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Abstract—In this paper, we propose a conceptually novel algo-
rithm, namely “Spatial Subspace Rotation” (2SR), that improves
the robustness of remote photoplethysmography. Based on the
assumption of (1) spatially redundant pixel-sensors of a camera
and (2) a well-defined skin mask, our core idea is to estimate
a spatial subspace of skin-pixels and measure its temporal
rotation for pulse extraction, which does not require skin-tone
or pulse-related priors in contrast to existing algorithms. The
proposed algorithm is thoroughly assessed on a large benchmark
dataset containing 54 videos, which includes challenges of various
skin-tones, body-motions in complex illuminance conditions, and
pulse-rate recovery after exercise. The experimental results show
that given a well-defined skin mask, 2SR outperforms the
popular ICA-based approach and two state-of-the-art algorithms
(CHROM and PBV). When comparing the pulse frequency
spectrum, 2SR improves on average the SNR of ICA by 2.22 dB,
CHROM by 1.56 dB, and PBV by 1.95 dB. When comparing
the instant pulse-rate, 2SR improves on average the Pearson
correlation and precision of ICA by 47% and 65%, CHROM
by 22% and 23%, PBV by 21% and 39%. ANOVA confirms the
significant improvement of 2SR in peak-to-peak accuracy. The
proposed 2SR algorithm is very simple to use and extend, i.e.,
the implementation only requires a few lines Matlab code.

Index Terms—Biomedical monitoring, photoplethysmography,
remote sensing, colors.

I. INTRODUCTION

REMOTE photoplethysmography (rPPG) enables contact-

less monitoring of human cardiac activities by detecting

the pulse-induced subtle color changes on skin surface using

a regular RGB camera [1], [2]. This detection is based on

the fact that the pulsatile blood propagating in the human

cardiovascular system changes the blood volume in skin tissue.

The oxygenated blood circulation leads to fluctuations in

the amount of hemoglobin molecules and proteins thereby

causing a fluctuation in the optical absorption across the light

spectrum. A regular RGB camera can therefore identify the

phase of the blood circulation based on minute color changes

in skin reflections.

The core of rPPG is the algorithm used for pulse extraction.

In recent years, several robust rPPG algorithms have been pro-

posed. These include: (1) Blind Source Separation (e.g., PCA-

based [3] and ICA-based [4]), which separates the temporal

RGB traces into independent signal-sources using different
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criteria and takes the most periodic source as the pulse; (2)

CHROM [5], which computes the pulse-signal as a linear

combination of chrominance-signals assuming a standardized

skin-color to white-balance the camera; (3) PBV [6], which

defines a
−→
P bv vector, the signature of blood volume change, to

distinguish the pulse-induced color changes from motion noise

in temporal RGB traces. A thorough review on the history of

rPPG can be found in [7], [8]. Based on these algorithms,

improvements have been made including enhancement of

motion robustness [9]–[11] and rPPG-signal quality [12]. More

recently, they also lead to further advances in vision-based

intelligent systems, such as vital signs monitoring [13], living

subject detection [14], facial expression analysis [15], mental

stress detection [16], etc. All these techniques are based on

the core rPPG algorithms.

In essence, all existing rPPG algorithms exploit a common

spatio-temporal scheme for pulse extraction, which can be

generalized as “temporal combination of spatial color mean”.

It consists of two steps: given a video sequence contain-

ing a subject, it (1) spatially quantifies RGB values of the

subject’s skin-pixels in each single frame, i.e., RGB mean,

and (2) temporally creates RGB traces over multiple frames

and combines them into a pulse-signal. The key difference

between these algorithms is the different criteria/priors used

to combine the RGB traces. The methods [3], [4], which are

based on Blind Source Separation, first combine the RGB

traces by linear projection and then select the most periodic

independent signals as the pulse, which cannot deal with the

case that motion is also periodic. For CHROM [5] and PBV

[6], if the relative contribution of the blood volume pulse to

the RGB channels is changed (e.g., due to different lighting

spectra), the relations between RGB traces for deriving pulse

will also change, and thus their fixed priors may be sub-

optimal, i.e., CHROM assumes a standardized skin-color and

PBV uses a pre-defined pulse signature, while both may vary

a bit especially with extreme illumination spectra.

To this end, we propose a conceptually novel rPPG algo-

rithm, namely “Spatial Subspace Rotation” (2SR), to solve the

limitations in the conventional rPPG scheme. The core idea of

our method is to measure the temporal rotation of the spatial

subspace of skin-pixels for pulse extraction. It consists of two

steps: (1) in the spatial domain, a subspace of skin-pixels is

constructed in RGB space; (2) in the temporal domain, the

rotation angle of spatial subspaces between subsequent frames

is measured for pulse extraction. Our experiments demonstrate

that when (1) multiple pixel-sensors of a regular RGB camera

are used for skin sensing, and (2) a well-defined skin mask

is available, 2SR outperforms the popular ICA-based method,
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as well as two state-of-the-art methods (CHROM and PBV),

especially for subjects with dark skin-tone or body-motions in

complex illuminance conditions.

The remainder of this paper is as follows. In Section II,

we analyze the concerned problems in detail and describe

the proposed rPPG algorithm. In Section III and IV, the

proposed algorithm is experimentally evaluated and compared.

In Section V, we discuss future improvements. Finally in

Section VI, we draw the conclusions.

