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Abstract. Recordings of extracellular spikes have been widely used in various fields ranging from basic 

neuroscientific research to clinical applications. However, in the extracellular recording system, how to 

accurately detect spikes from the recorded signal in real time is still a major challenging work. Although the 

existing algorithms for online spike detection have made great progress, there still remains much room for 

improvement in terms of accuracy. In this paper, we propose a new method for high accuracy and real time 

spike detection. Concretely, differential operator is firstly employed to accentuate spikes in the signal for its 

simplicity and strong capacity to detect significant changes. Then, by exploiting the structural features of 

spikes, the resolution parameter is introduced to improve the performance of differential operator. Finally, a 

simple and effective measure is utilized to further reduce the influence of background noise, which makes 

spike detection more accurate. The results of simulated and real data show that the proposed method is able 

to precisely detect spikes while maintaining low computational complexity. 

1 Introduction 

In the past decades, neural activity has been widely 

studied to provide a useful mean for understanding brain 

function. With the development of electrophysiology, 

neuroscientists have found that neurons transmit 

information to each other by firing spikes [1]. Many 

questions in neuroscience have been answered by 

analyzing the spikes recorded under certain behavioral 

condition [2]. Additionally, neural spike information also 

plays an important role in brain disorder detection and 

brain-computer interfacing (BCI) systems [3, 4]. 

Nowadays extracellular neural recordings have 

become a common way to acquire the electrical activity 

of neurons [5]. During the processing of the recorded 

signals, the detection of spikes is the first and crucial 

step, which promises to be able to extract necessary 

spike data from the recorded signal for subsequent 

analyses. In the past three decades, researchers have 

made great efforts and developed many spike detection 

methods. Considering the fact that the accuracy of spike 

detection will directly impact all subsequent analyses, 

most of the existing methods mainly focus on how to 

accurately detect spikes from the large amounts of 

background noise. Although these methods perform with 

high accuracy, they are often complex and require a lot 

of calculations. As a result, these detection methods are 

only suitable for offline implementation. 

Although it is reasonable to use the sophisticated 

methods to analyze the data after acquisition, there is an 

increasingly demand to develop real-time spike detection 

methods in practical applications, such as brain disorder 

detection and BCI systems. Among the existing methods, 

amplitude thresholding (AT) [6, 7] and nonlinear energy 

operator (NEO) [8, 9] are still the simplest and most 

widely used techniques. AT only takes into account the 

amplitude of the signal, and a spike is said to be detected 

only when the signal amplitude exceeds a preset 

threshold. NEO is developed based on the energy of the 

signal and considers that the energy of the spike is 

greater than that of noise. Hence, the spikes can be 

detected by thresholding the instantaneous energy of the 

recorded signal. NEO often performs better than AT. 

Although AT and NEO are computationally simple and 

easy to implement in hardware, it has been proven that 

these two popular methods are sensitive to the noise. In 

other words, the accuracy of AT and NEO still does not 

fulfill the practical demands. It is desirable to develop a 

spike detection method which is with low complexity 

and high accuracy for creating a practical device. 

In this paper, we propose a new simple spike 

detection method by directly analyzing the time-domain 

features of spikes. Among various analysis tools, we 

select the differential operator to accentuate the spikes in 

the recorded signal for its simplicity and the ability to 

detect significant changes. Unfortunately, we find that 

the peaks caused by the noise may also be amplified by 

the traditional differential operator. To prevent this, we 

introduce the resolution parameter into differential 

operator, which can significantly improve the difference 

between spikes and noise. In addition, the convolution 

operation is also utilized to further reduce the effect of 

noise. Experiments on both synthesized and real data 

show that our method is able to accurately detect spikes 

while maintaining low computational complexity. 

2 Proposed method 
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2.1. Spike enhancement 

Researches have discovered that the activity of a neuron 

appears as a rapid sharp rise (or spike) in the 

extracellular recording signals [10]. Although large 

amounts of background noise exist in the recorded signal, 

the spikes from target neurons usually have greater 

amplitude fluctuation than the noise (see Fig. 1). Inspired 

by this fact, we try to discriminate spikes by analyzing 

the amplitude changes of the recorded signal. 

 

Fig. 1. Extracellular recording signal. 

As an effective analysis tool, differential operator 

(DO) plays an important part in the fields of signal and 

image processing. With great success to detect 

significant changes, this technique has been widely used 

to enhance the contrast of target [11]. Besides this, 

another attractive advantage of DO is that it is very 

simple in computation. Therefore, we apply DO in this 

paper to analyze the difference between spikes and noise. 

Suppose that (n)x  is the recorded signal to be processed, 

the differentiation of (n)x  can be formulated as 

(n) (n) (n 1)D x x= − − .                         (1) 

As we know, when a spike occurs at the nth location, 

there is an instantaneous increment of signal amplitude 

at the corresponding location. Accordingly, a high peak 

is expected to occur in (n)D . 

