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BACKGROUND AND OBJECTIVE: Breast cancer (BC) diagnosed at ages <40 years presents with more aggressive tumour
phenotypes and poorer clinical outcome compared to older BC patients. Here, we explored transcriptional BC alterations to gain a
better understanding of age-related tumour biology, also subtype-stratified.
METHODS: We studied publicly available global BC mRNA expression (n= 3999) and proteomics data (n= 113), exploring
differentially expressed genes, enriched gene sets, and gene networks in the young compared to older patients.
RESULTS: We identified transcriptional patterns reflecting increased proliferation and oncogenic signalling in BC of the young, also
in subtype-stratified analyses. Six up-regulated hub genes built a novel age-related score, significantly associated with aggressive
clinicopathologic features. A high 6 Gene Proliferation Score (6GPS) demonstrated independent prognostic value when adjusted for
traditional clinicopathologic variables and the molecular subtypes. The 6GPS significantly associated also with disease-specific
survival within the luminal, lymph node-negative and Oncotype Dx intermediate subset.
CONCLUSIONS: We here demonstrate evidence of higher tumour cell proliferation in young BC patients, also when adjusting for
molecular subtypes, and identified a novel age-based six-gene signature pointing to aggressive tumour features, tumour
proliferation, and reduced survival—also in patient subsets with expected good prognosis.

British Journal of Cancer (2022) 127:1865–1875; https://doi.org/10.1038/s41416-022-01953-w

INTRODUCTION
Despite the fact that breast cancer (BC) most commonly affects
post-menopausal women, around 7% of patients are diagnosed at
age <40 [1]. Compared to BC in older women, young patients
associate with more aggressive tumour phenotypes and poorer
prognosis [2, 3]. The young patients present age-related
challenges, such as fertility preservation, genetic counselling,
and survivors living with long-term sequelae after therapy, being
different from the older patients and supporting a need for
attention to this patient subset [4, 5]. Several factors influence the
poor prognosis observed in BC of the young, including higher
histologic grade, reduced expression of oestrogen and progester-
one receptors (ER, PR), and higher frequency of HER2 positive and
triple-negative subtypes [6, 7]. Gaining knowledge about BC
biology among the young may ensure improved management
and follow-up of this patient group.
Early global gene expression studies identified the molecular BC

subtypes, Luminal A, Luminal B, HER2 enriched, and triple-
negative or basal-like subtypes, with prognostic and predictive
relevance [8, 9]. A few BC studies have explored age-related gene
expression data, reporting enrichment of luminal progenitor and
stem cell features, proliferation, and growth factor signalling in the
young [5, 7, 10], supporting age-dependent BC biology with
clinical relevance [11].

In this study, we aimed to elucidate breast cancer biology with
clinical relevance in the young. By applying signature and
network-based analysis approaches, we compared gene expres-
sion alterations in BC from patients aged <40 vs ≥40, relating our
results to clinicopathologic data and follow-up information,
including as well analyses in subtype-specific age-related BC
alterations. Results were validated in independent gene expres-
sion cohorts, in BC cell lines and BC proteomic cohorts.

MATERIALS AND METHODS
Gene expression cohorts
For the exploration of gene expression alterations in BC of the young
compared to older, we analysed publicly available gene expression
datasets from primary BC with clinicopathologic data and follow-up
information: (1) Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC), Discovery cohort (n= 939); (2) METABRIC Valida-
tion cohort (n= 845) [12]. The online database, “Kaplan–Meier plotter”
(www.kmplot.com) [13], was used to evaluate our six-gene signature in
relation to recurrence-free breast cancer survival in a merged dataset of
Gene Expression Omnibus (GEO) cohorts, (n= 1660). In addition, an open-
access breast cancer mRNA microarray dataset GSE25066 (n = 508) [14],
including 508 patients with HER2-negative breast cancer (Stage I–III) with
information on molecular subtypes and follow-up information, was
downloaded from GEO (www.ncbi.nlm.nih/geo). Information on intrinsic
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molecular subtypes based on PAM50 classification was available for all
cohorts [9]. The normal-like category was excluded.
Gene expression data from the Cancer Cell Line Encyclopedia breast

cancer cell lines, with information on molecular subtypes (n= 47) [15], was
also explored.

Proteomics datasets
Proteomics data from the CPTAC TCGA Cancer Proteome Study of Breast
Tissue and the Oslo2 Landscape cohort were used for validation. The CPTAC
TCGA Cancer Proteome Study of Breast Tissue dataset was downloaded from
Clinical Proteomic Tumour Analysis Consortium (NCI/NIH), and consists of 105
breast cancer samples, which were reduced to 77 after quality control by
Mertins et al. [16]. In all, 23 Luminal A, 24 Luminal B, 12 HER2 enriched and 18
basal-like samples. Data from the Oslo2 Landscape cohort was downloaded
from www.breastcancerlandscape.org/, including 36 breast cancer samples:
nine Luminal A, nine Luminal B, nine HER2 enriched and nine basal-like [17].
The normal-like samples were excluded from the analyses.

