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Abstract 

Background: AI for medical diagnosis has made a tremendous impact by applying convolutional neural networks 
(CNNs) to medical image classification and momentum plays an essential role in stochastic gradient optimization 
algorithms for accelerating or improving training convolutional neural networks. In traditional optimizers in CNNs, the 
momentum is usually weighted by a constant. However, tuning hyperparameters for momentum can be computa-
tionally complex. In this paper, we propose a novel adaptive momentum for fast and stable convergence.

Method: Applying adaptive momentum rate proposes increasing or decreasing based on every epoch’s error 
changes, and it eliminates the need for momentum hyperparameter optimization. We tested the proposed method 
with 3 different datasets: REMBRANDT Brain Cancer, NIH Chest X-ray, COVID-19 CT scan. We compared the perfor-
mance of a novel adaptive momentum optimizer with Stochastic gradient descent (SGD) and other adaptive optimiz-
ers such as Adam and RMSprop.

Results: Proposed method improves SGD performance by reducing classification error from 6.12 to 5.44%, and it 
achieved the lowest error and highest accuracy compared with other optimizers. To strengthen the outcomes of this 
study, we investigated the performance comparison for the state-of-the-art CNN architectures with adaptive momen-
tum. The results shows that the proposed method achieved the highest with 95% compared to state-of-the-art CNN 
architectures while using the same dataset. The proposed method improves convergence performance by reducing 
classification error and achieves high accuracy compared with other optimizers.

Keywords: Adaptive momentum methods, Nonconvex optimization, Backpropagation algorithm, Convolutional 
neural networks, Medical image classification
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Introduction
In recent years, developments of Deep Neural Networks 
(DNNs) have combined with large amounts of medical 
images allows more accurate and rapid diagnosis of dis-
orders. It’s helping neuro-oncologists diagnose patients 
more accurately and recommend effective treatments. 

The challenge of early diagnosis of disorders increased 
the importance of new deep learning techniques in medi-
cal science. Convolutional neural networks (CNNs) are 
the most popular deep learning algorithm in computer 
vision. The main advantage of CNN compared to tradi-
tional networks is that it automatically detects significant 
features, and the network architecture gives CNN the 
ability to learn complicated features from images [1]. The 
new methods are also improving the efficiency of CNNs 
and their accuracy. In the study [2], the author improved 
the CNN model by using adaptive dropout instead of the 
global average pool to perform multi-label classification 
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on the data set of X-ray images. The x-ray images reveal 
multiple diseases, which makes the problem a multi-
label classification problem. They have implemented 
the multi-label classification problem by splitting it into 
multiple binary problems and reported improved results. 
Li et  al. [3] addressed the challenge of a small dataset, 
weak annotations, and varying scales of interest by scal-
ing features extracted from medical images to different 
sizes to capture the scale-invariant patterns. To detect 
invariant patterns from features of different scales, they 
have used the shared kernels. Then they have applied the 
top-k pooling to extract the highest activations from each 
feature map in each convolution channel. Wei et  al. [4] 
proposed two-channel CNN for classification of MHSI 
(Medical Hyperspectral Image) data, including the end-
to-end CNN for the extraction of global representative 
features from unlabeled data and a basic CNN to pre-
serve the information of local details. Agrawal et  al. [5] 
proposed a metric to test the suitable CNN architecture 
to implement transfer learning. They have performed the 
classification of gastro-intestinal tract images and com-
pared the performance of five different CNN architec-
tures. In the study [6], the author presented an approach 
to automatically adjust CNN architecture to increase 
accuracy and decrease test runs. They have used three 
optimization algorithms, including GA (Genetic Algo-
rithm), BOA (Bayesian Optimization Algorithm), and 
NM (Nelder-Mead) in their approach to tune CNN. 
Finally, the process of creating a fine-tuned CNN archi-
tecture using optimization algorithms evaluated over 
the five thousand biomedical case images belonging to 
six different classes and results are significant with all 
three optimization algorithms. In addition to the differ-
ent implementation approaches of CNN a recent study 
[7] evaluated the CNN and transfer learning for natural 
medical images and classified them under the defined 
set of labels. They have concluded that we can transfer 
knowledge from natural images to medical images, but 
if the databases are huge, then the results may vary. The 
CNN model produces significant results when applied 
to image processing. Rather than designing new models, 
the researcher [8] applied a Meta-heuristic optimization 
algorithm to boost the performance of CNN for medi-
cal image classification. Another study by [9] optimized 
the CNN model for histopathological image classification 
and reported the significant performance of the model. 
They have followed UED (uniform experimental design) 
and performed the parameter optimization of breast can-
cer histopathological images. Automatic identification of 
diseases is a great contribution in the field of medicine. 
Therefore, the author in [10] performed classification 
using CNN to classify bone scintigraphy images. They 
also compared the well-known CNN architectures for 

image classification, including GoogleNet, VGG16, and 
the ResNet50.

