were examined.

Bioinformatics tools [17,18] and filters [1] can be used to

determine which rare variants are potentially functional and should

be included in the association analysis [1]. Their predictive accuracy,

which can be low, is dependent on the amount of information

available for the gene understudy. If bioinformatics tools are used to

predict variant functionality and determine which variants should be

included in the analysis it is best to loosen stringency, because the

exclusion of causal variants is more detrimental to power than

inclusion of non-causal variants. Whether or not bioinformatics tools

are used as a screening tool, misclassification will occur therefore the

robustness of KBAC to misclassification is particularly beneficial.

Additionally in order to avoid potentially erroneous exclusion of

causal variants due to locus heterogeneity, joint analysis of multiple

putative genetic loci that carry similar functions or reside in the same

pathway can be valuable.

It is of great interest to evaluate gene6gene interactions in the

study of complex diseases. The KBAC analyzes multi-site

genotypes (or multi-locus genotype), which can be beneficial in

detecting gene interactions [11]. This property is especially

important when multiple genetic loci are jointly analyzed in order

to aggregate rare variants. Interactions are more likely to occur

between genes involved in the same pathways. In addition, it has

been hypothesized that functions of rare variants can be

modulated by common variants [8]. Since the KBAC uses

adaptive weighting instead of a fixed model, unknown patterns

of gene interaction can be automatically integrated into the

analysis. Through models motivated by Hirschsprung’s disease

and breast cancer, it is shown that in the presence of interactions

the KBAC outperforms other approaches. An additional advan-

tage of the KBAC is that kernel weights computed for adaptive

weighting provide a measure with which the relative risk of each

multi-site genotype can be assessed, for further replication studies.

The RVE method which compares the occurrence of variants

which are exclusively observed in cases to those which are only

observed in controls has the lowest power among all tests

evaluated. The RVE method possesses undesired statistical

properties by excluding those variants which are observed in both

cases and controls. For all variants that are not fully penetrant,

when sample size is large, they tend to appear in both case and

control samples and would thus be excluded from the analysis

using RVE. As a result, the RVE method is not asymptotically

consistent; with increasing sample size power may be even lower

than for smaller sample sizes [27].

Forward time simulations of locus genetic data incorporated

both population demographic change and purifying selection.

A Novel Adaptive Method for Rare Variant Analysis
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Both factors are known to impact SFS for observed rare variants

(especially NS variants). Only NS variants were analyzed for

comparing different methods, as it has been suggested that using

NS variants will concentrate variations on functionally significant

class of alleles, and increase signal to noise ratio [27]. There have

been a number of studies on complex diseases which identified

associations with NS variants [3,5,6]. When synonymous muta-

tions are also considered in the analyses, higher proportions of

non-causal variants may be introduced, so the adaptive property

and the robustness of KBAC will be more advantageous.

Whether or not phenotypic effects of causal rare variants are

inversely correlated with their MAF is unknown. Deleterious

functional variants tend to have low frequencies [28], but the

functional effect of a deleterious mutation may not be associated

with the disease. On the other hand, for mutations involved in

complex traits, they may not be at selective disadvantage due to

Table 3. Association analyses of the ANGPTL 3,4,5 and 6 gene variants with human energy metabolism phenotypes.