 

Fig. 2. Application of differential operator to the signal shown 

in Fig. 1. Spikes A and B are labeled with sign “*”. 

Unfortunately, our observations discover that the 

traditional DO does not work well with the presence of 

high-level noise, and it can also amplify the spurious 

peaks caused by the noise. To present a clear description, 

an example is given to illustrate the drawback of DO. As 

shown in Fig. 2, some peaks caused by the noise are 

obviously enhanced than before. Moreover, the target 

spike B cannot be identified from noise. Inspired by the 

fact that spikes have greater amplitude fluctuation than 

the noise within the same time interval (the length of 

spike waveform), we can make up for this drawback by 

introducing the resolution parameter k into (1), that is 

                        
k (n) (n) (n k)D x x= − − .                       (2) 

For convenience, we call this operator k-DO. Next, we 

will explain how to determine the value of resolution 

parameter k. For the spike shown in Fig. 3, we can find 

the optimal k that maximizes the output of k-DO is near 

the peak of spike, which turns out to be the interval 

between the trough and peak (ITP). As the spikes from 

different neurons generally have different ITP, we can 

only roughly estimate the value of k according to the 

acquired spike data. That is, we first arbitrarily extract a 

slice of data from the recorded signal in advance, and 

select the smallest ITP of the spikes in the slice as the 

final k. Incorporated with the resolution parameter, the 

performance of DO is obviously improved than before. 

This fact can be verified from Fig. 4. It can be seen that 

when a spike occurs, k-DO will generate a high 

numerical value at the peak or trough of the target spike. 

Moreover, the outputs of spikes are obviously larger than 

that of noise. 

 

Fig. 3. Sample spike waveform. 

 

Fig. 4. Effect of resolution parameter on the performance of 

differential operator. 

2.2 Noise suppression  

Due to the differences in the shape of spikes, the high 

numerical value caused by a spike may occur at the peak 

or trough of the spike. If the high numerical value occurs 

at the peak of a spike, it is positive (see point A in Fig. 4). 

Conversely, the high numerical value is negative when it 

occurs at the trough of a spike (see point B in Fig. 4). 

This fact is not conducive to the final determination. To 

prevent this, we take the absolute value of k (n)D  as the 

final output, and call it k-ADO. 

In order to further reduce the interference of 

background noise, the convolution operation is also 

introduced to filter the final output. That is, 

            
k

L

k

i 1

(n) | (n) |

| (n i) | (L i 1),

F D W

D W
=

= 

= + − +
              (3) 

where W is the Hamming window, L is the length of 

window. Convolution operation is one of the most 

classical techniques in the field of signal processing, and 
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is often used for signal smoothing and denoising. With 

the help of convolution operation, the spurious peaks 

caused by noise can be effectively restrained. 

To investigate the effect of convolution operation, we 

apply it to an output signal and show the result in Fig. 5. 

From Fig. 5, we can see that although k-ADO can 

separate spikes from background noise, the noisy peaks 

still have a negative influence on the identification of 

spikes. Compared to the result of k-ADO, convolution 

operation can further restrain background noise, which 

makes the final determination more accurate. Therefore, 

it can be concluded that noise suppression plays an 

important role in the final determination. 

 

 

Fig. 5. Effect of convolution operation on noise suppression. (a) 

Absolute value of the signal shown in Fig. 4. (b) Result of 

convolution operation. 

2.3 Amplitude thresholding 

An amplitude threshold should be set for determining 

whether the spike occurs in the recorded signal. Once the 

amplitude of output signal exceeds the threshold, a spike 

event is detected. In our method, the amplitude threshold 

is defined as 

                              Thr b ( )mean F=                          (4) 

where b is a constant generally taken 3~5.  

3 Experimental results 

In this section, we conduct experiments to verify the 

performance of the proposed spike detection method, 

and compare it with two well-known existing methods: 

AT [12], NEO [8] on both synthesized and real data. To 

be fair, the resolution parameter k is also introduced into 

the technique NEO (named k-NEO). In this work, we 

take accuracy and computational complexity as the 

criteria to evaluate the performance of each spike 

detection method. Usually, the computational 

complexity of each method is estimated by its running 

time (RT). To evaluate the accuracy of the method, both 

hit rate (HR) and precision (Pre) are introduced and 

defined as follows, 

CDS CDS
Hit Rate= 100%,Pr ecision= 100%,

TS DS
     (5) 

where CDS is the number of correctly detected spike 

events, TS is the total number of true spike events 

recorded in the signal and DS is the number of spike 

events detected by the method. 

3.1. Analysis from synthesized data 

The synthesized data is constructed according to the 

method developed by [13], which models the recorded 

signal as a linear mixture of target spike trains and 

background noise. The dataset consists of several 

simulations with different noise levels. The number of 

spike events in each simulation varies between 3200 and 

3500. The simulated data can be downloaded from 

http://www2.le.ac.uk/departments/engineering/research/

bioengineering/neuroengineering-lab/spike-sorting. 