II. METHOD

A. Spatial subspace formulation

In the spatio-temporal scheme of rPPG, the first step is to

quantify RGB values of skin-pixels in each single frame as

the spatial representation. All existing rPPG algorithms use the

spatially averaged RGB to quantify skin-pixels, i.e., (R,G,B).
They do not consider the spatial distribution of skin-pixels in

RGB space. As an alternative, we propose to take the spatial

distribution of skin-pixels into account, which can be simply

derived by the spatial RGB correlation:

C =
V ⊤ · V

N
, (1)

where N > 0 is the number of skin-pixels; V is a N × 3
matrix vectorized from RGB channels of skin-pixels in a video

frame (e.g., each row of V is a skin-pixel while each column

of V is a color channel); C is a 3× 3 symmetric correlation

matrix with non-negative values. Note that C is different from

a covariance matrix in which the mean of V is subtracted. The

reason is: (R,G,B) contains important pulsatile information

when being concatenated in the temporal domain, which is

an essential element used by existing rPPG algorithms [3]–

[6] for pulse extraction. If (R,G,B) is removed from V , the

pulsatile components will be eliminated in C, which makes it

impossible to perform pulse extraction. By decomposing C,

we can obtain the subspace of skin-pixels:

C · U = Λ · U subj.to det(C − Λ · I) = 0, (2)

where det(·) denotes the matrix determinant; U and Λ denote

the eigenvectors and eigenvalues respectively. The eigenvalue

decomposition is based on the QR algorithm [17]. Note that

C is a 3 × 3 full-rank matrix, since the elements between

RGB channels can hardly be identical in realistic situations.

This is due to the 3D geometry of the skin surface, different

hemoglobin and melanin concentrations in skin tissues, and

the presence of independent sensor noise in RGB channels.

Thus we can expand C as:

C = λ1 · u1 · u
⊤
1 + λ2 · u2 · u

⊤
2 + λ3 · u3 · u

⊤
3 , (3)

where ui is the i-th column vector of U ; λi is the i-th diagonal

element of Λ. In RGB space, we define U as a new axis

system of skin-pixels, where (1) the principal eigenvector u1 is

the skin-vector dominating the cluster of skin-pixels (the main

direction), which is a least square estimation that is robust to

spatial outliers; (2) u2 and u3 are succeeding directions of

variation that are orthogonal to u1.

Fig. 1 illustrates the subspaces of skin-pixels in different

circumstances. There are two important properties that one
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Fig. 1. An example of subspaces of skin-pixels formulated in different
circumstances. The subspace (e.g., the eigenvector denoted in red) can adapt
to different spatial distributions of skin-pixels (e.g., scatters denoted in blue)
in variant skin-tones and illuminance conditions. The principal direction of
subspace is along the main variance of the skin-pixel cluster.

should consider when looking at these figures: (1) skin-

pixel values are non-negative, so u1 can never point to the

negative direction in RGB space; (2) human skin is relatively

homogeneous in chromaticity (within a specific hue range) but

varies in intensity due to shadows and specular reflections.

Based on different intensity levels, the distribution of skin-

pixels in RGB space can either be an ellipse that originates

from the RGB origin or a compact sphere with uniform skin

reflections. In both cases, u1 will point to the skin-pixel cluster

from the RGB origin. Since human skin is not a colorful

surface, the distribution of skin-pixel can never be a sparse

cloud that is spread everywhere in RGB space.

So far in this paper, the conventional spatial representation

(R,G,B) is replaced by U of skin-pixels. The essence of the

proposed method is the notion to exploit the information con-

tained in C (e.g., direction and energy) instead of the averaged

skin-pixel values. Note that (1) U has to be estimated from

multiple pixel-sensors using a regular camera and thus only

works for rPPG, which is different from existing algorithms

(e.g., CHROM and PBV) that also work for a single pixel-

sensor similar to the contact-based PPG; (2) since U depends

on the statistical distribution of skin-pixels, it requires a well-

defined skin mask for measuring the single cluster of skin-

pixels, otherwise it models the joint distribution of skin and

background (e.g., multiple clusters), which would render our

algorithm invalid.

B. Spatial subspace rotation

In the temporal domain, pulsatile blood causes variations

in RGB channels and thus changes the subspace of skin-

pixels. Since the spatial subspace is constructed from spatially

redundant skin-pixels without temporal normalization (i.e.,

dividing the RGB channels by their temporal mean), we cannot

directly use the subspace translation (i.e., distance shift of

spatial RGB mean) to measure pulse. This is because that

pulsatile variations without temporal normalization are propor-

tional to the luminance intensity and thus in a multiplicative

relationship. We model the temporal relation between two

subspaces as an instantaneous rotation and scaling: (1) the
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Fig. 2. A video sequence (with 200 frames) is used to illustrate the function
of cosine and sine angles in the rotation matrix. The recorded subject has
bright skin and remains stationary in this video. Regarding the first frame as
the reference, we estimate the rotation matrix of two subspaces between the
reference and subsequent frames using Eq. 4. The first row of the rotation
matrix [cos(θ11), sin(θ12), sin(θ13)] is temporally concatenated to generate
cos(θ) and sin(θ) traces. Due to their different temporal variations, cos(θ)
trace and sin(θ) trace are plotted in separate subfigures for visual comparison.

rotation between eigenvectors (direction change) is related to

the different relative PPG-contributions in RGB channels; and

(2) the change of eigenvalues (energy change) is related to the

pulsatility of the measured skin.

Since the subspace U consists of eigenvectors with unit

norm, its temporal changes can only cause a rotation. Thus we

define a temporal stride with length l to analyze the subspace

rotation. Considering the subspace in the first frame of a stride

Uτ as the reference, the rotation between Ut,t≤l and Uτ is:

R = U⊤
t · Uτ =





ut⊤
1

ut⊤
2

ut⊤
3



 ·
(
uτ
1 uτ

2 uτ
3

)
, (4)

where R is the rotation matrix; ut
i denotes the i-th column

of Ut. Since the L2-norm of the eigenvectors is normalized

to 1, the entries in R essentially represent the cosine angles

between eigenvectors:

cos(θij) =
ut⊤
i · u

τ
j

‖ut
i‖ · ‖u

τ
j ‖

, (5)

where i and j denote the column index; θij denotes the rotation

angle between ut
i and uτ

j ; ‖ ·‖ denotes the L2-norm; ‖ut
i‖ and

‖uτ
j ‖ are 1. Thus R can be rewritten as:

R =





cos(θ11) cos(θ12) cos(θ13)
−cos(θ12) cos(θ22) cos(θ23)
−cos(θ13) −cos(θ23) cos(θ33)



. (6)

Due to the orthogonality of eigenvectors in U , cos(θij,i 6=j)
in the non-diagonal entries actually measures the sine angle

changes, i.e., sin(θij,i 6=j) = cos(θij,i 6=j −
π
2 ). Thus Eq. 6 can

be rewritten as:

R =





cos(θ11) sin(θ12) sin(θ13)
−sin(θ12) cos(θ22) sin(θ23)
−sin(θ13) −sin(θ23) cos(θ33)



. (7)

Since the pulse-induced color changes are minute, θij are

subtle angular changes varying around 0. Thus cos(θii) in

diagonal entries vary around 1, which cannot reflect the exact

direction of rotation (always positive), i.e., the relative PPG-

contributions in RGB channels become vague due to the

unsigned rotation. Besides, the cosine angle is less sensitive to

subtle pulsatile fluctuations, i.e., cos(·) can be considered as a

kernel function here. In contrast, sin(θij,i 6=j) in non-diagonal

entries do not have the sign problem and exhibit the steepest

changes when varying around 0. Fig. 2 shows an example of

temporal cos(θ) and sin(θ) traces concatenated by the first

row of R. The sin(θ) trace presents much stronger pulsatile

variations than the cos(θ) trace, i.e., the standard deviations

for cos(θ11), sin(θ12) and sin(θ13) traces are respectively

4.3 × 10−6, 1.6 × 10−3 and 1.9 × 10−3. Therefore, only the

non-diagonal entries in R will be used.

Pulsatile blood changes the skin-tone, which is in fact

the dominant skin-vector u1 in RGB space. Hence, only the

temporal rotation of u1 is concerned. However, as explained

before, the rotation between ut
1 and uτ

1 (e.g., cos(θ11)) cannot

be used. We only measure the rotation between the vector ut
1

and orthonormal plane
(
uτ
2 uτ

3

)
as:

R′ =
(
ut⊤
1

)
·
(
uτ
2 uτ

3

)
=

(
ut⊤
1 · u

τ
2 ut⊤

1 · u
τ
3

)
, (8)

which are in fact sin(θ12) and sin(θ13). To understand the

performance of this step, we show the signals produced by R′

in Fig. 3 (b). In the stationary case, the blood volume pulse is

the only signal-source causing the periodic rotation of the skin

subspace, which produces two periodic in-phase signals. In the

motion case, one direction in R′ is somehow distorted by the

head motion, which is related to the lighting spectrum. The

other direction in R′ is orthogonal to the distorted direction,

and thus is more or less independent of motion distortions,

i.e., the signal is still dominated by the pulse.

In addition to the subspace rotation, the eigenvalues corre-

sponding to the variance/energy of the eigenvectors are also

influenced by the pulsatile blood, which should be exploited

as well. Since λi, decomposed from C, is powered variance,

we square it and derive its scale changes as:

S =
√

λt
1 · diag(

(√
λτ
2 0

0
√
λτ
3

)−1

) =

(√

λt
1/λ

τ
2√

λt
1/λ

τ
3

)

, (9)

where diag(·) denotes the diagonal entries of a matrix. The

signals produced by S are shown in Fig. 3 (c): they represent

the scale/energy change of the rotated subspace (always posi-

tive), which is in fact related to the pulsatility of measured

skin. However, if skin-reflections also contain the spectra

intensity changes (e.g., caused by motion distortion), S could

be affected as well, i.e., the signals obtained on rotating

subject are modulated by the head rotation and change in a

larger range (e.g., ±10) as compared to that of a stationary

subject (e.g., ±4). Thus we cannot only use the eigenvalues

to derive the pulse. Since S is estimated with respect to the

reference subspace, we can restrict its changes to the direction

of subspace rotation by combining Eq. 9 with Eq. 8:

SR = S⊤ ⊙R′

=

scaling
︷ ︸︸ ︷
(√

λt

1

λτ

2

√
λt

1

λτ

3

)

⊙

rotation
︷ ︸︸ ︷
(
ut⊤
1 · u

τ
2 ut⊤

1 · u
τ
3

)
,

(10)

where ⊙ denotes the element-wise multiplication. An intuitive

explanation to Eq. 10 is: the dominant skin-vector ut
1 is

projected and scaled on the orthonormal plane
(
uτ
2 uτ

3

)
.
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This step has two benefits: (1) it magnifies the amplitude

of subspace rotation, i.e., pulsatility is emphasized; and (2)

it suppresses the energy variations in S that do not align

with the rotation direction, such as light intensity distortions.

Although the magnitude of the scaling term (due to λ1) is

much larger than that of the rotation term, the scaling term

is always positive and can thus be steered by the rotation

term to positive/negative direction. The improved signals of

the rotating subject are shown in Fig. 3 (d).

Considering a sliding window approach [5], the reference

subspace Uτ is constantly changed in different temporal

strides. In order to obtain the time-consistent SR over multiple

strides, SR has to be analyzed in the same space, and thus is

backprojected into the original RGB space:

SR′ = SR ·

(
uτ⊤
2

uτ⊤
3

)

=
(√

λt

1

λτ

2

√
λt

1

λτ

3

)

⊙
(
ut⊤
1 · u

τ
2 ut⊤

1 · u
τ
3

)
·

(
uτ⊤
2

uτ⊤
3

)

=

√

λt
1

λτ
2

· ut⊤
1 · u

τ
2 · u

τ⊤
2 +

√

λt
1

λτ
3

· ut⊤
1 · u

τ
3 · u

τ⊤
3

.

(11)

The arbitrary sign problem of eigenvector decomposition is

eliminated after the backprojection. In a single stride, multiple

SR′ between the reference frame and succeeding frames are

estimated and concatenated into a trace
−−→
SR′. The first two

traces in
−−→
SR′ are in anti-phase, as our example in Fig. 3 (e)

shows. Similar to CHROM [5], we derive/boost the pulse-

signal by combining the anti-phase traces as:

−→p =
−−→
SR′

1 −
σ(
−−→
SR′

1)

σ(
−−→
SR′

2)
·
−−→
SR′

2, (12)

where
−−→
SR′

i is the i-th trace of
−−→
SR′; σ(·) denotes the standard

deviation operator. Consequently, a long-term pulse-signal
−→
P

is estimated from successive strides using overlap-adding as:

−→
P t−l =

−→
P t−l + (−→p − µ(−→p )), (13)

where µ(·) denotes the averaging operator;
−→
P , an one-

dimensional signal with length K (the total number of video

frames), is initialized by zero-entries and constantly updated

by −→p . An example of
−→
P is shown in Fig. 3 (f): the pulse-

signal can be extracted even when RGB channels are seriously

distorted by the head rotation in Fig. 3 (a).