Furthermore, as the current world situation resulting 
from Covid-19 worsens day by day, researchers are also 
focusing on the automatic detection of disease using 
deep learning models. For example, [11] the authors per-
formed classification using a CNN model on 165 x-ray 
images of Covid-19 patients. They have trained the model 
with the x-ray images for both positive and negative 
Covid-19 patients. The results were promising in detect-
ing the disease using the model, which can positively 
contribute to the recent pandemic.

In recent years, AI applications of medical image anal-
ysis have increased [12–21]. For example, the author 
[12] has introduced brain tumor classification using 
CNN’s while still some researchers using support vec-
tor machines [13], region augmentation [15, 19], wavelet 
transformations  [16, 17]. Although brain tumor image 
segmentation plays a vital role in [14] and [18], it is out 
of the scope of this research. As per the recent trend of 
modeling CNN for medical image classification, the 
authors of studies [12, 16], and [19] both performed clas-
sification using medical images. However, in [19] clas-
sified the images into five categories related to 3 brain 
tumor types by training the parameters of CNN rigor-
ously. While the authors [20] used a new machine learn-
ing architecture (CapsNet) in brain tumor classification, 
there is still time to achieve it due to the slow learning 
process. In [21], the author classified the 2D-CE-MRI 
images into three types of brain tumors by applying the 
transfer learning-based fine-tuning approach.

Stochastic gradient descent (SGD) is considered one of 
the most efficient algorithms [22] for optimizing CNNs. 
This optimization method minimizes the objective func-
tion J(θ) by controlling the model’s parameter θ ∈  Rd. The 
control is attained by updating the parameters in the 
opposite direction of the gradient of objective function 
∇θJ(θ) in comparison to different parameters [23]. The 
local minimum is represented by the size and number of 
steps required by the learning rate η of the algorithm. The 
benefit of the gradient descent method for CNN optimi-
zation is its capability to solve multi-oriented complex 
problems that conventional statistical methods cannot 
solve. Although it is an efficient algorithm, some limita-
tions degrade its performance, including a high steady 
error rate and slow convergence. These limitations can 
be mitigated using a method known as the momentum 
technique. This technique decreases the steepest descent 
error. Moreover, it aids in increasing the convergence 
rate. The drawback of the momentum technique is that 
when fixed momentum is in a negative gradient direc-
tion, it will not arrange the weight down the slope but 
rather to the error surface [24–26]. The backpropagation 
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(BP) technique computes this gradient that SGD uses, 
and BP can resolve this issue by helping to extend the 
fixed momentum to adaptive momentum. This may be 
achieved by superior adaptation with the iterations while 
gaining optimal convergence speed. During the iteration 
process, the adaptive momentum will update itself step 
by step. The only variable on which this adaptive behav-
ior depends is the prediction of an output value error in 
each iteration.

This paper presents a novel adaptive momentum tech-
nique with two significant benefits: Reducing overall 
error, achieving the highest accuracy, and accelerating 
fast convergence. Taken results from performance com-
parison analysis (confusion matrix) proposed adaptive 
momentum have improved performance and increased 
efficiency compared to traditional stochastic gradient 
descent and other state-of-the-art optimization algo-
rithms. The contributions of this paper can be summa-
rized as follows:

• Proposed boosted backpropagation method for not 
only for binary classification but also multi-label and 
multi-class classification, which is more complex and 
challenging when compared with simple binary clas-
sification. The proposed method tested on 3 different 
medical image datasets [27–29] and achieved highest 
results.

• Demonstrated how adaptive momentum improves 
the performance and convergence speed of SGD in 
CNNs when detecting medical disorders

• Compared adaptive momentum optimization algo-
rithm with other optimizers and performed promis-
ing results

• Investigated the performance of pre-trained CNNs 
when using adaptive momentum, not only against 
state of the art architectures but also against CNNs 
trained from scratch using medical imaging data.