Identification of differentially expressed genes and enriched
pathways
Differentially expressed genes (DEGs) between BC in patients aged <40
and ≥40 years at the time of diagnosis were identified based on
Significance Analysis of Microarrays (SAM) [18]. Gene sets from the
Molecular Signatures Database (MSigDB; www.broadinstitute.org/gsea/
msigdb) significantly enriched in tumours from young BC patients were
explored by employing Gene Set Enrichment Analysis (GSEA;
www.broadinstitute.org/gsea) [19]. JExpress/2012 (www.molmine.com)
was applied for SAM and GSEA analyses, including assessment of the
gene set collections: (1) Gene Ontology (GO)—the category biological
function (C5/BP); (2) Hallmark gene sets; (3) Oncogenic signature gene sets
(C6) and (4) Curated gene sets for the KEGG category of canonical
pathways (C2/CP/KEGG). In cases of multiple probes per gene symbol in
the gene expressions matrices, the probes were collapsed according to the
max probe expression per gene [19]. Based on enriched GO categories, in
silico functional characterisation of the identified genes was done by use of
the Cytoscape plug-in BiNGO [20], showing overrepresented GO cate-
gories, adjusted for multiple testing by the Benjamini Hochberg False
Discovery Rate (FDR) correction method. P values yielded by BiNGO
indicates significance illustrated as a gradient from white to orange nodes
(darker colour represents higher statistical significance).
To further identify pathways enriched in breast cancer of the young, the

age-related DEGs were explored in the Reactome pathway database,
providing added information about functional relationships in the gene
expression data (http://www.reactome.org/) [21]. Reactome is an open-
access pathway database that provides molecular details of cellular
processes, and functions as a tool in exploring functional relationships in
various types of data, including gene expression profiles.
Three signatures reflecting proliferation; Oncotype Dx [22], a PCNA score

[23] and a novel Stathmin score [24], were mapped to the gene expression
breast cancer datasets. Their corresponding signature scores were
calculated as described in the original publications.

Connectivity Map analysis
Enrichment of our identified DEGs in the perturbation signatures in the
Connectivity Map database (data version 1.1.1.2 and software version
1.1.1.38; https://clue.io) [25, 26] were explored (METABRIC cohorts). We
queried the identified age-related up- and downregulated DEGs (fold
change ≥1.5 or ≤−1.5, FDR < 0.006%, Supplementary Table 1), with the
aim to identify compounds whose administration to cancer cells may
provide effects leading to a reversed tumour gene expression profile.
Genes not verified within CLUE were sorted out.
In short, Connectivity Map generate a rank of compounds by the similarity

of DEGs in treated cells to the query gene signature, and further characterised
by an enrichment score range −100 to 100, based on the overlap with up- or
downregulated genes and the strength of the enrichment. A negative score
suggests that the compound and the query signatures are inverse to each
other, meaning that the gene expression of query signatures potentially are
reversed by treatment with the specific compound.

Protein–protein network analysis and construction of gene
signature
The Search Tool for the Retrieval of Interacting Genes (STRING; http://
string.embl.de/) serves as a biological database that may be used to construct

protein–protein interaction (PPI) networks based on identified DEGs [27]. By
the STRING tool, we constructed PPIs (confidence score ≥7) from our age-
related DEGs, visualised by the Cytoscape software (version 3.8.0). Densely
connected regions in the PPI networks were identified by use of Molecular
Complex Detection (MCODE; [28]). Interactomes with at least two nodes and
a confidence score >2.0, were selected as significant predictions by MCODE.
We applied the Cytoscape App CytoHubba [29] to explore nodes (hub genes)
with high correlations within the network. Topological analysis methods
provided a top ten list of hub genes ranked according to local based
methods: Degree [30], Maximum Clique Centrality (MCC) [29], Maximum
Neighborhood component (MNC) [31] and global-based methods: EcCen-
tricity [32] and Edge Percolated Component (EPC) [33].

Statistical methods
Data were analysed using SPSS (version 25.0, IBM corp., Armonk, NY, USA).
Spearman’s rank correlation test was applied when comparing bivariate
continuous variables, and Spearman’s correlation coefficients (ρ) were
reported. When analysing differences in distribution of continuous
variables between two or more categories, Mann–Whitney U or
Kruskal–Wallis tests were applied. For univariate survival analyses,
including death from breast cancer or recurrence from BC as endpoints,
the Kaplan–Meier product-limit method (log-rank test) was applied.
Multivariate breast cancer-specific survival analysis was performed by
Cox’ proportional hazards regression model, with calculations done
according to the enter method. Variables were included in the Cox
survival analyses after evaluating their log-minus-log plot. For multivariate
analyses, only patients with information on all variables were included. All
statistical tests were two-sided, and statistical significance was assessed at
5% level. Multivariate logistic regression analysis was applied for assessing
whether age and molecular subtypes independently predict the six-gene
proliferation signature (6GPS). The calculations were done according to the
Backward Elimination (Likelihood Ration), with P values derived from Step1
in the “model if term removed”-table.