In order to show the independent performance and im-

provement of the proposed method, we remove all the post-

processing steps (e.g., signal smoothing) to keep the algorithm

as clean as possible, i.e., even the commonly used band-pass

filtering is rejected. The complete algorithm of 2SR is shown

in Algorithm 1, which is very simple to use and extend, i.e.,

the implementation only requires a few lines Matlab code.

III. EXPERIMENTS

This section presents the experimental setup for evaluat-

ing the proposed rPPG algorithm. First, we introduce the

benchmark video dataset. Next, four evaluation metrics are

(b) R’

(c) S

(d) SR

(e) SR’

(f) P
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Fig. 3. Two video sequences (with 200 frames) are used to illustrate the
results obtained by each step of 2SR. The subject either remains stationary
or rotates head in these two videos to simulate an easy and a challenging
scenario. The signals in the figure are concatenated by the vectors produced
in each step of 2SR, which are respectively the (a) RGB mean traces, which
is used in previous works but not this work, i.e., only for comparison purpose,
(b) R′ in Eq. 8, (c) S in Eq. 9, (d) SR in Eq. 10, (e) SR′ in Eq. 11, and (f)
pulse-signal in Eq. 13. The mean of all the signals are subtracted for visual
comparison. Note that in the steps producing two signals, we use red/blue
color to denote the first/second trace.

Algorithm 1 Spatial Subspace Rotation

Input: a video sequence containing K frames

1: Initialize:
−→
P = zeros(1,K)

2: for k = 1, 2, ...,K do

3: Ck =
V ⊤

k
·Vk

N

4: [Uk,Λk] = eigs(Ck) where Uk = {uk
i },Λ

k = {λk
i }

5: if τ = k − l + 1 > 0 then

6: for t = τ, τ + 1, ..., k do

7: SR′ =
√

λt

1

λτ

2

·ut⊤
1 ·u

τ
2 ·u

τ⊤
2 +

√
λt

1

λτ

3

·ut⊤
1 ·u

τ
3 ·u

τ⊤
3

8:
−−→
SR′ ← concatenated by SR′

9: end for

10:
−→p =

−−→
SR′

1 −
σ(

−−→
SR′

1
)

σ(
−−→
SR′

2
)
·
−−→
SR′

2

11:
−→
P t−l =

−→
P t−l + (−→p − µ(−→p ))

12: end if

13: end for

Output: the pulse-signal
−→
P
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adopted to assess the performance. Finally, the popular ICA-

based approach and two state-of-the-art methods (CHROM

and PBV) are compared in the benchmarking.

A. Benchmark dataset

A benchmark dataset containing 54 video sequences (with

108000 frames) has been built to evaluate the proposed rPPG

algorithm. The videos are recorded with a regular RGB

camera1 in an uncompressed bitmap format, 768×576 pixels,

8 bit depth, and 20 FPS. During the recording, the subject

sits in front of the camera with his/her face visible and

wearing a finger-based transmissive pulse oximetry2 for syn-

chronized PPG-signal sampling - the ground-truth. The subject

is illuminated by a fluorescent lamp3 (parallel illuminance

source) that is placed 1.5 meters in front of the subject face.

The non-uniform illumination produces shadows and specular

reflections on the subject’s face. Since the lighting condition

is crucial to the rPPG technique, we simulate it as a challenge

in the “body-motion” category, where the number of light-

sources, color of the light-source, and types of the illumination

will be introduced in details. Note that all the recordings are

carried out indoors.

To thoroughly evaluate the robustness of the proposed rPPG

algorithm in realistic scenarios, we performed three tests. In

the first test we evaluate the effect of different skin-tones. In

the second test we ask the subjects to perform head motions

in front of the camera, while in the last test we record them

during recovery from a running exercise. This allows us to

investigate these challenges independently, as described below

(the bold number in brackets indicates the number of frames

simulated for this challenge):

• Skin-tone (22500) 15 subjects with various skin-tones

are recorded and categorized into three skin-types based on

the Fitzpatrick scale, i.e., participants are from West Europe

(skin-type I-II, 5 subjects), East Asia (skin-type III, 5 subjects)

and Sub-Sahara Africa/India (skin-type IV-V, 5 subjects).

• Body-motion (31500) To rPPG, the most significant

challenge caused by body-motion is not the “motion tracking”,

but the modulated reflections of lighting spectra on the skin-

surface, which disrupt subtle color changes induced by the

pulse. Thus we combine the body-motion challenge with the

illuminance challenge in this category. Ignoring the problem

of tracking, three basic motion-types, i.e., stationary, rotation

(rigid motion) and talking (non-rigid motion), are defined for a

subject (skin-type III) to perform under 7 different illuminance

conditions including single/mixture of colored light sources,

i.e., fluorescent lamp, red LED lamp, green LED lamp, blue

LED lamp, red-green LED lamps, red-blue LED lamps and

green-blue LED lamps. Note that the colored LED lamps are

point illuminance sources.

• Recovery after exercise (54000) In order to evaluate

the robustness of rPPG to pulse-rate changes, a series of

videos are recorded to analyze subjects recovering from a

running exercise. In this category, 6 subjects (3 males and 3

1Global shutter RGB CCD camera USB UI-2230SE-C from IDS.
2Model CMS50E from ContecMedical.
3Philips HF3319 - EnergyLight White.