The layout of this paper is as follows: The proposed 
approach is given in The proposed approach. The experi-
mental settings, fine tuning, dataset preprocessing is 
shown in Experimental study. The experimental results 
and comparison that show the performance of the pro-
posed method are shown in Evaluation results, and the 
discussion and future work discussion is presented in 
Discussion.

The proposed approach
There is a proportional increase in computational effort 
when using multilayered networks to compute a wide 
range of Boolean functions [30]. Using gradient descent, 
the backpropagation algorithm searches for the mini-
mum of the error function in weight [31, 32]. Learning 

problems are solved by combining the weights, mini-
mizing the error function. Backpropagation entails both 
backward and forward steps. It performs a backward 
pass by adjusting the model’s parameters to minimize the 
error function [33]. In the forward process, “c” represents 
the inputs to the neural network with “x” neurons.  wxk is 
the weight of interconnection between the hidden layer 
and neurons. “k” represents the hidden-layer neurons. 
The hidden layer can be defined as:

where bh is a bias input layer. In the next step, this hidden 
layer is passed through an activation function [22]. After 
calculating the overall output by multiplying the output 
of the hidden layer neurons with the hidden layer weights 
wxk , the results, pass through an activation function. 
The aim is to minimize the loss function (ω) by adjusting 
weights to reach a global minimum; this can be described 
by the following update rule:

to get the gradient of E with respect to the wpq , we use 
the chain rule;

The gradient of the error function E is

Which is:

In this case the initial  W0, the iterative increment for-
mula for the weights takes the form

where ƞ > 0 is the learning rate which indicates how far to 
go along the negative direction of the gradient. However, 
in this case, the convergence speed is very slow due to 
the saturation behavior of the activation function in the 
network, which is even much worse for the network with 
multi-hidden layer networks [34]. This is because even 
if the output unit saturates the corresponding decent 
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gradient takes a small value, even if the output error is 
large, which will result in no significant progress in the 
weight adjustment. The second disadvantage of this 
method is the difficulty in choosing a proper learning rate 
ƞ to achieve fast learning while maintaining the learn-
ing procedure stable [35]. These problems contribute to 
the lack of an inability to apply conventional BP to a wide 
number of applications.

Momentum term prevents search deviation by observ-
ing two successive gradient steps to control or uphold the 
second. The momentum term is a fraction of the previ-
ous weight correction. During the last few years dif-
ferent modified versions of BP versions introduced in 
most of the work was concerned with the effect of both 
momentum and learning rates in relation to the speed of 
conversions. This is because these two parameters have 
a direct relation to conversion underdamped oscillation 
conditions. This is usually achieved by modifying Eq. (7) 
by adding a fraction of the previous weight adjustment, 
which leads to

In this case �Wn−1 = (Wn −Wn−1) , the above equa-
tion can now be rewritten as;

where α�Wn−1 is the momentum term while α is the 
momentum coefficient which is a positive number and 
(0 < α < 1).

Backpropagation with adaptive momentum
In conventional BP the use of constant learning and 
momentum terms is an effective way to accelerate the 
learning convergence by adjusting these terms during the 
training process. The use of a small learning rate induces 
a small change in the network weights from one itera-
tion to the next leading to a smoother learning curve. 
However, using a larger learning term value would result 
in a larger change in the network weights, which may 

cause network instability and oscillatory effect. Suitable 
momentum coefficient and learning rates are required 
to achieve fast and stable convergence during the train-
ing process. This study intends to introduce a BP algo-
rithm with a variable adaptive momentum coefficient and 
learning rate. The proposed variable momentum is given 
by equation as:

(8)Wn+1 = Wn − ηEW(Wn)+ α(Wn −Wn−1)

(9)�Wn = −ηEW(Wn)+ α�Wn−1 n = 0, 1, . . .

where β is the forgetting factor (0 ≪ β < 1).
The initial value of β is expected to be large enough; 

this will result in the term 1− βn close to unity. As 
such, the initial value of α(n) will be relatively large. 
It is expected that a rapid convergence of the updated 
weights can be achieved through a minimal number of 
iterations, which will be enhanced further as the value 
of momentum becomes smaller. Hence, it provides low-
error performance for the weights update in (7). The 
momentum tracks of the error E(n) in each epoch and 
decreases or increases within a given range. We create 
a velocity variable to store our momentum for every 
parameter.