RESULTS
Gene expression profiles in young breast cancer reflect
proliferation and oncogenic features
To study transcriptional alterations potentially linked to breast
cancer biology of the young, in a view not considering the age-
related geno- and phenotypes, we compared global gene
expression data from primary tumours in breast cancer patients
aged <40 versus ≥40 years at diagnosis. Two METABRIC cohorts
(Discovery and Validation) were investigated. When examining
genes differentially expressed between the young and older,
we identified 203 upregulated and 196 downregulated genes
among the young (METABRIC cohorts; fold change ≥1.5/≤−1.5,
FDR < 0.006%; Supplementary Table 1). Among top-ranked
upregulated genes, we observed multiple cell-cycle-related genes,
like AURKA, UBE2C, CCNB2, CDC2, BUB1, CDK6, BIRC5, CDCA8 and
CDC20 [34–41].
To further investigate age-related BC differences, we analysed

gene sets differentially enriched in BC from patients <40 years at
time of diagnosis (GSEA; MsigDB). Signatures reflecting prolifera-
tion were repeatedly enriched in BC of the young. Also, signatures
reflecting oncogenic signalling such as MYC, KRAS, PI3K/mTOR
and Notch, were enriched in the tumours of the young
(Supplementary Table 2).
By analyses of gene expression data in relation to

protein–protein interaction (PPI) information, we elucidated net-
works associated with aggressive BC phenotypes among the
young. Two networks were constructed based on gene expression
similarities with PPIs, using the STRING online database and
Cytoscape—one representing upregulated DEGs and one repre-
senting downregulated DEGs (Fig. 1a, b) To better understand the
relationship between the network-forming genes, we used the
Cytoscape App MCODE to detect highly interconnected regions
(subclusters) within the networks using default parameters
(Degree cut-off= 2, Node score cut-off= 0.2, K-core= 2, Max
depth= 100). The identified subcluster for upregulated DEGs with
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highest density consisted of 26 nodes and 304 edges, whereas the
smaller subcluster consisted of 6 nodes and 15 edges (Fig. 1c). To
gain a better insight of the cellular processes related to the genes
in the main subcluster of upregulated genes, we explored the 26
genes from this cluster in the REACTOME knowledgebase. To note,

the top 20 most significantly enriched pathways related to cell
proliferation (P < 16-4.04E−13; Supplementary Table 3).
The four intersecting genes within the downregulated DEGs

were GATA binding protein 3 (GATA3), Forkhead box protein A1
(FOXA1), Trefoil factor 1 (TFF1), and Oestrogen receptor 1 (ESR1),
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located in two of the subclusters detected in the main PPI network
(Fig. 1c, d), and collectively being oestrogen receptor-related
[42, 43].
By the Cytoscape App BiNGO [20], we assessed the over-

representation of gene ontology categories (GO/biological pro-
cesses) within the identified upregulated PPI-based network in BC
of the young, demonstrating enrichment of GO categories
reflecting cell-cycle activation, mitotic activity and cell prolifera-
tion (P < 0.001, Fig. 1e).
Our explorative gene expression approaches point strongly to

proliferation as a hallmark process enriched in BC of the young,
compared to the older. For validation, we investigated how
independent proliferation-related gene signatures correlated to
age in BC. The signatures Oncotype Dx [22], a PCNA score [23] and
the novel Stathmin proliferation score [24], were significantly
higher expressed in BC of the young compared to older women
(Fig. 2a–c).
To account for the age-related molecular subtype differences,

we next investigated how the proliferation scores related to age in
subtype-specific manners. In the Luminal A subtype, all scores
were higher expressed in tumours of the young (METABRIC
discovery cohort, Fig. 2d–f), indicating subtype-independent
increased proliferation in the young. The Oncotype Dx score
was higher expressed in young BC in the HER2 subtype, and the
PCNA score showed a trend of higher expression in young TNBC
(Fig. 2g–h). In the METABRIC Validation cohort, as for the Discovery
cohort, the signatures Oncotype Dx, PCNA and Stathmin were
significantly higher expressed in BC of the young compared to
older women when not stratifying for tumour subtype (Supple-
mentary Fig. 1A–C). When accounting for tumour subtype in the
Validation cohort, we found significant higher expression of PCNA
and Stathmin signatures in young compared to old in the TNBC
subtype (P= 0.009 and P= 0.029, Fig. 2d, e). Otherwise, no
significant signature expression was observed in the METABRIC
cohorts.
Taken together, our multi-view approaches to interpretation of

gene expression patterns in BC of the young jointly and strongly
support increased tumour cell proliferation in young compared to
older BC patients. To note, the age-related proliferation differ-
ences within the molecular subtypes, in particular the low-
proliferating Luminal A subset, strengthens the idea that tumour
proliferation may partly be age-dependent.