Fig. 4. Snapshots of some recordings in the benchmark dataset. The frames
in the first row are from the “skin-tone” category, where subjects have
various skin colors; in the second row are from the “body-motion” category,
where subjects perform head motions in different illuminance conditions;
and in the third row are from the “recovery after exercise” category, where
subjects achieve different levels of pulse-rate after a running exercise, i.e.,
all participants achieve their maximum limits in the high-level and breathe
heavily or sweat perfusely.

females) in skin-type I-III participate in the recordings. Each

subject perform 3 different levels of running (with different

intensities) by adjusting speed and gradient of the treadmill:

low (gradient=12◦, speed=4-5 km/p), medium (gradient=14◦,

speed=5-6 km/p), and high (gradient=15◦, speed=7-8 km/p).

The duration of each running exercise is 3 minutes. After the

exercise, the subject immediately sits in front of the camera

for a video recording.

Fig. 4 shows snapshots of some recordings in our bench-

mark dataset. All videos are pre-processed by the OC-SVM

classifier that has been used in [9] for selecting the skin-pixels.

This study has been approved by the Internal Committee

Biomedical Experiments of Philips Research, and informed

consent has been obtained from each test subject.

B. Evaluation metrics

For comparison, the performance of rPPG is evaluated using

four different metrics:

• SNR of pulse frequency In line with [5], the Signal-to-

Noise-Ratio (SNR) of the pulse frequency is derived by the

ratio between the energy around the first two harmonics and

remaining parts in the frequency spectrum, where the location

of the first two harmonics is determined by the reference PPG-

signal. The SNR values are measured from each video and

averaged in each challenge of a particular category.

• Pearson correlation of instant pulse-rate The Pearson

correlation is applied to evaluate the correspondence of instant

pulse-rates between rPPG and the PPG-reference. The instant

pulse-rate, defined as the inverse of the peak-to-peak interval

of the pulse-signal, is derived by a simple peak detector in the

time-domain. It captures the instantaneous changes and reflects

the real-time differences. For statistical analysis, the Pearson

correlation is performed in each challenge per category and

interpreted by the ρ-value.

• Precision of instant pulse-rate The instant pulse-rate of

rPPG is also measured in terms of “precision”, the percentage

of frames where the absolute difference between the reference

is under a threshold T (error tolerance). For statistical analysis,
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TABLE I
SNR (µ)

Category Challenge ICA CHROM PBV 2SR

Skin-tone

Type I-II 6.51 6.47 5.57 7.44

Type III 6.61 6.21 6.26 7.90

Type IV-V 4.56 5.43 4.04 6.60

Body-motion

Stationary 11.61 9.42 6.57 10.53

Rotation 4.04 3.63 6.36 6.16

Talking 3.11 3.99 4.01 5.33

Recovery

low 1.78 2.66 1.95 4.93

medium 1.64 3.62 3.15 5.26

high -0.82 3.52 3.52 4.84

Overall Average 4.34 4.99 4.60 6.55

TABLE II
PEARSON CORRELATION (ρ)

Category Challenge ICA CHROM PBV 2SR

Skin-tone

Type I-II 0.88 0.92 0.89 0.93

Type III 0.66 0.66 0.94 0.97

Type IV-V 0.69 0.83 0.84 0.95

Body-motion

Stationary 0.94 0.95 0.62 0.97

Rotation 0.27 0.29 0.82 0.89

Talking 0.37 0.75 0.53 0.84

Recovery

low 0.76 0.73 0.64 0.98

medium 0.73 0.93 0.85 0.99

high 0.48 0.88 0.87 0.96

Overall Average 0.64 0.77 0.78 0.94

TABLE III
PRECISION (AUC)

Category Challenge ICA CHROM PBV 2SR

Skin-tone

Type I-II 0.64 0.73 0.58 0.77

Type III 0.56 0.58 0.67 0.74

Type IV-V 0.46 0.54 0.45 0.65

Body-motion

Stationary 0.77 0.82 0.60 0.85

Rotation 0.36 0.50 0.66 0.77

Talking 0.31 0.57 0.45 0.65

Recovery

low 0.24 0.37 0.26 0.62

medium 0.16 0.40 0.31 0.55

high 0.12 0.35 0.32 0.38

Overall Average 0.40 0.54 0.48 0.66

we estimate a precision curve by setting T ∈ [0, 3] beats

per minute (bpm) and use the Area Under Curve (AUC) to

interpret the precision. Note that the AUC is normalized by

3, the total area. Similarly, the precision is evaluated in each

challenge per category.

• ANOVA To investigate the significance of difference

between compared rPPG methods, we apply the balanced one-

way Analysis of Variance (ANOVA) to analyze the results

obtained by each evaluation metric. The p-value of ANOVA

is used for interpretation and a common threshold 0.05 is

specified to determine whether the difference is significant,

i.e., when p < 0.05, the difference is significant.

C. Compared method

The 2SR proposed in this paper, is intended as an algo-

rithmic component in an rPPG monitoring-system [9]. Thus

we compare it as clean as possible with direct algorithmic

alternatives, such as the popular ICA-based [4], CHROM [5]

and PBV [6] (the state-of-the-art), but not with the complete

rPPG system [9] that combines many other non-rPPG in-

gredients like face detection/tracking and signal smoothing.

Among the compared rPPG algorithms, CHROM and PBV

require skin-tone/pulse related priors, while ICA does not. All

these methods have been implemented in Matlab and run on a

laptop with an Intel Core i7 processor (2.70 GHz) and 8 GB

RAM. The implementation of 2SR strictly follows Algorithm 1

presented in this paper. The parameters in ICA, CHROM and

PBV are set to the optimal values in the original papers, while

the only parameter in 2SR is defined as l = 20 without tuning,

i.e., the default setting according to the camera frame-rate (20

FPS) in our setup. For fair comparison, all the parameters

remained identical when processing different videos.

IV. RESULTS

The experimental results of ICA, CHROM, PBV and 2SR

on 54 benchmark video sequences are summarized in Table

I-III. The performance of all four algorithms are compared

under each challenge per category. The bold entries in tables

indicate the best result obtained by the corresponding rPPG

algorithm during the comparison. Fig. 5 shows the plots of

Pearson correlation and precision curves.