The performance comparisons on synthesized data 

are listed in Tables 1 and 2. From Table 1, it can be seen 

that the proposed method performs better compared with 

the other two methods, especially with the presence of 

high-level background noise. When the noise level 

increases to 0.40, the proposed method still maintains 

over 80% hit rate and 94% precision. 

Table 1. Detection performance of methods applied to 

synthesized dataset. 

Noise  

Level 

AT k-NEO Proposed 

HR Pre HR Pre HR Pre 

0.05 99.72 100 100 100 100 100 

0.10 96.82 100 100 100 100 100 

0.15 86.08 99.38 99.94 99.71 99.97 99.78 

0.20 72.45 97.31 99.59 98.38 99.62 98.45 

0.25 55.09 90.31 95.54 97.70 96.39 97.53 

0.30 39.54 85.28 91.16 95.25 94.10 94.60 

0.35 28.01 74.87 80.84 97.28 82.23 98.06 

0.40 21.32 65.65 77.58 95.25 80.63 94.68 

Table 2. Running times of methods applied to synthesized 

dataset. 

Noise Level AT k-NEO Proposed 

0.05 0.0167 0.0392 0.0414 

0.10 0.0166 0.0391 0.0416 

0.15 0.0164 0.0394 0.0414 

0.20 0.0167 0.0394 0.0411 

0.25 0.0164 0.0393 0.0412 

0.30 0.0170 0.0396 0.0417 

0.35 0.0166 0.0395 0.0415 

0.40 0.0168 0.0394 0.0421 

Table 2 shows the running time required per 

simulation (in seconds). Seen from Table 2, in each 

simulation, all methods run fast and the times spent by 

them are less than 0.05 s. It also should be noted that the 

proposed method spends comparable time compared 

with k-NEO. These findings indicate that the proposed 

method is simple as AT and k-NEO, and is suitable for 

online applications. 

MATEC Web of Conferences 173,  (2018) https://doi.org/10.1051/matecconf/2018173
SMIMA 2018

02017 02017

3

http://www2.le.ac.uk/departments/engineering/research/bioengineering/neuroengineering-lab/
http://www2.le.ac.uk/departments/engineering/research/bioengineering/neuroengineering-lab/


 

3.2. Application on Real Data 

In this section, we test the proposed method on real 

recorded signals. The real signals are recorded from 

prefrontal cortex of mice when performing a working 

memory task [14]. Different from the synthesized signals, 

the ground truth information (such as the locations of 

spikes) of real signals is unknown to us. In order to 

evaluate the performance of our method on real data, 

numerous spikes in each recorded signal are labeled as 

ground truth by two experienced EEGers.  

We apply three different methods to a slice of real 

recorded signal and show the outputs in Fig. 6. The 

original signal is shown in Fig. 6(a) and 7 spikes 

contained in it are labeled with sign “*”. The outputs of 

AT, k-NEO and proposed method on the same signal are 

presented in Fig. 6(b)-(d), respectively. Note that the 

spikes detected by the method are denoted by the sign 

“o”. It can be seen that the background noise is 

obviously suppressed meanwhile the spikes are 

highlighted with the proposed method. In addition, we 

further compare our method with other two ones on real 

extracellular recording signals and present the results in 

Tables 3 and 4. It can be seen that the proposed method 

performs with higher hit rate and precision compared 

with the other two methods. Moreover, the proposed 

method maintains the low computational complexity. 

 

 

Fig. 6. Results for real extracellular recording signals. (a) 

Original real signal. (b)-(d) show the results of AT, k-NEO, 

and the proposed method, respectively. 

Table 3. Detection performance of methods applied to real 

signals. 

Real Data 
AT k-NEO Proposed 

HR Pre HR Pre HR Pre 

1 93.16 89.73 94.67 94.22 96.96 95.11 

2 79.14 97.14 91.37 95.52 93.53 95.59 

3 74.34 97.39 92.11 94.56 94.08 97.28 

Table 4. Running times of methods applied to real signals. 

Real Data AT k-NEO Proposed 

1 0.0035 0.0116 0.0115 

2 0.0036 0.0128 0.0124 

3 0.0032 0.0102 0.0104 

4 Conclusion 

In this paper, a novel method based on improved 

differential operator is introduced which creates a high 

efficiency algorithm for real time spike detection. The 

proposed method mainly consists of two stages. In the 

first stage, with the help of resolution parameter, the 

differential operator is successfully used to enhance 

spike events in the recorded signal. In the second stage, 

the convolution operator is employed to further reduce 

the influence of background noise, which makes spike 

detection more accurate. Experimental results 

demonstrate that the proposed method achieves a better 

performance of spike detection while maintaining low 

computational complexity. 
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