Protein–protein interaction network and identification of hub
genes
Network analyses can improve our understanding of the
collaboration between nodes (representing genes) connected by
edges, reflecting relationships such as gene interactions. Ranking
nodes in a biological network according to a given concept, such
as degree (number of connections), provides the possibility to sort
out genes of functional relevance.
To further explore functional relationships in our age-related PPI

networks, we applied the CytoHubba App [29] to identify hub
genes (highly connected nodes) in the PPI networks. Five
ranking methods (Degree, EPC, EcCentricity, MCC, and MNC)
ranked top ten essential genes from the network, listed in
Table 1A and B. By plotting in a Venn-Diagram the top ten

genes identified from these five topological methods (http://
bioinformatics.psb.ugent.be/webtools/Venn/), we identified six
overlapping genes that were selected for further analysis and
assembled to generate an age-related mRNA gene expression
signature: CyclinB2 (CCNB2), Cell-division cycle protein 20
(CDC20), Budding uninhibited by benzimidazoles 1 (BUB1),
Ubiquitin-conjugating enzyme E2C (UBE2C), Cyclin-dependent
kinase 1 (CDK1) and Aurora Kinase A (AURKA). Notably, all six
hub genes are located within the main subcluster detected by the
MCODE App (Fig. 1a, circled), and the six genes are all found to be
related to cell-cycle activation and cell proliferation [34–38, 44].
When extracting the six genes from the main subcluster, we
observed that these six hub genes formed a network of six nodes
and 15 edges (Fig. 1b), underscoring their collective relevance.
As we know that the distribution of molecular subtypes is

different in young and older BC patients, with more frequent
Luminal B, HER2 and triple-negative (and basal-like) subtypes in
the young, we next explored the age-related, subtype-dependent
BC biology through PPI networks. We constructed a PPI network
based on 234 DEGs extracted from hormone-positive (HR+) breast
cancer patients only (when examining genes differentially
expressed between the young and older, METABRIC cohorts; fold
change ≥1.5/≤−1.5, FDR < 1.11%; Supplementary Table 1C). From
this network, with 217 nodes and 544 edges, we applied the
analyses as above, including MCODE and CytoHubba, and
observed four hub genes within the network, all belonging to
the group of histones: HIST1H4E, HIST2H4A, HIST1H4H and
HIST2H2AC (Supplementary Fig. 2 and Table 1C).

6 Gene proliferation score associates with high proliferation
and basal-like phenotype in young BC patients
To evaluate the joint prognostic potential of the six hub genes in
the upregulated PPI-based network, we established a signature
score featuring the summarised expression values from these six
genes, a 6 Gene Proliferation Score (6GPS). This score correlated
strongly with the tumour cell proliferation signatures Oncotype Dx
(ρ= 0.90–0.91, P < 0.001), a PCNA score (both ρ= 0.96, P < 0.001),
and the novel Stathmin proliferation score (ρ= 0.77-0.79,
P < 0.001; METABRIC cohorts, Supplementary Fig. 1F–K). In
subtype-stratified analyses presented in Supplementary Table 4,
the 6GPS correlated strongly with the signatures Oncotype Dx,
and PCNA score across subtypes, with the highest correlation
observed in the TNBC subtype. 6GPS correlated moderately with
the Stathmin proliferation score, and with the mRNA expression of
the proliferation marker Ki-67, across subtypes. Moreover, in the
breast cancer cell lines of the Cancer Cell Line Encyclopedia
(CCLE), the 6GPS correlated significantly with the Stathmin
signature (ρ= 0.64, P < 0.001), supporting the results from the
patient data from the METABRIC cohorts. By intersecting analyses
of the genes in the 6GPS, Oncotype Dx, PCNA, and Stathmin
signatures, we found overlap of maximum three genes (CCNB2,
UBE2C, CDC20) between the Stathmin and PCNA signatures
(Supplementary Fig. 3). To note, there was only one overlapping
gene (AURKA) between 6GPS and the Oncotype Dx signature.
Exploring how the 6GPS related to tumour phenotypes, we

demonstrated associations between high 6GPS and large
tumour size, high histologic grade, lymph node metastases