Phenotype Gene Name KBAC WSS CMC RVE

Numbers of Carriers

of Rare Variants

Observed in Upper/

Lower Quartiles

Number of Carriers of Rare

Variants Observed

Exclusively in either the

Upper or Lower Quartiles

BMI ANGPTL3 0.556 0.832 0.915 0.746 47/48 8/6

ANGPTL4 0.999 0.331 0.412 0.104 62/71 2/7

ANGPTL5 0.001* 0.003** 0.006** 0.263 83/51 5/1

ANGPTL6 0.128 0.189 0.217 0.410 40/29 9/5

DiasBP ANGPTL3 0.237 0.805 0.759 0.950 53/49 6/6

ANGPTL4 0.784 0.437 0.445 0.086 56/63 3/9

ANGPTL5 0.432 0.590 0.652 0.636 71/65 3/4

ANGPTL6 0.045* 0.084 0.088 0.405 49/33 12/7

SysBP ANGPTL3 0.455 0.965 1.000 0.919 49/48 7/6

ANGPTL4 0.409 0.835 0.789 0.935 71/67 6/6

ANGPTL5 0.106 0.498 0.602 0.053 77/71 10/2

ANGPTL6 0.473 0.349 0.346 0.510 34/42 11/7

Cholesterol ANGPTL3 0.950 0.299 0.326 0.906 40/49 7/7

ANGPTL4 0.260 0.503 0.515 0.123 68/59 4/9

ANGPTL5 0.353 0.697 0.783 0.778 68/63 8/7

ANGPTL6 0.348 0.573 0.628 0.052 38/33 10/2

LDL ANGPTL3 0.792 0.894 1.000 0.855 46/46 8/7

ANGPTL4 0.508 0.695 0.709 0.064 66/60 4/11

ANGPTL5 0.544 0.908 0.860 0.278 73/70 1/4

ANGPTL6 0.307 0.745 0.813 0.388 39/36 9/5

HDL ANGPTL3 0.834 0.992 1.000 0.237 50/51 2/7

ANGPTL4 0.021* 0.041* 0.045* 0.681 84/62 7/6

ANGPTL5 0.077 0.115 0.123 0.170 85/67 5/1

ANGPTL6 0.143 0.211 0.239 0.513 43/33 6/9

TG ANGPTL3 0.015* 0.053 0.058 0.312 34/52 6/11

ANGPTL4 0.004** 0.005** 0.006** 0.087 46/76 2/8

ANGPTL5 0.212 0.678 0.852 0.165 62/64 1/5

ANGPTL6 0.683 0.664 0.709 0.057 35/32 15/6

VLDL ANGPTL3 0.028* 0.047* 0.061 0.352 35/53 7/12

ANGPTL4 0.001** 0.006** 0.010* 0.141 49/80 3/9

ANGPTL5 0.265 0.941 1.000 0.263 67/68 1/5

ANGPTL6 0.706 0.756 0.806 0.140 35/34 12/6

Glucose ANGPTL3 0.485 0.589 0.612 0.690 49/55 5/7

ANGPTL4 0.872 0.549 0.659 0.706 75/67 6/7

ANGPTL5 0.407 0.896 0.862 0.021* 76/72 1/9

ANGPTL6 0.196 0.198 0.239 0.026* 44/32 14/3

Nine phenotypes were analyzed: triglyceride (TG), high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), total cholesterol,
glucose, body mass index (BMI), and systolic (SysBP) and diastolic (DiasBP) blood pressure. Analyses were carried-out including only NS variants. The KBAC, WSS, and
CMC were used to analyze each trait and nominally significant p-values are indicated with an asterisk. The p values for KBAC, WSS and RVE were obtained empirically
using 10,000 permutations, while the p-value for CMC was analytically calculated.
doi:10.1371/journal.pgen.1001156.t003
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the fact that most complex traits are late on-set and may not cause

reductions in reproductive fitness. For both types of models, the

advantage of KBAC is apparent. WSS and RVE perform better

under the variable effects models, when only causal variants are

present. This is because high risk causal variants are assigned

higher weights. However, as low frequency non-causal variants

also receive larger weights that negatively affect power, there are

no measurable improvements of WSS compared to the model with

fixed genetic effects. On the other hand, due to the adaptive

nature of KBAC, the method performs consistently the best under

both classes of models.

The KBAC test statistic does not have a closed form

distribution; therefore it is necessary to evaluate significance either

through permutation or using Monte Carlo approximation. For

small sample sizes i.e.,#400 cases and 400 controls, permutation

is recommended, because it can be more reliable than Monte

Carlo approximation. For larger sample sizes, Monte Carlo

approximation not only controls type I error, but also the estimates

of power do not differ from those obtained using permutations

(data not shown). Permutation can be computationally intensive

for large samples and/or genome-wide data where a large number

of genetic regions are analyzed; therefore Monte Carlo approx-

imation can be particularly advantageous to evaluate significance

due to its computational efficiency.

A well known problem of genetic association studies is spurious

findings due to population substructure and/or population

admixture. For rare variant association analysis this problem can

occur when study subjects are sampled from different populations

and the distribution of non-causal variant sites and/or aggregate

frequencies of non-causal variants differ between the sampled

populations. To control for population stratifications, KBAC can

be coupled with principal components analysis (PCA) [29]

approach and eigenvector(s) can be included as covariates in the

analysis (see Methods: Controlling for Confounders). PCA

approach has been shown to be a powerful tool to accurately

infer geographical locations [30,31]. In addition, KBAC can also

be used with clustering/matching based methods, such as

structured association [32,33] to control for population stratifica-

tion.