The gradient of the error function (3) with respect to W 
and V (velocity) and given the initial weights w0 , w1 , and 
v0 , v1 , the momentum algorithm updates the weights w 
and v iteratively by;

where α ∈ (0, 1) is the variable adaptive momentum coef-
ficient given by Eq. (10), and η ∈ (0, 1) is the learning rate 
(0.01).

Then Eq. (11) can be written as

The convergence of the adaptive momentum algo-
rithm is said to be weakly convergent under the following 
assumptions.

(a) The denotation subset function f(t) , and their 
derivatives f′(t) , and f′′(t) of Eq.  (1) are uniformly 
bounded for all t ∈ R

(b) Wn(n = 1, 2, . . . .. are uniformly bounded)

(10)α(n) =
β
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−
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(13)
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(c) The following set has a finite number of elements

Assuming that the error function given by (12) and the 
weight sequence {Wn} generated by (13) with an initial 
weight value W0 confirms that using assumption (a), (b), 
and (c) will hold for the final network output.

1. E(Wn+1) ≤ E(Wn), n = 0, 1, . . .

2. There is E∗ ≥ 0 such that limn→∞E(wn, Vn) = E∗

3. limn→∞EW(wn, Vn) = 0

4. limn→∞Evi
(

wn,, Vn

)

= 0, i = 1, . . . ., N

For any input , the output of the hidden neurons 
is , and the network output is

Hence if assumption (c) is satisfied, then the (15) will 
converges to a local minimum 

(

w∗, V∗
)

 , which means

The proposed variable momentum algorithm is dif-
ferent from previous state of the art methods as it uses 
the error to update the momentum term which means 
that the momentum term is directly related to the error 
value and behaves in such a way to reduce the error. In 
the next section, medial data preprocessing is going to be 
explained in which gets transformed, to bring it to such 
a state that the proposed variable adaptive momentum 
can easily parse it. In our experiments, 3 medical data-
sets have been selected to include all classification tasks: 
binary, multi label and multi class classification.

Experimental study
Brain tumor dataset
The largest cancer imaging archive from the REM-
BRANDT dataset for multi-class classification (Fig.  1) 
comprises 110.020 MRI images of tumors for 130 patients 
[27]. We only focused Astrocytoma, Glioblastoma, Oli-
godendroglioma and unidentified tumor image types. We 
have not considered the grade types of the tumor. In the 
experiments, we found out that, some patient’s IDs were 
not found in metadata and some images were detected 
as outliers. We removed those images from the dataset. 
Finally, 106.541 images are classified for processing. The 
standard format for MRI images is DICOM image file 
format which was arranged according to the patient’s 
ID. In the next step, these images were converted into 

(14)
ϕ = (w,V)|Ew(w,V) = 0, Ew(w,V) = 0, i = 1, . . . ., N}

(15)

(16)limn→∞wn = w∗, limn→∞Vn = V∗

(17)Ew
(

w∗, V∗
)

= 0, Evi
(

w∗, V∗
)

= 0, i = 1, .., N

standard PNG format and were categorized based on 
types of tumors. This work was not done manually for all 
the images, but an automated approach is used with the 
help of metadata before conversion to PNG format. The 
study used encoded images which were represented by 
scalar string tensors.

Chest X‑ray dataset
Chest X-ray examination is one of the most frequent and 
cost-effective medical imaging examinations. However, 
it may be difficult clinical diagnosis of chest X-rays and 

Fig. 1 Samples from REMBRANDT brain tumor dataset

Fig. 2 Samples from the NIH chest X-ray dataset
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sometimes more difficult than diagnosing with a chest 
CT imaging. NIH Chest X-ray Dataset (Fig.  2) is com-
prised of 112,120 X-ray images with disease multi-labels 
from 30,805 unique patients [28]. The initial dataframe 
has been preprocessed to format (TFRecords) more suit-
able for CNN training purposes. Only images (down-
scaled to 600 × 600 and encoded as 1-channel jpegs) and 
corresponding diagnosis were left with all additional 
patient information excluded (e.g., age, sex, etc.). All 
112,120 samples were kept (no filtration, grouping, or 
removing were performed). We focused all disease cat-
egories including Atelectasis, Consolidation, Infiltration, 
Pneumothorax, Edema, Emphysema, Fibrosis, Effusion, 
Pneumonia, Pleural Thickening, Cardiomegaly, Nodule, 
Mass and Hernia.