Fig. 1 The workflow from analyses of the METABRIC discovery (n= 939) and validation (n= 845) cohorts. SAM analysis revealed 399
differentially expressed genes (DEGs) with fold change >1.5/<1.5 (FDR= 0.006%). Two protein–protein interaction (PPI) networks were
established and visualised in Cytoscape, representing the identified upregulated (a) and downregulated (c) DEGs with their respective
subclusters detected by MCODE (b, d). The Cytoscape App CytoHubba identified six hub genes (circled) in the upregulated network: CCNB2,
AURKA, CKD1, BUB1, CDC20, UBE2C and four hub genes in the downregulated network: TFF1, FOXA1, ESR1, GATA3. Visualisation of Gene
Ontology (GO) biological processes (BP) in the protein–protein network performed by the Cytoscape App BiNGO (e). The size of a node
indicates the number of genes enriched in this term. The colour represented its P value, the smaller the p value, the darker the node is. The
arrows represent progression of BP terms.
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and ER negativity (METABRIC cohorts, Supplementary Fig. 4A–H).
When stratifying for molecular subtypes, we observed signifi-
cant associations between 6GPS and tumour size, histologic
grade, and age in the Luminal A subtype (Fig. 3a–c), a significant
association between 6GPS and histologic grade in Luminal B,
and lymph node status and histologic grade in TNBC subtype
(Fig. 3d–f). We observed a trend of significant association
between 6GPS and age in the Luminal B subset (P= 0.08), and
between 6GPS and histologic grade in HER2 (P= 0.098). In the
validation cohort, we found significant associations between
6GPS and histologic grade across all subtypes (P < 0.001), and an
association between 6GPS and tumour size in the TNBC subtype
(P= 0.037).
In multivariate logistic regression analysis, both age and

molecular subtypes were independent predictors of the 6GPS
(Supplementary Table 5).
For validation, we examined how 6GPS was distributed across

molecular subtypes in proteomics data. We found increased 6GPS
in Luminal B, HER2 and basal-like subtypes in both the Oslo2
cohort and TCGA proteomics data (Supplementary Fig. 5A, B). The
association between high 6GPS and basal-like tumours was also
observed in the CCLE data (Supplementary Fig. 5C).

A high 6GPS score presents independent prognostic value
High expression of 6GPS associated with shorter disease-specific
survival in both METABRIC cohorts (univariate survival analyses,
Fig. 4a and Supplementary Fig. 5D). 6GPS also predicted disease-
specific outcome in the GSE25066 cohort, and recurrence-free
survival in the “KMplotter” BC cohort [13] (Fig. 4b, c). When adding
the clinicopathologic variables tumour diameter, histologic grade,
and lymph node status to the multivariate analysis, the 6GPS
demonstrated independent association with shorter disease-
specific survival (HR= 1.1, 95% CI 1.0–1.1, P < 0.001, Fig. 4d).
When adding molecular subtype together with the classical
clinicopathological variables, the 6GPS maintained independent
association with reduced survival (HR= 1.1, 95% CI 1.0–1.1,
P < 0.001, Fig. 4e).

6GPS identifies a subgroup with reduced survival within
Luminal A tumours
When investigating the prognostic impact of 6GPS in individual
molecular subtypes, our data showed that high 6GPS was
associated with reduced survival in luminal tumours (METABRIC
Discovery cohort, P < 0.001; Supplementary Fig. 5E). Moreover,
6GPS maintained independent, significant prognostic value in
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both METABRIC cohorts, when adjusting for the traditional
clinicopathologic variables in luminal tumours (Supplementary
Table 6). Notably, our results showed that a high 6GPS associated
with reduced survival among Luminal A cases in the METABRIC
Discovery cohort (Fig. 4f), as predicted also in the datasets of the
“KMplotter” database (Fig. 4g).

6GPS identifies a subgroup with reduced survival within
Luminal, lymph node-negative, Oncotype Dx intermediate
subset
Oncotype Dx, a 21-gene signature developed in BC, is approved
for clinical application as a prognostic marker in patients with
hormone-receptor-positive and lymph node-negative BC [22]. The
signature is regarded to reflect tumour cell proliferation and is a
predictive marker for response to chemotherapy in early-stage BC
[45, 46]. For comparison between our 6GPS and the Oncotype Dx
score, we calculated the Oncotype Dx score in the METABRIC
cohorts, and assigned cases to the Oncotype Dx score categories

paralleling a Recurrence Score ≤10 (low); 11-25 (intermediate); and
≥26 (high), based on the frequency distribution of cases of these
three groups in a large prospective study assessing the chemo-
predictive effect from Oncotype Dx [46].
We then investigated the prognostic value of the 6GPS among

patients with luminal tumours, no lymph node metastases, and
classified as of (Oncotype Dx-based) intermediate risk of distant
metastases. In Cox regression analyses, a high expression of 6GPS
associated with shorter disease-specific survival in the METABRIC
validation cohort (HR= 1.186, 95% CI 1.00–1.40, P= 0.047), and
showed a trend of significance in the METABRIC discovery cohort
(HR= 1.074, 95% CI 0.97–1.18, P= 0.14). In Kaplan–Meier survival
analysis of the 6GPS in the luminal, lymph node-negative,
intermediate Oncotype Dx subset, we observed similar survival
patterns—the 6GPS was significantly associated with shorter
disease-specific survival in METABRIC validation cohort (cut-point
upper tertile; Fig. 4h), and a trend of significance in METABRIC
discovery cohort (cut-point median; Supplementary Fig. 5F).