The application of KBAC as well as WSS, CMC and RVE were

further illustrated by the analyses of genes in ANGPTL family. In

the analyses, all individuals with potentially confounding factors

i.e. diabetics, alcoholics, and individuals treated with lipid lowering

drug were excluded. In the original studies individuals were

excluded based upon both their quantitative trait values and the

confounding factors. For example, only individuals treated with

lipids lowering drugs in the lower quartile of TGs were removed,

but those in the upper quartile were included in the analysis. We

believe excluding individuals based upon their quantitative trait

values should not be done instead all individuals meeting the

exclusion criteria should be removed from the analysis. KBAC

performs consistently well, and identifies the most phenotype-

genotype associations among all the approaches compared. The

effects of mutant ANGPTL genes on lipoprotein lipase (LPL) have

been studied through in vitro functional studies and in vivo mice

studies. LPL has been known to affect glucose metabolism [34],

cholesterol level [34–37], and blood pressure [38]. This biological

evidence strengthens the support of the identified associations.

Additionally, the association between variants in ANGPTL4 gene

and triglyceride levels were successfully replicated using an

independent dataset [5,6].

Although the examples given are for the analysis of single

regions and interaction between two regions, the KBAC can also

be used to analyze entire exomes (or genomes). In order to control

for family-wise error rate (FWER), it is sufficient to use a

Bonferroni correction, since there will be little or no linkage

disequilibrium between rare variants in different genes. It is thus

not necessary to control the FWER using permutations. If exome

sequencing is carried out and analysis is implemented gene by

gene, given that human genome contains ,20,000 genes, a

significance level a~0:05=20,000~2:5|10{6 can be applied.

The correction necessary for gene based association mapping of

rare variants is less than the threshold currently used for genome-

wide association studies [39] which is usually a~5|10{8.

The KBAC is a powerful tool to detect main association effects and

gene interactions in large sequence data sets of candidate genes,

exomes and in the future entire genomes. The KBAC is implemented

in a user friendly R package and is available from the authors.

Methods

Sample Risk
Total sample size is denoted as N , among which there are NA

affected (A) and NU
~N{NA unaffected (U). It is assumed that

there are M sites within the candidate region where rare variants

are observed. The rare variant multi-site genotype for each

‘‘individual’’ is contained in a vector G~ g1,g2, � � � ,gMð Þ, with the

jth entry being the number of rare variants observed at jth site, i.e.

gj has value 2 if the site is homozygous for the rare allele, 1 if the

site is heterozygous, 0 if the site is homozygous wild-type for the

common major alleles. It is further assumed that kz1 distinct

multi-site genotype vectors, i.e G0,G1,G2,:::Gk are observed,

where G1,G2,:::Gk are multi-site genotypes with at least one rare

variant and G0 represents the wild-type genotype without any rare

variants (i.e. a vector of all 0’s). The sample risk for multi-site

genotype Gi is defined as

Ri~
NA

i

Ni

,

which is a consistent estimator of the ratio

NA
|P½Gi DA�

NA|P½Gi DA�z N{NAð Þ|P½Gi DU � :

The ratio increases with disease penetrance of Gi and provides a

sample based measure of the relative risk.

The sample risk Ri for multi-site genotype Gi is modeled using a

mixture distribution with two components, Ri *
D
pik

0
i Rið Þz

1{pið ÞkAi Rið Þ. The component k0i Rið Þ represents the distribution
of the sample risk when multi-site genotype Gi is non-causal and is

known, while kAi Rið Þ represents the unknown distribution of

sample risk when Gi is causal. If the null hypothesis holds, all

genotypes are non-causal, therefore, pi~1. Under the alternative

hypothesis, each genotype can be either causal or non-causal and

the probabilities pi in the probabilistic mixtures are unknown.

If the mixture distribution under the alternative were known,

then each genotype could be classified and only the causal

genotypes would be used in the analysis. However, in disease gene

mapping, the causality of variants is unknown. Instead of trying to

‘estimate’ pi and kAi which are unknown, each multi-site genotype

is adaptively weighted using only the known component, k0i .ð Þ.
Each k0i .ð Þ is called a kernel. The term kernel is borrowed from

density estimation, where the density being estimated is spanned

by a linear combination of kernel functions. The weight each rare

genotype carries is given by the area under the curve which can be
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calculated as a generalized integral

wi~

ðR̂Ri

0

k0i (r)dr~K0
i R̂Ri

� �

,

where R̂Ri is the estimated sample risk for multi-site genotype Gi.