Covid‑19 CT scan dataset
During the pandemic, Maftouni [29] and his friends 
created a largest COVID-19 lung CT dataset (Fig.  3) so 
far, with 8.2 usability in Kaggle by curating data from 7 
public datasets. These datasets have been publicly used 
in COVID-19 diagnosis literature and proven their effi-
ciency in deep learning applications. Therefore, the 
merged dataset is expected to improve the generaliza-
tion ability of deep learning methods by learning from 
all these resources together. The dataset has COVID-19, 
Normal, and CAP CT slices together with their corre-
sponding metadata. Some of the datasets consist of cat-
egorized CT slices, and some include CT volumes with 
annotated lesion slices. Therefore, we used the slice-level 
annotations to extract axial slices from CT volumes. They 

converted all the images to 8-bit to have a consistent 
depth. They removed the closed lung normal slices that 
do not carry information about inside lung manifesta-
tions to ensure dataset quality. Additionally, they did not 
include images lacking clear class labels or patient infor-
mation. In total, they have gathered 7,593 COVID-19 
images from 466 patients, 6,893 normal images from 604 
patients, and 2618 CAP images from 60 patients. To test 
all classification types in medical imaging, CAP labels are 
removed for this work to get the performance of binary 
classification. In our experiment, we only focused on 
patients who is diagnosed as Covid-19 and not Covid-19 
for healthy ones.

Data preprocessing and model simulations
During the preprocessing stage, CNN was subjected to 
image directly. The convolution kernel is then applied 
to pixel intensity in the image. The output of the convo-
lution kernel is very dependent on the intensity values 
of the image. This intensity of pixels is not the same in 
all the images and it varied across images and subjects. 
The intensity of these images also depends on the image 
acquisition environment. These variations must be nor-
malized for data mining approaches especially CNN. If 
the variations are not normalized it will result in a biased-
conditioned network. The purpose of normalization to 
get the same range of values for different inputs into the 
CNN model. This helps in the stable convergence of the 
model. Therefore, in the preprocessing step, the intensity 
normalization is achieved using a minimum–maximum 
normalization approach. This scale the variable values to 
either [0,1]. Mathematically it is achieved using the fol-
lowing equation:

where yi is the normalized intensity value against the 
position xi (i = 1.. n). The min(x) and max(x) represent 
the minimum and maximum intensity values for intensity 
in the entire image. Images were normalized and then 
resized. It was triplicated for creating three channels as 
per the prerequisite for the sized input model. The result 
of intensity normalization is that it generates the inten-
sity which is in a coherent range across all images. This 
aids in the learning process of CNN. Reducing the image 
size reduces the memory requirements while increases 
the speed of the training process.

We used the cropping technique for brain tumor 
images due to feeding the model only with the brain 
image. In order to crop the part that contains only the 
brain of the image, we used a contour detection algo-
rithm [36] to find the extreme points of the brain image.

In brain tumor and chest diagnosis data, we converted 
data structure hierarchy into a byte stream for binary 

(18)yi = xi −min(x))/max(x)−min(x)

Fig. 3 Samples from the Covid-19 CT scan dataset
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serialization format such as Pickle and TFRecords, 
whereby a binary file is easily be converted back into an 
object hierarchy.

Neural networks need to incorporate non-linearity in 
their layers as it performs complex tasks. A ReLu activa-
tion function computes the output of each layers because 
other functions like Sigmoid requires much more calcula-
tion to find its gradient. ReLU on the other hand directly 
gives the gradient with less computation. This helps dur-
ing backpropagation saving a lot of time and gradient 
computation power. One other reason is the gradient 
with sigmoid function saturates on having high or low 
numbers making it difficult to change the new weights. 
ReLu has a linear function for x > 0 which achieves no 
saturation.