Table 1. Top ten genes evaluated in the PPI networks using five ranking methods (MCC, MNC, Degree, EPC and EcCentricity) by the Cytoscape App
CytoHubba.

Calculation method Degree MNC MCC EPC EcCentricity

(A) Upregulated

Gene symbol AURKA AURKA AURKA AURKA AURKA

MAD2L1 MAD2L1 MAD2L1 TRIP13 TRIP13

CCNB2 CCNB2 CCNB2 CCNB2 CCNB2

BIRC5 BIRC5 BIRC5 PHGDH PHGDH

BUB1 BUB1 BUB1 BUB1 BUB1

UBE2C UBE2C UBE2C UBE2C UBE2C

TYMS TYMS PTTG1 CDC45 CDC45

CDK1 CDK1 CDK1 CDK1 CDK1

MYC MYC CDC45 MYC MYC

CDC20 CDC20 CDC20 CDC20 CDC20

(B) Downregulated

Gene symbol ESR1 ESR1 ESR1 FOXA1 PIP

CCND1 CCND1 FOXA1 ESR1 AR

AR TFF1 TFF1 GATA3 ESR1

TFF1 AR GATA3 TFF1 GATA3

FOXA1 FOXA1 TFF3 CCND1 MUC1

GATA3 GATA3 CCND1 AR AZGP1

AGR2 MUC1 AGR2 AGR2 FOXA1

MUC1 TFF3 XBP1 MUC1 IGF1R

PIP AGR2 AGR3 TFF3 TFF1

TFF3 PIP SLC39A6 XBP1 MYB

(C) Upregulated

Gene symbol HIST2H2AC ERBB2 HIST2H2AC HIST2H2BE KLK6

HIST1H4H HIST2H2BE HIST1H4E HIST2H2AC RBP1

ERBB2 HIST2H2AC HIST2H4A HIST1H4E CX3CL1

HIST2H2BE CDH1 HIST1H2BD HIST1H2BK CCL2

HIST1H4E HIST1H4E HIST2H2AA3 CDH1 SDC1

CCL2 HIST2H4A HIST1H4H HIST2H4A MYC

MYC MYC HIST1H3D HIST1H2BD FOS

HIST2H4A HIST1H4H HIST1H3H MYC CDH1

FOS FOS HIST1H2AE HIST1H4H LTF

CDH1 CCL2 HIST1H1C FOS APP

A/B: Hub genes detected for the DEGs in the up- and downregulated PPI networks, respectively. C: Hub genes detected for the PPI network with DEGs
expressed in hormone-positive (HR+) breast cancer patients only.
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Drug signatures enriched in BC of the young
To search for drugs with potential relevance in treatment of
young breast cancer, we utilised the L1000 assay (scale-up of
Connectivity map dataset) [26] available on the CLUE platform.
https://clue.io/). We queried the CLUE database for drug
perturbation signatures negatively correlated to our identified
age-related DEGs, with the aim to identify and rank drugs
according to the gene expression similarity between the two.
Expression profiles from compounds with CDK inhibitory and
PI3K/mTOR/AKT inhibitory effects were top-ranked negatively
correlated to the age-related DEGs (Supplementary Table 7).
Also, Aurora kinase inhibitors were among the significant
perturbation signatures, proposing these with potential treat-
ment value in BC of the young. We also queried the CLUE
database for drug perturbation signatures negatively correlated
to our identified HR+ age-related DEGs. Expression profiles from
compounds with RAF/MEK/mTOR inhibitory effects were top-
ranked negatively correlated to the HR+ age-related DEGs
(Supplementary Table 7).

DISCUSSION
Our understanding of the biology contributing to increased
tumour aggressiveness in BC of the young is incomplete. In this
study, we aimed to gain a better comprehension of the age-
related gene expression differences in BC and identify transcrip-
tional alterations relevant for cancer progression in this patient
group. Differences in molecular subtype distribution is part of age-
related biology. In this study, we hypothesised that subtype-
independent factors may contribute to the age-dependent
clinicopathologic phenotypes and clinical course, and therefore
primarily investigated the age-based alterations without stratify-
ing for molecular subtypes, while secondarily exploring subtype-
dependent age-related alterations.
We identified an age-based, proliferation-related gene signature