Thereby, under the null hypothesis, the weights are uniformly

distributed and under the alternative, greater weights can be

placed on the multi-site genotypes that are enriched in cases. The

genotypes with high sample risks will be given higher weights

which can potentially separate causal from non-causal genotypes.

Instead of classifying genotypes in a rigid manner with unknown

likelihoods, this method weighs each genotype in a continuous

fashion using only the known component k0i .ð Þ from the mixture

density. The adaptive weighting procedure in the KBAC attains a

good balance between classification accuracy and the number of

parameters which are estimated.

Choice of Kernels
Three types of kernels can be used to assign weights to each rare

genotype; they are asymptotically equivalent. For small to

moderate sample sizes, binomial and hyper-geometric likelihoods

tend to work best, while for large sample sizes the asymptotic

normal kernel is computationally efficient. All examples shown in

this article were carried out using the hyper-geometric kernel.

Hyper-geometric kernel. Under the null hypothesis of no

disease/gene associations, conditioning on the genotype counts

Ni~nif giƒk and the count of cases and controls fNA
~nAg, the

number of diseased ‘‘individuals’’ having multi-site genotype Gi

i.e. nAi ~niri follows a hyper-geometric distribution with kernel

function given by

k0i rið Þ~P½Ri~ri DfNi~nigiƒk,N
A
~nA�~

ni

niri

� �

n{ni

nA{niri

� �

n

nA

� �

As this distribution is discrete, the integral is replaced by

summations, i.e.

K0
i R̂Ri

� �

~

X

ri[
0

ni
,���R̂Ri

� � k0i rið Þ

Marginal binomial kernel. Under the null hypothesis of no

disease/gene association, conditioning on the genotype counts

Ni~nif giƒk, marginally, the number of disease ‘‘individuals’’ with

genotype Gi, nAi ~niri satisfies a binomial distribution,

nAi *Binom ni,
nA

n

� �

. Thus,

k0i rið Þ~P½Ri~ri�~
ni

niri

� �

nA

n

� �niri

1{
nA

n

� �ni 1{rið Þ
:

The weight as above is obtained through summations, i.e.

K0
i R̂Ri

� �

~

X

ri[
0

ni
,���R̂Ri

� � k0i rið Þ:

Asymptotic normal kernel. Under the null distribution, the

sample risk for genotype Gi is asymptotically normal, i.e.

ffiffiffiffi

ni
p

Ri{
nA

n

� �

{�?

D
N 0,

nA

n
1{

nA

n

� �� �

so the kernel is given by k0i rið Þ~
ffiffiffiffi

ni
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nA

n
1{

nA

n

� �

s w

ffiffiffiffi

ni
p

ri{
nA

n

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nA

n
1{

nA

n

� �

s

0

B

B

B

B

@

1

C

C

C

C

A

, where w .ð Þ is the probability density

function for a standard normal random variable. The weight for

genotype Gi is given by the integral

K0
i R̂Ri

� �

~

ðR̂Ri

0

k0i rið Þdri:

Test Statistics
Each ‘‘individual’’ with multi-site genotype Gi in the sample will

be assigned weight wi. The weight is given by the kernel functions

depending on the estimated sample risk R̂Ri i.e. wi~K0
i (R̂Ri). The

weights assigned to rare genotypes are aggregated and contrasted

between cases and controls.

The KBAC statistic is defined as KBAC~
P

k

i~1

NA
i

	

NA
{

�

�

NU
i

	

NU ÞK0
i R̂Ri

� �

Þ2, which compares the difference of weighted

multi-site genotype frequencies between cases and controls.

When a one sided alternative hypothesis is tested, e.g. the

enrichment of causal variants in cases, a corresponding one sided

version of KBAC can be used, i.e. KBAC1~
P

k

i~1

NA
i

	

NA
{

�

NU
i

	

NU ÞK0
i R̂Ri

� �

. In this article, all power comparisons were

based upon two sided tests for each method.

Standard permutation procedure is used to obtain empirical

p-values for small sample sizes and for large sample sizes

significance can be obtained through the Monte Carlo approxi-

mation. A graphical illustration of the KBAC statistic can be found

in (Figure S9).

Controlling for Confounders
In order to control for sample heterogeneities such as

population stratification/admixture, it is desirable to be able to

incorporate covariates in the association analysis. The kernel

weights computed for the KBAC statistic can be used with logistic

regression. For an individual j with multi-site genotype Gi, we

define a variable for the kernel weight, i.e. Xj~wi. The logistic

regression model for association testing has the form

log
P Yj~1DXj ,Zjl

� �

1{P Yj~1DXj ,Zjl

� �

 !