All neurons in the convolutional and fully connected 
layers use (3) and (4) to calculate the input and produce 
output. It is well achieved that, adding strides instead of 
pooling layer increases accuracy [37]. However, we used 
max pooling layer too between last 2 convolution layer to 
reduce network parameters low. The final layer computes 
the classification probability of each classification type 
using the Softmax function:

As these processes includes all classification task, in the 
output node, we used cross-entropy to calculate loss,

(19)f(x) = max(0, x)

(20)

σ(zi) =
ezi

∑K
j=1 e

zj
for i = 1, . . . , K and z = (z1, . . . , zK) ∈ RK

(21)C
(

x, y
)

= −

c
∑

i

yi × log (xi)

The model was simulated using Google Colab TPU 
and NIVIDA GPU Tesla K80 with 13  GB of memory. 
The model layers were tuned through an extensive 
set of experiments. We created sequential object and 
started off with a CNN layer. We set filters to 32, 64 
and 128 for each 3 CNN layer respectively. We set the 
kernel size to 3 by 3 with same padding. We used 2 by 
2 stride only in the second CNN layer. In other layer, 
stride parameters set by default 1 and a very common 
form of max pooling layer with filter size 2 × 2 applied. 
Passing a dense layer, we added 512 neurons.

The proposed method custom model is illustrated in 
Table 1, to reduce overfitting and stabilize learning pro-
cess, we used dropout and batch normalization (BN). 
For the dropout (DO), we started with 0.3 and, we 
used 0.5 before dense layer. We used L2 regularization 
(weight decay) which adds squared values of weights in 
the cost function. We expected to see even the training 
accuracy gets worse, test performance will get better 
by diffusing weights. The custom model regulariza-
tion hyperparameter is 0.0005. The visualization of the 
structure of the proposed model is shown below. Note 
that, model output shapes differ in each dataset due to 
input shapes of images.

The purpose of the create and use a custom model 
(Fig.  4) is to reduce training time but during experi-
ments, we tested our method with pre-trained models 
too which will be discussed in later sections.

Table 1 Example of model architecture and parameters

Layer Output shape Total parameter

Convolution 64 × 64 × 32 896

Batch Norm 64 × 64 × 32 128

Dropout 64 × 64 ×32 0

Convolution 62 × 62 × 64 18.496

Batch Norm 62 × 62 × 64 256

Max Pool 15 ×15× 64 0

Convolution 15 ×15× 128 73,856

Batch Norm 15 ×15× 128 512

Flatten 28,800 0

Dense 512 14.746.112

Batch 512 2048

Dropout 512 0

Dense 4 516

Fig. 4 Proposed CNN Architecture

Table 2 Defining the terms TP, FP, FN, TN

Predicted label Actual Label Definition

Positive Positive True positive (TP)

Positive Negative False positive (FP)

Negative Positive False negative (FN)

Negative Negative True negative (TN)
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Evaluation results
Performance metrics
The performance of the CNN image-based classifi-
cation is evaluated for image-based classification for 
the parameters used in the confusion matrix, such as 
specificity, recall/sensitivity, accuracy, F1 score, and 
precision. These metrics are evaluated using the terms 
provided in Table 2.

The confusion matrix parameters of Rembrandt data-
set’s TP result is 56128, TN is 45285, FN is 1064 and FP 
is 4064. Chest X-Ray dataset’s TP result is 83652, TN is 
12368, FN is 5095 and FP is 11005. Covid 19 dataset’s TP 
result is 6060, TN is 1020, FN is 420 and FP is 93.

Experiment results
We split the Chest X-Ray and Covid-19 images into train 
and test with a ratio of 20%-80% and 25%-75% for brain 
tumor image by random sampling to assess the classifi-
cation performance of the proposed model. The train-
ing accomplished using several Python libraries such as 
Scikit-learn, and TensorFlow. We reduced the images size 
to limit memory consumption per iteration. We tested 
our method with well-known optimizers such as Adam, 
RMSprop and SGD. We used standard parameters ( β1 = 
0.9, β2  = 0.999) a learning rate of α = 0.001 for Adam 
and RMSProp with ε = 1e − 07 , and α = 0.01 for SGD 
and proposed method. To test fast convergence of the 
proposed model, the data trained 5 epochs to experiment 

Accuracy =
TP+ TN

TP+ FP+ FN+ TN

Precision (PPV) =
TP

TP+ FP

Recall
(

Sensitivity
)

=
TP

TP+ FN

F1 Score = 2 ∗
Precioson ∗ Recall

Precision+ Recall

validation accuracy with custom model. The accuracy 
comparison with different optimizers in different data-
sets are shown in Tables 3, 4 and 5.