score with strong prognostic value, also within the low-grade

luminal tumours. To our knowledge, this is the first study
employing extensive network and hub gene identification
approaches to elucidate biologically relevant features in BC of
the young. Also, identifying a gene score with strong prognostic
value based on age-related transcriptional alterations is a novel
approach. We have validated our findings in large, independent
BC cohorts at mRNA and protein levels.
By multi-analytical approaches, we provide evidence for

increased tumour cell proliferation in young BC. A few previous
studies have suggested higher proliferation in BC of the young
compared to older. Azim et al. have by gene expression analyses
indicated increased tumour proliferation in young BC patients,
and with prognostic impact of proliferation scores in this patient
subset [7, 10]. In a large, population-based BC study, Fredholm
et al. demonstrated increased tumour cell proliferation by Ki-67 in
the young, and prognostic value for proliferation markers in
subsets of the young [47], also proposing an age-dependent Ki-67
cut-off in BC. Increased tumour cell proliferation in the young may
be caused by various factors contributing to more growth-
promoting conditions. In line with previous studies, we show
indications of increased oncogenic signalling, like PI3K /mTOR,
MYC and KRAS in the young [5, 10]. To speculate, the increased
levels of endogenous oestrogen in premenopausal women may
promote cell proliferation and concurrently less apoptosis, also
contributing to the increased tumour cell proliferation seen in the
young [48, 49].
By network analyses of age-related BC gene expression

alterations, we identified a six-gene signature (6GPS) comprising
the significantly upregulated hub genes in BC of the young,
AURKA, CCNB2, BUB1, CDK1, CDC20 and UBE2C. The 6GPS genes
are previously shown to be involved in proliferation in breast
cancer [34–38, 44], as supported also by our findings of strong
correlations between 6GPS and several independent proliferation
signatures.
The 6GPS pointed to aggressive tumour features and a high

score associated with reduced survival, with independent
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prognostic impact when adjusting for the traditional clinicopatho-
logic markers, and when additionally adjusting for the molecular
subtypes. Also, we pointed to age and molecular subtypes as
independent predictors of the 6GPS, further supporting the role of

6GPS in the young and across the molecular subtypes. 6GPS may
potentially serve as a supplementary tool to identify patients with
a poorer prognosis than expected based on traditional diagnostic
measures.
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Our knowledge about breast cancer is mainly based on studies
in older women (aged >50 years at diagnosis), whereas young
women are underrepresented in BC studies assessing risk-
stratification models and molecular tools. As young women are
expected to live a long life after BC therapy, they have increased
risk of long-term treatment side effects, supporting the need for
strong prognostic and predictive biomarkers to this patient group.
Commercially available genomic tests (e.g., Oncotype Dx, Mam-
maPrint, Prosigna) have been developed and validated in large
cohorts comprising few or no BC patients aged ≤40 years at
diagnosis [22, 50, 51]. Villarreal-Garza and colleagues addressed
this in a review that evaluated the use of genomic signatures in
young breast cancer patients [52]. A total of 71 studies were
analysed, including 561.188 patients. Considering solely the
studies defining ‘young’ as ≤40 years at diagnosis, only 4.3%
(13.233 patients) were in this category, emphasising the lack of
focus towards this patient subset. In our study, we established an
age-related gene expression signature (6GPS) and assessed
whether this provided added prognostic value to the 21-gene
Oncotype Dx recurrence score, a commercially available gene
expression assay able to present prognostic information in
hormone-receptor-positive BC. Although the 21-gene assay is
recommended in BC prognostication, uncertainty remains
whether chemotherapy is favourable for patients considered to
have intermediate risk of recurrence (mid-range Oncotype Dx
score) [53, 54]. We demonstrated prognostic value of the 6GPS
within the luminal (HR+), lymph node-negative, Oncotype Dx
intermediate risk subset. Moreover, the 6GPS also showed
independent prognostic value in patients with luminal tumours,
and association with reduced survival in the Luminal A subset,
supporting our findings that the 6GPS can identify subgroups of
patients with more aggressive cancer than current diagnostic
methods are able to determine—and thus may serve as a
supplementary tool to gene panels and standard diagnostic tools
applied today.
It is previously shown that biological and clinical differences

between young and older BC patients partly are accounted for by
the difference in the distribution of molecular subtypes [11, 55].
Partridge et al. demonstrated that young age added prognostic
value in women with luminal tumours [55]. In line with this, we
demonstrated the independent prognostic value of our 6GPS
when adjusting for molecular subtypes in addition to the
traditional prognostic markers, also in the patient subset with
luminal tumours. This supports our hypothesis of age-dependent
biological factors underlying the distribution of molecular
subtypes. When further adjusting our results with regard to
molecular subtypes, we examined the genes differentially
expressed between HR+ BC in the young and older, and
identified a group of histones (HIST1H4E, HIST2H4A, HIST1H4H,
HIST2H2AC) as upregulated in the young. These genes are
associated with the core component of the nucleosome, an
octamer consisting of the histones H3, H4, H2A and H2B, with an
essential role in DNA packing. Also, histone modifications are
known to contribute to breast cancer progression and may
regulate gene expression without altering DNA sequence [50, 56].
To speculate, we hypothesise that increased expression of the
histone genes partly reflects the need for increased DNA packing
in tumours with high proliferation. A previous study demonstrated

