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Abstract: In view of the large scientific and technical interest in the microelectromechanical  
system (MEMS) accelerometer sensor and the limitations of capacitive, resistive piezo, and 
piezoelectric methods, we focus on the measurement of the seismic mass displacement using a novel 
design of the all-optical sensor (AOS). The proposed AOS consists of two waveguides and a ring 
resonator in a two-dimensional rod-based photonic crystal (PhC) microstructure, and a holder which 
connects the central rod of a nanocavity to a proof mass. The photonic band structure of the AOS is 
calculated with the plane-wave expansion approach for TE and TM polarization modes, and the light 
wave propagation inside the sensor is analyzed by solving Maxwell’s equations using the 
finite-difference time-domain method. The results of our simulations demonstrate that the 
fundamental PhC has a free spectral range of about 730 nm covering the optical communication 
wavelength-bands. Simulations also show that the AOS has the resonant peak of 0.8 at 1.644 µm, 
quality factor of 3 288, full width at half maximum of 0.5 nm, and figure of merit of 0.97. Furthermore, 
for the maximum 200 nm nanocavity displacements in the x- or y-direction, the resonant wavelengths shift 
to 1.618 µm and 1.547 µm, respectively. We also calculate all characteristics of the nanocavity displacement 
in positive and negative directions of the x-axis and y-axis. The small area of 104.35 µm

2
 and short 

propagation time of the AOS make it an interesting sensor for various applications, especially in the 
vehicle navigation systems and aviation safety tools. 
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1. Introduction 

Photonic crystals (PhCs) can be used as 

appropriate structures for creating all-optical 

systems and networks due to the low loss and high 

capability in guiding and controlling the light [1, 2]. 
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They consist of a periodic arrangement of materials 

with high and low refractive indices. PhCs in two 

forms of dielectric rods in the air bed and air holes 

in the dielectric slab are used to control and guide 

the flow of light in the PhC microstructure. The 

photonic bandgap (PBG) is a range of wavelengths 

that cannot be propagated in the structure. It is due 

to the destructive interference that occurs between 

emitting and reflective waves in the boundaries 

where the refractive index changes. Thus, 

waveguides in a PhC can be created by removing 

one or more rows of dielectric rods. PhC-based 

structures are excellent choices for designing many 

types of optical devices such as optical filters [3–8], 

PhC fibers [9–18], multiplexers and demultiplexers 

[19–26], encoders and decoders [27–30], switches 

[31–36], logic gates [37–42], analog to digital 

converters (ADCs) [43–49], and sensors [50–57]. In 

recent years, photonic sensors have been widely 

studied and fabricated because of the increasing 

demand for sensing applications in the health care, 

food quality, control defense, security, automobiles, 

aerospace, and so on. Accelerometer sensors are 

widely used in many electronic devices, as well as 

vehicle vibration control, aerospace, and navigation 

systems [58–60]. Many manufacturers have    

been commercialized as high-performance 

microelectromechanical system (MEMS) inertial 

sensors for many applications [61–65]. MEMS 

accelerometer is one of the most popular types of 

displacement sensors [66–68]. An optical MEMS is 

a combination of three micro-optical technologies, 

micro-mechanics, and microelectronics [69–71]. The 

combination of these technologies offers the 

advantage of using less force to move more, which 

makes the MEMS system more sensitive because 

photons have zero mass. 

The development of MEMS sensors has reduced 

the size and power consumption of older sensors. 

MEMS accelerometers have been used in navigation 

systems and aviation safety tools. Such 

accelerometers are usually based on a micro- or 

nano-meter displacement of a holder. Several 

methods have been presented so far to measure the 

displacement of seismic mass, such as capacitive  

[72, 73], resistive piezo [74], piezoelectric [75], and 

optical [76, 77]. The capacitive sensing technology 

is very attractive in the applications because of its 

ease of implementation compared with other sensing 

technologies. However, this method has some 

drawbacks such as the curling effect [78], the effect 

of parasitic capacitance, and small variations in 

capacitance [79] under the mechanical load, in 

which they limit the accuracy and speed of the 

device. Studies illustrate that optical sensing 

methods have better performance in terms of 

resolution and sensitivity compared with the other 

existing sensing techniques [59]. 

Furthermore, the methods based on optical 

measurements are more reliable due to their 

immunity against electromagnetic interferences 

(EMI), which makes them suitable tools in EMI 

contaminated environments [80]. The operational 

principle of optical MEMS accelerometers is based 

on the modulation of lightwave properties such as 

intensity, and phase and wavelength modulation 

under applied acceleration [58, 76, 81]. Nie et al. 