Our experimental results demonstrated that proposed 
adaptive momentums converges better than Adam, 
RMSprop and SGD in brain tumor and chest x-ray 
dataset. As shown in Table  5. RMSprop is more locally 
unstable. We suspect that this is the case because we 
used small batch size (32) and trained large network with 
working small size dataset as it can cause fluctuations. 
As shown in Table  6 the proposed model achieved 95% 
F1 score for multi class classification, 85% for multi label 
classification and 93% for binary classification. Despite an 
unequal distribution of classes for brain image and chest 
x-ray datasets, the weighted and macro averages of the 
precision and recall scores are promising.

Table 7 describes the comparison of proposed approach 
with state of the art methods on different medical data-
sets. The author [38] used hybrid genetic algorithm 
and particle swarm optimization (PSO) with 62% accu-
racy achievement whereas other author [39] used firefly 
algorithm and adopted tolerance rough ret (TRS) and 
achieved accuracy of 90%. All the results are taken from 
the original paper [40]. The proposed method achieved 
the highest classification accuracy of 95%. When com-
paring with Covid-19 studies [29] we want to indicate, 
authors trained the networks for 50 epochs whereas we 
only trained 5 epochs as it converges 10 times faster.

To strengthen the outcomes of this study we investi-
gated the performance comparison for the state of the 

Table 3 Accuracy comparison among the proposed method on 
REMBRANDT brain tumor dataset

Epoch Adam RMSprop SGD Adaptive 
momentum

1 0.72 0.70 0.70 0.73

2 0.79 0.76 0.77 0.83

3 0.81 0.79 0.82 0.88

4 0.81 0.80 0.85 0.90

5 0.83 0.80 0.88 0.91

Table 4 Accuracy comparison among the proposed method on 
NIH chest X-ray dataset

Epoch Adam RMSprop SGD Adaptive 
momentum

1 0.83 0.80 0.84 0.82

2 0.84 0.76 0.83 0.83

3 0.84 0.84 0.84 0.84

4 0.83 0.79 0.83 0.85

5 0.79 0.83 0.84 0.85

Table 5 Accuracy comparison among the proposed method on 
Covid-19 dataset

Epoch Adam RMSprop SGD Adaptive 
momentum

1 0.85 0.58 0.90 0.87

2 0.89 0.93 0.91 0.90

3 0.84 0.93 0.93 0.92

4 0.92 0.82 0.94 0.82

5 0.93 0.48 0.93 0.92
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art CNN architectures using the proposed method. The 
usefulness of transfer learning and fine-tuning for smaller 
datasets have been proposed on [21] but for experiment-
ing with big datasets are still time consuming.

We compared the classification performance of the 
most well-known 3 pre-trained CNN models (i.e., Xcep-
tion, Resnet50 and VGG16) trained on Imagenet [43]. 
The Xception model has 71 deep layers and proposed by 
Francois Chollet [44]. Resnet50 has 50 deep layers [45] 
while VGG16 (also called Oxfordnet) is proposed by [46] 
and is a convolutional neural network that has 16 layers 
deep.

Discussion
Adaptive momentum algorithm, which is directly related 
to error variation, converges much faster to a minimum 
compared to the conventional optimizers. Table 8, shows 
the comparison results between the proposed method 
and pre-trained models. The results were achieved after 
five epochs; the model execution time reduced 60% when 
compared with pre-trained models. Pre-trained models 
have approximately 20 times much more parameters to 
train. We confirm that parameter tuning is time-consum-
ing, even for GPUs and TPUs. Our experiments created 
a simple CNN model, altered the conventional training 

method, and included the modified momentum term to 
get sub-optimal parameters for neurons. The proposed 
method convergence speed is 20% higher than conven-
tional SGD. During the fine-tuning experiments, the 
convergence capability of the proposed method and the 
best test accuracy of the fine-tuning process are shown 
in (Fig. 5).

The pre-trained models with custom adaptive momen-
tum were tested during the experimental process. Even 
though the proposed method achieved 0.97% accuracy 
compared to Xception which, achieved 87% accuracy 
[29] for the Covid-19 dataset, the accuracy of VGG16 
and Resnet50 did not change. The test results show that 
both the VGG16 and Resnet50 have performed slightly 
better than the proposed method. Considering that the 
proposed method training dataset size and number of 
training epochs are small compared to the pre-trained 
models, it can be said that the proposed method has 
performed very well against both of these pre-trained 
models. This type of comparison will not be considered 
as a fair comparison since the pre-trained models were 
trained on millions of images for a much higher number 
of epochs to achieve this type of result.