~b0zb1Xjz

X

l
alZjl

where Zjl


 �

j,l
are the covariates such as age, sex or eigenvectors

for genotypes.

A score statistic to test H0 : b1~0 can be computed in closed

form. Due to the complexities involved in computing kernel

weights, the score statistic does not follow a normal distribution.
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Standard permutation procedure can be applied to evaluate the

significance. When no additional covariates are controlled, the

score function U satisfies U~
P

j Xj Yj{
�YY

� �

[40]. Simple

algebraic manipulations will lead to the equivalence of the score

function U and the KBAC statistic (up to a constant scalar). In

addition, when common variants in the gene are also hypothesized

to play a role in the etiology of the phenotype of interest, their

genotypes can be included as covariates and tested in a similar

manner as for the CMC [20].

Monte Carlo Approximation
Monte Carlo approximation under the null hypothesis.

Although using permutation can provide an exact empirical

distribution under the null hypothesis, it can be computationally

prohibitive for large sample sizes and genome-wide association

studies. A Monte Carlo method was developed which enables fast

computation of p-values efficiently. Under the null hypothesis,

conditioning on the genotype counts, nif g1ƒiƒk and the total

number of cases and controls nA,n{nA, the number of cases nAi
with multi-site genotype Gi follows a binomial distribution

nAi *Binom ni,
nA

n

� �

. Due to the low frequencies for each multi-

site genotype containing rare variants, the nAi ’s are approximately

independent of each other. Therefore, Monte Carlo simulation

can be carried out as shown in algorithm 1:

Algorithm 1:

Step 1: Simulate a k-vector of independent binomials:

m1,m2, � � � � � � ,mkð Þ, with mi *
D
Binom ni,

nA

n

� �

Step 2: Compute U~
P

k

i~1

mi

	

nA{ ni{mið Þ
	

n{nA
� �� �

K0
i mi=nið Þ

� �2

Step 3: Repeat step 1 and step 2 N times and record each

KBAC statistic calculated as ~UU~ U1, � � � � � � ,UNð Þ. Through

comparing the KBAC statistic calculated from the original data

with the N KBAC statistic from Monte Carlo simulation, the

empirical p-value is given by p̂p~ 1
N

P

N

i~1

I Ui§KBAC½ �.
Monte Carlo approximation under the alternative

hypothesis: power calculations. In this article power

calculations were carried out empirically; haplotypes were

generated using forward time simulations and case-control status

was assigned via a linear log odds model. Power calculations can

also be carried out using Monte Carlo approximation. Under the

alternative hypothesis of disease-gene associations, it is assumed

that the disease model is known (prevalence and population multi-

site genotype frequencies P~ p1,p2, � � � ,pkð Þ etc.) Therefore multi-

site genotype frequencies for cases and controls can be assigned.

The set of frequencies in cases and controls is denoted as

PA
~(pA1 ,p

A
2 , � � � ,pAk ), PU

~(pU1 ,p
U
2 , � � � ,pUk ). Conditioning on the

genotype counts, nif g1ƒiƒk and the total number of cases and

controls nA,n{nA, the number of cases nAi with the multi-site

genotype Gi follows a binomial distribution, i.e.

nAi *Binom ni,
nApAi

n{nAð ÞpUi znApAi

� �

:

The power calculation under significance level a can be carried

out in the following steps:

Algorithm 2:

Step 0: Generate N1 kz1-vectors n11,n
1
2, � � � ,n1k,n10

� �

, � � � ,
nN1

1 ,nN1

2 , � � � ,nN1

k ,nN1

0

� �

satisfying multinomial distribution i.e.

ni1,n
i
2, � � � ,nik,ni0

� �

*Multi n; p1,p2, � � � ,pk,1{
X

k

l~1

pl

 !

For each vector n1,n2, � � � ,nk,n0ð Þ~ ni1,n
i
2, � � � ,nik,ni0

� �

, we

follow step 1 to 4:

Step 1: Obtain an empirical distribution under the null by

following step 1 and 2 in algorithm 1. The vector of U ’s obtained

is denoted by ~UU0 and the 1{að Þth empirical quantile for ~UU0 is

denoted by U0
a

Step 2: Simulate a k-vector with independent binomials:

m1,m2, � � � � � � ,mkð Þ, with ml*Binom nl ,
nApAl

n{nA
� �

pUl znApAl

 !