[82] proposed an optical MEMS accelerometer 

sensor based on a one-dimensional photonic crystals 

wavelength modulation system with a focus on 

optimizing the sensitivity of the high-frequency 

device. A very large bandwidth, an excellent 

sensitivity to optical sensing, and a considerable 

resolution of the high-frequency device of the 

proposed sensor provided several attractive 

performance aspects. 

The current study presents a novel accelerometer 

sensor in a two-dimensional PhC. The advantages of 

this device are the wide free spectral range (FSR), 

narrow full width at half maximum (FWHM), high 

figure of merit (FOM), small footprint, and 

relatively low production cost compared with other 

existing MEMS sensors that make it an appropriate 

device for sensing applications. In fact, the resonant 
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wavelength of the proposed structure changes when 

the central nanocavity moves in every direction of 

the x and y-directions. The rest of this paper is 

organized as follows: In Section 2, the photonic 

band structure of the rod-based PhC is calculated for 

TE and TM modes, and in Section 3, the novel 

structure of the accelerator sensor is proposed, and 

the transmission spectrum is plotted. The numerical 

results accompanied by discussion are given in 

Section 4, and finally, we conclude the paper in 

Section 5. 

2. Modeling of PhC-based structure 

The structure is designed of silicone rods in the 

air bed. The inset of Fig. 1(a) demonstrates a 

hexagonal lattice of the fundamental two- 

dimensional PhC that is used in this study. The 

refractive index and the radius of the dielectric rods 

are assumed to be n = 3.6 and r = 100 nm, 

respectively [64]. The band structure of the 

fundamental PhC has been calculated employing the 

plane wave expansion method (PWE) and plotted in 

Fig. 1(a) for TM and TE polarization modes 

considering that a lattice constant is called the 

center-to-center distance of the two adjacent 

dielectric rods of a = 500 nm. It demonstrates that 

there are wide and narrow PBGs in TM and TE 

polarization modes, respectively. Figure 1(b) shows 

the transmission spectra and field distributions of the 

TE and TM modes of the fundamental PhC. It 

represents that the widest bandgap is achieved in the 

range of a/λ = 0.266 – 0.435 (corresponding to the 

wavelength range of λ = 1.14 µm – 1.87 µm) for the 

TM mode with a broad FSR of about 730 nm. It is an 

appropriate bandwidth for designing all-optical 

devices in the C-band communication window. The 

insets demonstrate the distributions of the electric 

(TE mode) and magnetic (TM mode) fields at the 

wavelength of 1.644 µm along the x-axis. As seen in 

the figure, the TE mode propagates in the 

fundamental PhC, while the TM mode cannot be 

emitted in the structure. Therefore, by creating 

different defects in the structure, we try to direct the 

light wave to the desired output. 
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Fig. 1 Results of (a) photonic band structure of a 

fundamental PhC for TM (violet) and TE (dark gray) 

polarization modes (the inset shows a hexagonal lattice of the 

fundamental PhC used in this study) and (b) transmission versus 

wavelength for TM (blue) and TE (pink) modes [the insets 

demonstrate the distributions of the magnetic (TE mode) and 

electric (TM mode) fields at the wavelength of 1.644 µm along 

the x-axis]. 

3. Proposed all-optical sensor 

Although the PhC size reduction leads to a 

decrease in the light wave propagation time, it 

significantly increases the waveguide loss and also 

decreases the sensitivity and quality factor of the 

device. In this study, we aim to design a high-speed 

as well as low-loss all-optical sensor (AOS) using a 

PhC-based nanocavity resonator, which yields a 

high-quality factor as well as a high sensitivity. In 

Fig. 2(a), we propose an AOS with an area of  

104.35 µm2. A 19×13 matrix of silicon rods in a 

hexagonal lattice with a 100 nm rod radius and a 500 

nm lattice constant has been used to form the 

fundamental platform of the structure. The blue 

dielectric rod with a radius of RC = 350 nm is the 
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central resonator used to select the desired 

wavelength. The integrated input and output 

waveguides are surrounded by red dielectric rods 

and closed at the end to increase the reflection of 

light. All this will increase the intensity of the light 

and decrease the propagation loss. The green 

dielectric rods surround the main blue rod to create a 

narrow-band filter with a high-quality factor for 

choosing the desired wavelength. The proposed 

AOS is an ultra-fast device due to choosing short 

lengths of the waveguides [i.e., W1 and W2 shown in 

Fig. 2(a)]. It has several advantages such as the ease 

of fabrication because of its small area, inexpensive 

fabrication processes due to having one layer of 

dielectric rods, and high efficiency and flexibility in 

resonant mode concluded from its multimode nature. 