There are three major obstacles in using medical 
images to train algorithms: the class imbalance challenge, 
the multitask challenge, and the dataset size challenge. 
In this work, several techniques are presented to tackle 
them. We used different class weights for each class and 
passed it to the CNN for the class imbalance challenge. 
Another challenge that we encounter in the medical 
image classification setting is the multitask challenge. It 
is complex and challenging without having underfitting. 
To overcome this, we used dropout and batch normaliza-
tion techniques. To train such an algorithm, it was also 
needed to modify the loss function from the binary tasks 
to the multitask setting. TPUs and GPUs were used with 
high RAM in Google Colab; this helped to ease the data-
set size challenge. The convolutional neural network is 

Table 6 Classification results of proposed model

Tumor type Precision Recall F1 score

REMBRANDT 0.94 0.97 0.95

NIH chest X-ray 0.83 0.84 0.85

Covid-19 0.94 0.92 0.93

Table 7 Accuracy comparison among the proposed and state of 
the art methods

REMBRANDT HGAPSO [38] FATRS [39] Proposed method

Test accuracy 0.62 0.90 0.95

NIH chest X-ray GAC [41] DNT [42] Proposed method

Test accuracy 0.84 0.60 0.85

Covid-19 FC [29] DN [29] Proposed method

Test accuracy 0.95 0.92 0.93

Table 8 Accuracy comparison of pre-trained CNN models with 
proposed method on different medical image datasets

Dataset Xception ResNet50 VGG16 Proposed 
model

REMBRANDT 0.87 0.91 0.94 0.95

Chest X-ray 0.83 0.84 0.88 0.85

Covid-19 0.96 0.98 0.52 0.93

Fig. 5 Convergence curve of fine-tune process
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used as the default architecture for many medical imag-
ing problems. These are designed to process 2D images 
like x-rays. But variants of these are also well suited to 
medical signal processing or 3D medical images like CT 
scans, which we will look at in our future works. The 
standard is to try out multiple models on the desired 
tasks in medical problems and see which ones work best.

Our future aim is to automate the learning rate 
depending on the loss value. We will define a function 
that returns the new learning rate as output in each 
epoch. This function will be controlled by loss values and 
either increase or decrease within the specified range. We 
will create a learning rate scheduler instance and pass the 
previously defined function as a parameter.

Conclusion
This paper presents an adaptive algorithm in which 
the adaptive term is directly related to error variation; 
the algorithm updates the weight vector according to 
the input vector. Therefore, the algorithm is controlled 
by the learning rate parameter, which depends on the 
eigenvalues of the input’s autocorrelation matrix, 
resulting in an improvement in the backpropagation 
algorithm compared to the conventional algorithm. 
The results show that the proposed algorithm achieved 
faster convergence behavior and minimized the miss 
adjustment error in the steady-state optimum solution.

The proposed method improves SGD performance by 
reducing classification error from 6.12 to 5.44%, and it 
achieved the lowest error and highest accuracy com-
pared with other optimizers. Testing results of Table 7 
show that the proposed algorithm achieved 95%, 85%, 
and 93% testing accuracy against the brain tumor, chest 
x-ray, and covid-19 datasets, respectively. Compared 
to the best benchmark pre-trained models (Xcep-
tion, ResNet50 and VGG16), we achieved best results 
in REMBRANDT an Chest-X-Ray dataset with 60% 
fast execution time. The performance of the proposed 
method against the other two pre-trained methods was 
acceptable, meaning that the proposed method can 
achieve even better results if the training conditions 
are changed to be similar to that of the pre-trained 
methods.

The proposed algorithm performance was further 
compared against a conventional SGD based algorithm; 
the proposed algorithm achieved accuracy results of 
95% while the result of the conventional SGD is 92%, 
resulting in convergence speed is 20% higher than the 
conventional SGD. The result shows that the tuning 
time required to tune the adaptive term was negligible. 
The results also confirm that the proposed algorithm 
can perform well against unbalanced datasets since the 

dataset chosen for the testing are all highly unbalanced 
datasets.
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