,

l~1,2, � � � ,k
Step 3: Compute U~

P

k

l~1

ml

	

nA{ nl{mlð Þ
	

n{nA
� �� �

K0
l ml=nlð Þ

� �2

Step 4: Repeat step 2 and step 3 N2 times and record each

KBAC statistic calculated as ~UUA
~ UA

1 , � � � � � � ,UA
N2

� 


. By com-

paring the KBAC statistic calculated from Monte Carlo simulation

with U0
a , the empirical power conditional on n1,n2, � � � ,nk,n0ð Þ

~ ni1, � � � ,nik,ni0
� �

is given by 1{b̂bi~
1
N2

P

N2

j~1

I UA
j §U0

a

h i

.

Step 5: The estimation of unconditional power is given by

averaging b̂bi
0
s, i.e. 1{b̂b~ 1

N1

P

N1

i~1

1{b̂bi

� 


Rare Variant Analysis Methods That Are Compared to the
KBAC
The power of WSS, CMC and RVE were compared to KBAC

in the article. A sketch of each method is provided here. More

detailed descriptions can be found in the cited original reference.

WSS was developed by Madsen and Browning [21]. It was

designed to test for the differences of the number of mutations

between cases and controls. Each mutation was weighted

according to its frequency in controls, and lower frequency

variants will be assigned higher weights. The statistical significance

for the WSS statistic is obtained empirically through permutations.

CMC was developed by Li and Leal [20]. When applied to

testing rare variant associations, multiple rare variants in the gene

region are collapsed and carrier frequencies are compared

between cases and control using Pearson’s Chi-square test. The

RVE [3,4] was first introduced in the analysis of sequence data

from Dallas Heart Study. It compares frequency of carriers of rare

variants that are found exclusively in cases or controls using

Fisher’s exact test.

Generation of Genetic Data
Simulation of demographic model and selections. To

evaluate the performance of KBAC, population genetic data was

generated using forward time simulation [22]. Genetic data from

two populations, AA and EA were generated. The parameters for

demographic changes and selection coefficients were estimated in

Boyko et al [23]. For AA, a simple two-epoch model was used

(Figure S10) while for EA, a six parameter complex bottleneck

model was employed (Figure S11). Purifying selection was also

simulated, with s and 2s being the selective disadvantage of

heterozygous and homozygous new mutations. Scaled fitness effect

c~2Ncurrs (where Ncurr is the current effective population size) is

assumed to follow a gamma distribution, which was shown to be

parsimonious and fit the data well. Details of the choice of

parameters can be found in (Text S1). A mutation rate of

mS~1:8|10{8 per nucleotide per generation is assumed. On

average, the coding region for human gene is 1500 base pairs (bp)

long [41,42], therefore 1500 bps was used in the simulation to
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specify the locus scaled mutation rate. 100 haplotype pools were

generated. When generating samples, one pool is randomly chosen

for each replicate. The multi-site genotype of an ‘‘individual’’ is

obtained by pairing two randomly sampled haplotypes.

Generation of genetic data using rare variant SFS. In

order to further evaluate the performance of different methods, we

generate genetic data using SFS estimated from genes in ANGPTL

family (ANGPTL 3,4,5 and 6) from DHS. The SFS of rare variants

was estimated using a method of moments approach (see Text S1

for details). When generating samples, estimated rare variants

frequencies for one ANGPTL gene is randomly picked for each

replicate. The multi-site genotype of an ‘‘individual’’ is generated

according to the chosen set of gene variant frequencies.

Generation of phenotype data with only main

effects. The disease status of each ‘‘individual’’ is assigned

based upon their multi-site genotypes consisting of only those rare

NS variants (MAF#1%). Fifty-percent of the rare NS variant

nucleotide sites were selected to be causal, where the rare mutant

allele has an effect on the disease odds and the remaining rare

variant sites are non-causal with no phenotypic effect. Two types

of penetrance models were evaluated. In the first type of model,

the genetic effects of causal variants are constant (OR=3)

regardless of their allele frequencies. For the second class of

models, the genetic effects are inversely correlated with the MAFs.