Depending on the radius of the central nanocavity, 

the proposed AOS can separate the resonant 

wavelengths of the input lightwave propagating 

through the first waveguide, W1, and couple them to 

the output via the second waveguide, W2. In this 

device, each resonant mode has a sensitivity and a 

quality factor proportional to the physical 

parameters of the AOS, especially its nanocavity. 

Figure 2(b) shows the transmission spectrum of the 

AOS. It illustrates that the resonant peak occurs at 

1.644 µm in the TM mode. In this wavelength, the 

AOS has the maximum quality factor. 
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(a)                                                  (b) 

Fig. 2 Illustration of (a) proposed structure of the all-optical sensor based on the nanocavity resonator and (b) wavelength 

transmission in the TM mode is marked in pink and the output resonance wavelength is marked in blue. 

We aim to design an adjustable AOS to measure 

the displacements of the proof mass. Given the 

advantages mentioned above, our proposed AOS can 

be used as the proposed accelerometer displacement 

measurement system. Figure 3 demonstrates the 

optical MEMS accelerometer, and the insets show 

our designed AOS and nanocavity displacement 

directions. 

The main part of the accelerometer consists of 

the AOS based on the wavelength modulation. It 

means that the device can detect the displacements 

of the proof mass by shifting the wavelength of the 

optical resonant mode. The connected holder to the 

the proof mass moves the central rod of the 

nanocavity in the x- or y- direction depending on the 

applied force, and the central resonant wavelength is 

shifted. In this design, the displacement sensing 

system is a mechanically adjustable AOS. The 

optical signal of the laser source is launched into the 

input waveguide of the AOS, then it is selected by 

the central resonant nanocavity and finally coupled 

to the output. Sheikhaleh et al. [76] presented an 

optical MEMS accelerometer using an add-drop 

filter (ADF) in the microstructured PhC. In this 

device, when an acceleration is applied to the proof 

mass and it is along the positive y-direction (+y), the 

holder is displaced in the opposite y-direction (–y). 

In the proposed AOF in [76], it is not possible to 

detect displacement along the x-axis. But the 

proposed AOS, shown in Fig. 3, can detect the 
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displacement of the holder attached to the proof 

mass in all directions. 

Proof mass 
(movable) 

PhC 
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Fig. 3 Proposed optical MEMS accelerometer. The insets 

demonstrate our designed AOS and nanocavity displacement 

directions. 

4. Numerical results and discussion 

Figure 4 represents that the proposed central 

nanocavity can be mechanically moved in all 

directions. Our purpose in the AOS design is to 

detect the acceleration of the mass attached to the 

accelerometer. In Fig. 4(a), the central nanocavity is 

displaced by the holder in the positive direction (+x) 

and in Fig. 4(b), the displacement path is in the 

negative direction (–x). The displacement of the 

dielectric rod along the x-axis from the center of the 

resonator is defined by ∆x that its maximum value is 

200 nm. In Figs. 4(c) and 4(d), the central nanocavity 

is displaced by the holder in the positive direction 

(+y) and negative direction (–y), respectively. ∆y is 

the displacement of the dielectric rod in the AOS 

along the y-axis from the center of the resonator. In 

this study, it has a maximum value of 200 nm. 

The AOS operates based on the calculation of 

the transmission profile in terms of wavelength. As 

the location of the nanocavity shifts, the 

transmission changes. The quality factor of this 

sensor is defined as follows: 

/fQ FWHMλ=            (1) 

where λ represents the resonant wavelength. It is a 

standard way of describing the transmission 

characteristics of an optical sensor. Indeed, a filter 

with a wider FWHM allows more of the spectrum to 

pass, but it is less wavelength-selective. FWHM is 

one of the key parameters of the proposed sensor 

design and determines the sensor detection limit. 

According to (1), the quality factor is inversely 

proportional to FWHM. 

It means that finding an appropriate PhC 

structure with a short bandwidth is necessary to 

increase the quality factor and detection limit (the 

minimum physical displacement detectable by the 

sensor). Also, it is worthy to note that the increased 

FWHM increases the AOS loss because other 

wavelengths are not allowed to propagate in the 

narrowband AOS; they are therefore lost in the form 

of heat. It is necessary to select a sufficiently wide 

FSR sensor. It ensures that the adjacent resonant 

peaks do not interfere with the working resonant 

peak. In the longer wavelengths, FSR is greater 

because FSR is directly proportional to the square of 

the resonance wavelength. Since longer wavelengths 

have a greater impact on FSR, the sensor design at 

longer wavelengths is the most basic way to 

optimize FSR. Therefore, the accelerometer based 

on the resonant wavelength shift approach requires a 

wider FSR that is achieved by the proposed AOS in 

this study. The accelerometer sensor sensitivity is 

defined by [83] 

S xλ= Δ Δ               (2) 

where Δx is the displacement path in the x-direction, 

and Δλ is the wavelength shift representing the 

difference between the resonant frequencies of the 

two outputs. FOM is a key parameter for describing 
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the sensing capability of the device that is given by .FOM S FWHM=           (3) 

 

(a)                                              (b) 

 

 

       (c)                                                  (d) 

Fig. 4 Displacements of the nanocavity in (a) +x, (b) –x, (c) +y, and (d) –y directions. 