up-regulation of core histone proteins in ER-mediated cell
proliferation [51]. Further investigations would be needed to fully
explore this hypothesis.
The clinical trials TAILORx, RxPONDER, and MINDACT, assessed

the benefit from chemotherapy and effects on follow-up status in
breast cancer, when applying the gene expression tools Oncotype
Dx and Genomic Recurrence Score (Mammaprint). These studies
supported a role of the gene expression scores to determine the
clinical utility from adjuvant chemotherapy in premenopausal
women or women below 50 years at diagnosis [53, 54, 57, 58].
Results from the MINDACT trails indicated that patients <50 years
with concurrent high clinical risk and low genomic risk, appeared
to have a greater benefit from chemotherapy, as compared to
considering jointly the whole cohort, or patients above 50 years
[57, 58].
Notably, studies like the one from Villarreal-Garza et al. [52],

found a tendency of higher proportion of young breast cancer
patients receiving adjuvant therapy compared to older patients,
even when they were classified as of low genomic risk [52]. This
emphasises the common perception that young age itself is an
indication for more aggressive treatment—a hypothesis that is
debated [59, 60].
Piccart and colleagues suggested an indirect endocrine effect

from cytotoxic ovarian suppression as a potential explanation for
the improved effect of chemotherapy in younger patients [58].
Adding to this, and in light of our results, pointing to increased
proliferation in the young, we speculate whether the higher
tumour cell proliferation may contribute to the improved effect
from adjuvant chemotherapy seen in BC of the young. Our
demonstrated increased tumour cell proliferation in the young
may support the results from Kroman et al, showing age-based
inferior survival among young BC patients who did not receive
chemotherapy [61]. Several studies have indicated increased
tumour cell proliferation as a predictor of chemotherapy response.
Among these, Alba and colleagues demonstrated that high
proliferation predicted pathological complete response to neoad-
juvant chemotherapy in early BC and suggested that cell
proliferation could be closely related to chemosensitivity [62].
When querying the BC-young gene expression profile in CLUE, a

perturbation signature platform, gene expression profiles reflect-
ing effects from CDK inhibitors were among the top-ranked hits
with a negative correlation to our young BC signature. RAF/MEK/
mTOR inhibitors were among the top-ranked hits with suggested
positive treatment effects on HR+ BC of the young—being in line
with our finding of gene expression patterns reflecting increased
oncogenic signalling in tumours of the young. These results add
arguments to increased tumour-promoting signalling in BC of the
young and propose anti-proliferative drugs as relevant when
tailoring treatment strategies to this patient subset.
The identification of age-specific gene signatures with prognostic

and predictive significance in relation to biological aberrations holds
promise for tailored therapeutic interventions, as discussed at ESO-
ESMO 4th International Consensus Guidelines for Breast Cancer in
Young Women (BCY4) [60]. To speculate, our 6GPS may show
predictive potential for cancer therapies, particularly for compounds
acting through anti-proliferative mechanisms, like CDK-, Aurora
kinase, or RAF/MEK/mTOR inhibitors. Experimental and clinical
studies are needed to investigate this.

Fig. 4 Breast cancer-specific and recurrence-free survival according to 6GPS levels. A high 6 Gene Proliferation Score (6GPS) associated
with shorter disease-specific survival (a METABRIC discovery cohort; Q1-Q4 representing quartiles 1–4). Recurrence-free breast cancer survival
according to 6GPS in the GSE25066 cohort (b), and in the cohorts from the online “KM plotter” database (www.kmplot.com); c). When
adjusting for traditional prognostic variables, the 6GPS demonstrated independent association with shorter disease-specific survival (d; Cox
multivariate analysis), also when adding molecular subtypes to the analysis (e). Dotted lines represent a hazard ratio (HR) of 1.0, and error bars
represent 95% CI. A high 6GPS was also significantly associated with shorter survival in Luminal A tumours (METABRIC discovery and “KM
plotter” cohorts; f, g). High expression of 6GPS associated with shorter disease-specific survival in luminal, lymph node negative, Oncotype Dx
intermediate score cases (h METABRIC validation cohort).
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In conclusion, our novel age-based signature approach, by
network-based discoveries, and validated results, indicate higher
tumour cell proliferation in BC of the young, and point to compounds
with anti-proliferative potential as particular relevant in this patient
subgroup. A novel age-derived 6 Gene Proliferation Score reflects
proliferation and provides strong, independent prognostic value, also
in patient subsets of expected good prognosis.
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