Disease odds of individual rare variants varies in the range of

2,20. As a majority of rare variants are of extremely low

frequencies, most of the uncovered rare variants in a case control

sample have ORs between 2 and 4. This is compatible with

surveys for multi-factorial diseases [8]. For both classes of

penetrance specifications, a linear log odds model was applied to

assign the affection status for each individual. Assignment of

disease status continues until a sample of 1000 cases and 1000

controls is obtained for each replicate. To evaluate the effects of

misclassification due to non-causal variants, scenarios were

considered where 20%, 40%, 60%, 80%, and 100% of the non-

causal variants with all of the causal variants were included in the

sample. Additionally to evaluate the effect of misclassification due

to exclusion of causal variants, 20%, 40%, and 60% of the causal

variants were excluded from the analysis, while no non-causal

variants are included in the analysis.

Generation of data with gene interactions. To evaluate

the within gene interaction and between gene interaction models,

1000 cases/1000 controls and 300 cases/300 controls were

generated for each replicate, respectively. For each model, 25% to

100% of the simulated rare variant sites are causal while the

remaining rare variant sites are non-causal. For the within gene

interaction model, one site with a common variant [MAF.20%] is

randomly selected. The disease status of each ‘‘individual’’ is

assigned based upon their multi-site genotype using a linear log odds

model. The genetic effects of causal rare variants are modulated by

the alleles at the chosen common variant site. Each causal rare

variant increases disease risk with an OR of 3 only if the rare variant

is on the same haplotype as the minor allele from the common

variant site, otherwise the OR=1. For the between gene interaction

model, two unlinked genes are simulated for each ‘‘individual’’. The

disease status of each ‘‘individual’’ is assigned based upon their joint

multi-site genotype at high risk gene 1 and low risk gene 2 using a

linear log odds model. Each causal rare variant in gene 2 increases

disease risk with an OR of 2.0 if there are no causal rare variants in

gene 1; however, if there are rare causal variants in gene 1, the

causal variants in gene 2 do not increase risk and each causal variant

in gene 1 increases disease risk with an OR of 4.0 regardless of the

genotype at gene 2. Mathematical illustrations of these two models

are shown in Text S1.

Analysis of Energy Metabolism Traits and Rare Variants in
ANGPTL 3, 4, 5 and 6

The DHS dataset is a multi-ethnic population based probability

sample [1830 AA, 601 Hispanics (H), 1045 EA, and 75 from other

ethnicities] from Dallas County residents whose lipids and glucose

metabolism have been characterized and recorded [26,43]. In

order to investigate how sequence variations in ANGTPL3, 4, 5

and 6 influence energy metabolism in humans, coding regions of

the four gene were sequenced using DNA samples obtained from

3551 participants in DHS [5]. A total of 348 nucleotide sites of

sequence variations were uncovered in all four genes. Most of

them are rare and 86% of them have MAFs below 1% [5].

Individuals with diabetes mellitus, heavy alcohol use, or who were

taking lipids lowering drugs were removed from the all the

analyses because these factors could be potential confounders.

Additionally individuals who do not belong to the AA, H or EA

ethnic groups were removed from the analysis. Following the

original study [5], and to control for potential confounders [44] we

stratified the sample by race, sex, and quantitative trait level. For

each quantitative trait, to test if the rare variants are enriched in

the expected extremes, individuals from bottom and top quartiles

are used to mimic a case-control type of design. The KBAC, WSS,

CMC and RVE were applied to carry-out the association analysis.

Supporting Information

Figure S1 Schematic illustration of the permutation procedure

used for evaluating statistical significance empirically.

Found at: doi:10.1371/journal.pgen.1001156.s001 (0.19 MB TIF)

Figure S2 Impact of misclassifications under main effects model

with fixed genetic effects using simulated SFS for EA.

Found at: doi:10.1371/journal.pgen.1001156.s002 (0.18 MB TIF)

Figure S3 Impact of misclassifications under main effects model

with variable genetic effects using simulated SFS for EA.

Found at: doi:10.1371/journal.pgen.1001156.s003 (0.18 MB TIF)

Figure S4 Impact of misclassifications under main effects model

with fixed genetic effects using estimated SFS for AA from genes in

ANGPTL family.

Found at: doi:10.1371/journal.pgen.1001156.s004 (0.18 MB TIF)

Figure S5 Impact of misclassifications under main effects model

with variable genetic effects using estimated SFS for AA from

genes in ANGPTL family.

Found at: doi:10.1371/journal.pgen.1001156.s005 (0.18 MB TIF)

Figure S6 Impact of misclassifications under main effects model

with fixed genetic effects using estimated SFS for EA from genes in

ANGPTL family.

Found at: doi:10.1371/journal.pgen.1001156.s006 (0.18 MB TIF)

Figure S7 Impact of misclassifications under main effects model

with variable genetic effects using estimated SFS for EA from

genes in ANGPTL family.