An optical signal is launched into the device 

using a continuous wave adjustable laser source, and 

the outputs are monitored using an optical spectrum 

analyzer. 

Figure 5(a) shows the transmission spectra for 

the displacements along the x-axis from –200 nm to 

200 nm. When the nanocavity is at the center of  

the structure (called Case-A), its normalized 

transmission spectrum, shown by pink, has a peak of 

0.8 (called PCE = 0.8) at λ = 1.644 µm. When the 

central nanocavity moves 200 nm along the positive 

direction of the x-axis (Case-B), the resonant peak, 

shown by blue, becomes 0.66 (PCE = 0.66) and also 

shifts toward λ = 1.618 µm while a 200 nm 

displacement in the negative direction of the x-axis 

(Case-C) results in the peak value increasing to    

1 (PCE = 1). The difference between the resonant 

wavelengths for 0 nm and 200 nm displacements is 

∆λ = 26 nm. Therefore, the sensitivity parameter 

(∆λ/∆x) of this sensor is S = 0.13. For accurate 

calculations of the sensor parameters of the cases 

mentioned above, we plot the log scale transmission 
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spectra of Case-A, Case-B, and Case-C in Figs. 5(b) 

– 5(d). Figure 5(b) demonstrates in Case-A that the 

resonant nanocavity is in the center of the resonator, 

the resonant wavelength is λ=1.644 µm, FWHM is   

0.5 nm, and then according to (1), the quality factor 

will be 3 288. By calculating the sensitivity and 

FOM using (2) and (3), their values will         

be 0.485 and 0.97, respectively. As seen         

in Fig. 5(c), Case-B has the resonant       

wavelength, FWHM, quality factor,         

and FOM of 1.618 µm, 0.8 nm, 2 022, 0.162 5,       

respectively. 
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Fig. 5 Results of (a) transmission spectra of Case-A, Case-B, and Case-C, and transmissions in dB of (b) Case-A, (c) Case-B, and  

(d) Case-C. 

Figure 5(d) illustrates that Case-C has the 

resonant wavelength equal to that of Case-B. 

According to the figure, FWHM, quality factor,  

and FOM of Case-C are 1.6 nm, 1 011, 0.081 2, 

respectively. We also study the effect of 

displacements along the y-axis on the sensor 

parameters. Figure 6(a) demonstrates the 

transmission spectra for displacements along the 

y-axis from –200 nm to 200 nm. As we mentioned 

earlier, when the nanocavity is at the center of the 

resonator (Case-A), its normalized transmission 

spectrum, shown by pink, has a peak of 0.8 at 

λ=1.644 µm. 

When the central nanocavity moves 200 nm in 

the positive y-direction, (Case-D), the peak of the 

normalized transmission spectrum, shown by blue, 

shifts toward λ=1.547 µm while a 200 nm 

displacement in the negative y-direction (Case-E) 



                                                                                             Photonic Sensors 

 

464

results in the peak value of the normalized 

transmission spectrum becoming 0.58 (PCE = 0.58). 

The difference between the resonant wavelengths for 

the 0 nm and 200 nm displacements is ∆λ = 97 nm. 

Therefore, the sensitivity parameter (∆λ/∆y) of this 

sensor is S = 0.485. Figure 6(c) represents in Case-D 

that λ = 1.547 µm. In this case, FWHM increases to   

1.0 nm, which reduces the quality factor and FOM to 

1 547 and 0.485, respectively. Figure 6(d) shows in 

Case-E, the resonant wavelength is equal to the 

resonant wavelength of Case-B, i.e., λ = 1.547 µm. 