A. Skin-tone robustness comparison

In the “skin-tone” category, the newly proposed 2SR shows

the highest score in all skin-types in three evaluation metrics,

which demonstrates its superior performance against ICA,

CHROM and PBV in skin-tone robustness. When comparing

the pulse frequency spectrum, 2SR improves on average the

SNR of ICA by 1.42 dB, CHROM by 1.28 dB, PBV by 2.02
dB. When comparing the instant pulse-rate, 2SR improves on

average the Pearson correlation and precision of ICA by 28%
and 30%, CHROM by 18% and 17%, PBV by 7% and 27%.

All color-based rPPG methods including 2SR have problems

in dealing with dark skin as the pulsatility is much lower. Our

experiments show that 2SR has relatively stable performance

across various skin types. The hypothesis for this improvement

is: the skin subspace formulated by 2SR is adapted to the video

content in real-time (e.g., a specific skin distribution), and

the subspace rotation is estimated on the direction orthogonal

to the skin-tone direction, where the pulse-induced subtle

changes are maximized. In Fig. 5, (1) the Pearson correlation

curves show that the performance of ICA, CHROM and PBV

are more variant than 2SR in this category; and (2) the

precision curves show that 2SR gains more improvements in

skin-type IV-V (dark skin) than skin-type I-III, as compared

to the benchmarked algorithms.

In 2SR, we also notice that the temporal changes of λ is

much lower for dark skin as compared to bright skin. The

reason is that the dark skin has higher melanin contents than

the bright skin. It absorbs a portion of diffuse reflections

carrying the pulse-signal, whereas the specular reflection is

not reduced. The lower pulsatility of dark skin leads to lower

amplitudes of pulse-induced color variations in RGB channels,

and thus the smaller λ.
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Fig. 5. In each challenge of a category, ICA, CHROM, PBV and 2SR are statistically compared using Pearson correlation and precision. Both metrics evaluate
the instant pulse-rates of the rPPG-signal.
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Fig. 6. Categorizing the experimental results of “body-motion” in terms of
“illuminance condition”, four algorithms are compared in “single lamp” and
“double lamps” challenges using Pearson correlation and precision.

B. Motion robustness comparison

In the “body-motion” category, 2SR outperforms ICA,

CHROM and PBV in almost all three evaluation metrics

except in the SNR comparison with ICA on stationary subjects

and PBV on rotating subjects. When comparing the pulse

frequency spectrum, 2SR improves on average the SNR of

ICA by 1.09 dB, CHROM by 1.66 dB, PBV by 1.69 dB. When

comparing the instant pulse-rate, 2SR improves on average the

Pearson correlation and precision of ICA by 70% and 58%,

CHROM by 36% and 20%, PBV by 37% and 33%.

As can be seen in Fig. 5, the most significant improvement

of 2SR over (1) ICA and CHROM is in motion (e.g., rotation

and talking), and (2) PBV is in stationary. In ICA, although the

blind source separation step does not rely on the assumption

of skin-tone or illuminance color, the selection of pulsatile

component that based on periodicity is problematic for motion.

The component containing motion frequency noise can be

incorrectly selected. For example, ICA outperforms the other

three algorithms in stationary subjects illuminated by different

colored light sources (e.g., SNR achieves 11.61 dB), but is

much worse in rotation and talking (e.g., SNR is only 3-4 dB).

The use of blood volume signature in PBV brings a modest

loss in signal quality in stationary subjects, which is in line

with the findings in [6], i.e., PBV performs better in motion.

Furthermore, the Pearson correlation curves in the “body-

motion category” of Fig. 5 show that most errors produced

by the benchmarked algorithms (e.g., scattering points far

from the regression line) are on the side of higher pulse-rate

(e.g., 75-85 BPM), especially in the videos containing rotation

and talking. This is due to incorrectly detected peaks when

estimating the instant pulse-rate, but not the pulse-rate of test

subjects, i.e., the instant pulse-rate, derived from inter-beat

interval, is highly sensitive to high-frequency noise or abrupt

changes (e.g., motion artifacts) in the rPPG-signal. To further

understand the algorithms’ performance in different lighting

conditions, we categorize the results obtained in the “body-

motion” in terms of “illuminance condition”: “single lamp”

and “double lamps” categories, as shown in Fig. 6. It shows

that 2SR performs better in both lighting categories, while its

improvement in the “double lamps” category is more clear.

C. Recovery after exercise comparison

In the “Recovery after exercise” category, 2SR outperforms

ICA, CHROM and PBV by showing an all-round improvement

in all three evaluation metrics. When comparing the pulse

frequency spectrum, 2SR improves on average the SNR of

ICA by 4.14 dB, CHROM by 1.74 dB, PBV by 2.14 dB. When

comparing the instant pulse-rate, 2SR improves on average the

Pearson correlation and precision of ICA by 49% and 198%,

CHROM by 15% and 38%, PBV by 24% and 74%.

In Fig. 5, the Pearson correlation curves suggest that 2SR

has a better correlation with the PPG-reference than others.

However, we notice that in the precision curves, when sub-

jects’ pulse-rates are increased to medium and high levels
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(e.g., more intensive exercise), the peak-to-peak accuracies of

all benchmarked algorithms are improved at T = 0 (e.g., error

tolerance is 0), but degraded at T = 3 (e.g., allowing 3-beats

difference). The reason is that after running the subject’s pulse

amplitude is stronger, which helps estimation. On the other

hand, the relatively fast change in pulse-rate renders the 3-

beats error tolerance insufficient.

To further understand their performance, we show the

pulse frequency spectrums obtained by PPG-reference and

four rPPG algorithms on one subject (e.g., the subject 2) at

three running levels in Fig. 7. We can see that (1) when the

subject pulse-rate is increased from low to high levels, ICA

shows noisier spectrums and performs worse. The respiratory

component showing strong frequency is incorrectly selected

as pulse, especially in medium and high levels where the sub-

ject breathes heavily after intensive exercise; (2) conversely,

CHROM and PBV show cleaner spectrums in higher levels.

Since the pulsatility of measured skin becomes stronger after

subjects perform intensive exercise, it leads to easier pulse

extraction. Besides, these two methods do not have problem of

component selection as ICA; and (3) 2SR shows much cleaner

spectrums than the other compared algorithms in all three

levels, and obtains a performance similar to the PPG-reference.