Found at: doi:10.1371/journal.pgen.1001156.s007 (0.18 MB TIF)

Figure S8 Power comparisons for within gene (left panel) and be-

tween gene interaction model (right panel) with simulated SFS for EA.

Found at: doi:10.1371/journal.pgen.1001156.s008 (0.19 MB TIF)

Figure S9 Graphical Illustrations for KBAC Statistic. In the

KBAC framework, variants adaptive weighting and testing of

associations are simultaneously performed. The statistical signif-

icance can be evaluated using either permutations or Monte Carlo

approximations. For information on nomenclature used please

refer to the Materials and Methods section.
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Found at: doi:10.1371/journal.pgen.1001156.s009 (0.25 MB TIF)

Figure S10 Demographic History of AA with Two-Epoch

Change.

Found at: doi:10.1371/journal.pgen.1001156.s010 (0.06 MB TIF)

Figure S11 Complex Demographic History of EA.

Found at: doi:10.1371/journal.pgen.1001156.s011 (0.09 MB TIF)

Table S1 Rare variant summary statistics. The summary

statistics are displayed for the generated replicates under main

effects model with fixed and variable genetic effects using

simulated SFS from EA population. Scenarios with different

proportions of causal variants excluded and scenarios with

different proportions of non-causal variants included were

considered. The table displays for a given sample, the information

on a) the average proportion of rare NS variant carriers among

cases and controls; b) the mean number of rare NS variant sites; c)

the mean number of rare NS variant sites that are exclusive to

cases or controls; d) the average proportion of case and control

rare NS variant carriers with more than one rare variant. For each

scenario, a sample size of 1,000 cases and 1,000 controls were

used. 2,000 replicates were generated for each scenario.

Found at: doi:10.1371/journal.pgen.1001156.s012 (0.05 MB

DOC)

Table S2 Rare variant summary statistics. The summary

statistics are displayed for the generated replicates under within

gene interaction model and between gene interaction model using

simulated SFS from EA population. Scenarios with different

proportions of causal variants were considered. The table displays

for a given sample, the information on a) the average proportion of

rare NS variant carriers among cases and controls; b) the mean

number of rare NS variant sites; c) the mean number of rare NS

variant sites that are exclusive to cases or controls; d) the average

proportion of case and control rare NS variant carriers with more

than one rare variant. For within gene interaction model, a sample

size of 1,000 cases and 1,000 controls were used, and for between

gene interaction model, a sample size of 300 cases and 300

controls were used. 2,000 replicates were generated for each

scenario.

Found at: doi:10.1371/journal.pgen.1001156.s013 (0.04 MB

DOC)

Table S3 Rare variant summary statistics. The summary

statistics are displayed for the generated replicates under main

effects model with fixed and variable genetic effects. Estimated

SFS from AA population with ANGPTL dataset was used.

Scenarios with different proportions of causal variants excluded

and scenarios with different proportions of non-causal variants

included were considered. The table displays for a given sample,

the information on a) the average proportion of rare NS variant

carriers among cases and controls; b) the mean number of rare NS

variant sites; c) the mean number of rare NS variant sites that are

exclusive to cases or controls; d) the average proportion of case and

control rare NS variant carriers with more than one rare variant.

For each scenario, a sample size of 1,000 cases and 1,000 controls

were used. 2,000 replicates were generated for each scenario.

Found at: doi:10.1371/journal.pgen.1001156.s014 (0.04 MB

DOC)

Table S4 Rare variant summary statistics. The summary

statistics are displayed for the generated replicates under main

effects model with fixed and variable genetic effects. Estimated

SFS from EA population with ANGPTL dataset was used.

Scenarios with different proportions of causal variants excluded

and scenarios with different proportions of non-causal variants

included were considered. The table displays for a given sample,

the information on a) the average proportion of rare NS variant

carriers among cases and controls; b) the mean number of rare NS

variant sites; c) the mean number of rare NS variant sites that are

exclusive to cases or controls; d) the average proportion of case and

control rare NS variant carriers with more than one rare variant.

For each scenario, a sample size of 1,000 cases and 1,000 controls

were used. 2,000 replicates were generated for each scenario.

Found at: doi:10.1371/journal.pgen.1001156.s015 (0.04 MB

DOC)

Text S1 Supplementary Material.

Found at: doi:10.1371/journal.pgen.1001156.s016 (0.25 MB

DOC)
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