The improved robustness of 2SR over the compared algorithms

are further validated by the statistics in “recovery” category of

Table I-III. Moreover, we notice that in the medium and high

levels of 2SR, the respiration frequency is well preserved in

the spectrum, which does not interrupt the pulse frequency

as ICA. This implies that 2SR could be useful for respiration

extraction as well.

In the high-level running exercise, all subjects achieve

their maximum limits before finishing the test. Although the

recordings are performed immediately after the exercise, some

subjects recover so quickly that their pulse-rates have already

dropped prior to the recording, especially the subject 4. To

investigate the algorithms’ performance in this level, we show

their frequency spectrums obtained on 6 subjects in Fig. 8.

As can be seen, (1) ICA shows much noisier spectrums

than the others, especially in subject 1 where the respiratory

component confused with the pulse-rate for a long period; (2)

the spectrums of 2SR are cleaner than that of CHROM and

PBV, and comparable to that of PPG-reference, i.e., it even

outperforms the PPG-reference in subject 2 and 6, where the

PPG-sensor (finger-contacted pulse oximetry) is occasionally

interfered by finger movement and produces motion artifacts.

Interestingly, we find that during the exercise recovery, the

pulse-rates of (1) subject 1, 2, 3 and 6 decrease slowly and

smoothly, and are not fully recovered within 150 seconds; and

(2) subject 4 and 5 return to their normal states rapidly, within

80 and 120 seconds respectively. Particularly, their pulse-

rates change dramatically and irregularly in a short period, as

shown in both the PPG and rPPG approaches. These irregular

changes in pulse-rates are not caused by motion artifacts or

sensor noise, but are actual cardiac arrhythmias. These are not

uncommon in endurance athletes [18], and our subject 4 and

5 are amateur endurance athletes that run a lot (e.g., at least

three times per week), even half and full marathons.

PPG ICA CHROM PBV 2SR

L
ow

M
ed

iu
m

H
ig

h

Fig. 7. The frequency spectrums obtained by PPG-reference and four rPPG
algorithms on subject 2 (male) at 3 exercise levels, where the x-axis and y-axis
denote the time and frequency respectively.
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Fig. 8. The frequency spectrums obtained by PPG-reference and four rPPG
algorithms on 6 subjects at the high-level exercise (most intensive), where the
x-axis and y-axis denote the time and frequency respectively.

D. Overall comparison

Table IV shows the ANOVA results between three existing

rPPG algorithms and 2SR in our benchmark dataset respec-

tively, where the bold entries indicate significant improvements

(p < 0.05). From Table IV, we conclude that in our benchmark

dataset: (1) in SNR evaluation, 2SR outperforms the other

three algorithms, although the improvements are not signifi-

cant except in the comparison with PBV (p = 0.031). Since the

estimation of SNR is based on the frequency spectrum energy,

it is less sensitive to modest improvements; (2) in Pearson

correlation and precision evaluations, the improvements of
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TABLE IV
ANOVA (P-VALUE)

Comparison SNR Pearson correlation Precision

ICA vs 2SR 0.121 0.001 0.009

CHROM vs 2SR 0.115 0.027 0.098

PBV vs 2SR 0.031 0.005 0.017
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1
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Fig. 9. The overview of performance comparison between ICA, CHROM,
PBV and 2SR in three evaluations, which compares the median (red bar),
standard deviation (blue box), minimum and maximum (black bar) values.

2SR over the other three algorithms are significant except the

comparison with CHROM in precision (p = 0.098). Since

these two metrics are based on the instant pulse-rate derived

from inter-beat interval, it suggests that 2SR can eliminate

high-frequency noises that degrade the accuracy of the peak-

detector used to determine the interval; (3) the most significant

improvement obtained by 2SR is in the comparison with ICA.

This is in line with the findings in CHROM [5] that ICA

is in general less robust to motion distortions, especially to

periodic motions; and (4) the improvements of 2SR over PBV

is slightly larger than that over CHROM. In the model of PBV,

the blood volume pulse signature depends on the optical filters

of the camera and illumination spectrum [6], which is not

adapted to the different illumination conditions incorporated

in our recordings. Our hypothesis is that its noise suppression

may be sub-optimal.

Fig. 9 shows the overall comparison between four rPPG al-

gorithms in our benchmark dataset. Given a well-defined skin

mask, 2SR shows improved robustness over ICA, CHROM

and PBV in all-round evaluations. When comparing the pulse

frequency spectrum, 2SR improves on average the SNR of ICA

by 2.22 dB, CHROM by 1.56 dB, and PBV by 1.95 dB. When

comparing the instant pulse-rate, 2SR improves on average the

Pearson correlation and precision of ICA by 47% and 65%,

CHROM by 22% and 23%, PBV by 21% and 39%.

V. DISCUSSION

A. Skin-pixel cluster

As discussed in Section II, 2SR requires two preliminary

conditions for reliable pulse estimation: (1) multiple skin-

pixels in the spatial domain, and (2) the measured skin-pixels

need to be in a single cluster. This implies that the performance

of 2SR may drop when either the number of skin-pixels

decreases or the skin mask is noisy, i.e., including non-skin

pixels. To thoroughly understand the limitation/weakness of

2SR, we perform another quantitative comparison between

benchmarked algorithms. In these experiments, we (1) reduce

the number of measured skin-pixels, and (2) introduce non-

skin pixels into the skin mask. Examples of the simulated

challenges are shown in Fig. 10, where each challenge is

simulated in two different ways and also multiple times by

using a different percentage of skin-pixels or non-skin pixels

with respect to the original measurement.

Fig. 11 shows the SNR comparisons between the algorithms

under the simulated challenges. In the challenge of reduced

number of skin-pixels, all four algorithms show a similar

quality drop in both down-sampling methods. The smaller

number of skin-pixels leads to larger quantized RGB errors,

which is a general problem for any rPPG algorithms, but

not a particular challenge for 2SR. When increasing the

number of non-skin pixels, all four algorithms suffer from

performance degradations, while the quality of 2SR drops

more dramatically when the percentage of non-skin pixels

becomes larger, i.e., it has an obvious SNR drop when the

percentage of non-skin pixels arrives between 10% and 30%.

This is understandable because 2SR is designed for measuring

the subspace of a single cluster distribution. The occurrence

of another non-skin cluster will distort the direction of the

skin-pixels’ subspace, and the degree of distortion depends

on the percentage of non-skin pixels. In comparison, ICA,

CHROM and PBV have a lower quality drop when significant

non-skin distortions occur, i.e., when the percentage of non-

skin pixels is between 30% and 50%. Since the simulated

non-skin cluster does not introduce extra frequencies, ICA

can properly separate and select the signal source for pulse

estimation. In addition, we notice that PBV performs worse

than CHROM and 2SR when the skin-mask is clean, but

better when skin-similar noise is introduced, which is due

to its design in suppressing noise variations. The simulated

comparisons suggest that the number of skin-pixels is not so

critical for 2SR, but a well-defined skin mask is essential, i.e.,
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Fig. 10. To verify the limitations of 2SR, we simulate two challenges in
the original recordings by (1) decreasing the number of skin-pixels, and
(2) increasing the number of non-skin pixels. The number of skin-pixels is
decreased in two different ways: a. subsampling a small region in face (e.g.,
forehead), and b. downsampling the complete face uniformly (e.g., nearest-
neighbor interpolation). The number of non-skin pixels is also increased in
two different ways: a. introducing a skin-similar noise cluster with RGB
vector [0.7, 0.5, 0.3] (e.g., skin-vector), and b. introducing a skin-different
noise cluster with RGB vector [0.5, 0.5, 0.5] (e.g., white light vector). Note
that the simulated non-skin cluster is also spatially and temporally variant in
RGB space.
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Fig. 11. The comparison between rPPG algorithms in the simulated challenges
of skin cluster according to Fig. 10. Since the instant pulse-rate that measures
the peak-to-peak accuracy cannot be used for measuring the extremely noisy
signals (e.g., signals with negative SNR), we only use the SNR that based
on frequency spectrum for comparison. The x-axis denotes the percentages of
skin-pixels or non-skin pixels with respect to the original measurement.
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Fig. 12. The comparison between different l in 2SR on subjects with a low or
a high pulse-rate. The stride length of l is changed in [5, 60] when processing
the same video, as denoted in the x-axis. Similar to Fig. 11, SNR is used to
interpret the quality of rPPG-signal. The red dot represents the SNR obtained
by l = 20 (default setting in our experiment), and the green dot represents
the maximal SNR can be achieved by changing l.

when a large non-skin cluster occurs in RGB space, 2SR could

be worse than ICA, CHROM and PBV.

To further improve the robustness of 2SR, we propose to

either (1) employ advanced techniques for finding the skin-

regions, i.e., detecting pulsatile regions [14], or (2) use a better

method for subspace segmentation, which can simultaneously

separate multiple clusters into independent subspaces for mea-

surement. However, it has to be mentioned that due to the

integration effect of a camera sensor, some pixels may always

contain a combination of skin and non-skin in a scenario when

the skin-region is moving at high-speed (e.g., motion blur),

which will be inherently challenging to address.

B. Temporal window stride

Although 2SR does not rely on pulse/skin-tone priors, there

is still one parameter l fixed for processing, which defines the

temporal stride for measuring the subspace rotation. For pulse

extraction, each stride should include at least a half cardiac

cycle for capturing the maximal subspace rotation induced by

the blood volume pulse. Thus the optimal l is in fact based

on the camera frame-rate and subject pulse-rate. To simplify

the illustration, we perform a test on two benchmark videos

recorded on subjects with a low pulse-rate (around 45 BPM)

and a high pulse-rate (around 93 BPM). The frame-rates of

both videos are 20 FPS. We constantly change the stride

length of 2SR when processing these two videos and show

the corresponding SNR in Fig. 12.

As can be seen in Fig. 12, l = 20 (default setting) used in

our experiment is not optimal for both videos: the maximal

SNR in case of (1) the low pulse-rate achieves 7.00 dB when

l = 31 (e.g., SNR = 5.33 dB when l = 20); and (2) the

high pulse-rate achieves 5.49 dB when l = 12 (e.g., SNR

= 4.68 dB when l = 20). It shows that 2SR requires longer

stride for subject with low pulse-rate to obtain reasonably

good results, as compared to that of subject with high pulse-

rate. Besides, it shows that too short strides produce worse

results than that of long strides in both videos, i.e., the SNR

is even negative for subjects with low pulse-rate when l < 10.

This is to be expected, as the rotation angle becomes very

small when the reference frame is rapidly/frequently updated

in every short stride. However, a longer stride (e.g., l > 50)

does not guarantee a quality improvement, since long-term

motion distortions or other frequency sources (e.g., respiration)

could enter the estimation.

As a short conclusion, there is no fixed optimal l for all

video recordings. One could improve upon this is to adjust l
to a specific video content (e.g., based on the camera frame-

rate and subject pulse-rate) and seek the optimal stride length

algorithmically, i.e., l can even be adapted to time-varying

pulse-rate in real-time processing. Since this work focuses on

elaborating a novel concept in rPPG algorithm, we leave the

steps of optimization as future work, such as parameter tuning

or more complex and sophisticated rPPG systems.

VI. CONCLUSION

In this paper, we propose a conceptually novel rPPG algo-

rithm for pulse extraction, namely “Spatial Subspace Rotation”

(2SR). The core idea of the proposed algorithm is to estimate

the temporal rotation of skin-pixels’ subspace in RGB for

deriving the pulse. It exploits the benefit of statistical measure-

ment of multiple pixel-sensors provided by a remote camera,

and requires a well-defined skin mask for measuring the sin-

gle cluster distribution of skin-pixels. Numerous experiments

demonstrate that given a well-defined skin mask, the proposed

method outperforms the popular ICA-based approach and two

state-of-the-art algorithms (CHROM and PBV) in challenges

of skin-tone, body-motion in complex illuminance conditions,

and pulse-rate recovery after exercise.
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