In this case, FWHM, quality factor, and FOM    

are 1.4 nm, 1 031, and 0.346, respectively. Figure 7 

demonstrates the lightwave propagation inside the 

AOS for the nanocavity displacements in the 

x-direction and y-direction. Figure 7(a) shows that 

for the –200 nm displacement of the nanocavity   

in the y-direction, the transmission at the    

resonant wavelength of 1 547 nm is 58%. Figure 7(b) 

represents the light propagation in the AOS for the 

–200 nm displacement in the x-direction in which  

all incoming light at 1 618 nm passes through the 

structure. Figures 7(c) and 7(d) illustrate that for the 

non-displacement of the nanocavity, the 

transmission is 80% at 1 644 nm. Furthermore,   

Fig. 7(e) illustrates a 200 nm displacement in the 

x-direction results in a 100% transmission at      

1 547 nm and Fig. 7(f) shows for the 200 nm 

displacement of the nanocavity in the x-direction, 

the transmission is 66% at 1 618 nm. 
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(c)                                                   (d) 

Fig. 6 Results of (a) transmission spectra of Case-A, Case-D, and Case-E, and transmission in dB of (b) Case-A, (c) Case-D, and  

(d) Case-E. 
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(e)                                                 (f) 

Fig. 7 Lightwave propagation inside the AOS for nanocavity displacements in x- or y-direction. 

To accurately calculate the parameters of the 

proposed structure, we obtain the resonance 

wavelength and FWHM from –200 nm to 200 nm 

with steps of 50 nm along the x- or y-direction. As 

can be observed in Fig. 8, when the nanocavity is 

stationary in the center of the structure, the 

maximum resonance wavelength and the minimum 

FWHM are obtained. It means that the non- 

displacement of the nanocavity in the xy-plane   

(i.e., ∆x=0 and ∆y=0) leads to a maximum resonant 

wavelength of 1.644 µm and the narrowest spectrum 

with FWHM of 0.5 nm at the output. Figure 8(a) 

reveals that the resonant wavelength variations of 

the sensor with the nanocavity displacement in   

the x-direction are in the range of 1.618 µm to  

1.644 µm, which are less than those presented     

in Fig. 8(b) for the displacement in the     

y-direction. 
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(a)                                                     (b) 

Fig. 8 Resonant wavelength and FWHM parameters of the nanocavity displacements in the (a) x-direction and (b) y-direction. 

Furthermore, Fig. 8 illustrates that FWHMs are 

in the range of 0.5 nm to 1.6 nm for the nanocavity 

displacement in the x-direction, while they are in the 

range of 0.5 nm to 1.35 nm depending on the 

nanocavity displacement in the y-direction. The 

sensitivity is a key parameter to determine the 

performance of an optical sensor. In this section, the 

sensitivity is calculated for different displacements 

in the (a) x- and (b) y-directions. The sensitivities of 

50 nm, 100 nm, and 150 nm nanocavity 

displacements along the x-axis and y-axis are plotted 

in Fig. 9. According to Fig. 9(a), when the 

displacement of the nanocavity along the x-axis is 

about 50 nm, the maximum sensitivity of 0.16 nm is 

achieved. The lowest sensitivity occurs when the 

central nanocavity displacement is about 150 nm 

along the x-axis. Figure 9(b) demonstrates the 

maximum sensitivity is 0.48 for the central 

nanocavity displacement of 100 nm along the  

y-axis. 
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Fig. 9 Sensitivities of 50 nm, 100 nm, and 150 nm nanocavity displacements along the (a) x-axis and (b) y-axis. 
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Fig. 10 Results of (a) resonant wavelength and FWHM versus nanocavity radius and (b) quality factor and the transmission versus 

nanocavity radius. 
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In order to obtain the most appropriate central 

nanocavity radius, we calculate the important 

parameters of the structure for different central 

nanocavity radii in Case-A (non-displacement of the 

nanocavity in the xy-plane, i.e., ∆x=0 and ∆y=0). 

Figure 10(a) shows the resonant wavelength and 

FWHM for different radii of the central resonant 

nanocavity. It illustrates that as the radius of the 

central nanocavity increases, the resonant 

wavelength increases and FWHM decreases. 

Therefore, we set the radius of the central 

nanocavity to 350 nm. In this way, FWHM reaches 

to the lowest value of 0.5 nm, which means the 

proposed AOS is a frequency selective sensor with 

the high sensitivity and accuracy. Figure 10(b) shows 

the quality factor and transmission as a function of 

the central rod radii. It reveals that the maximum 

quality factor of 3 288 is achieved at a radius of  

350 nm. On the other hand, the maximum 

transmission of 80% is also obtained in this radius. 

Therefore, RC = 350 nm is an appropriate choice for 

the proposed AOS. 

According to the equations of the sensors and 

filters mentioned in Section 4, there is a compromise 

between the sensitivity and the measurement range, 

and the proposed sensor in this study is designed to 

provide a broader measurement range with a suitable 

optical sensitivity compared with other recently 

published papers. This comparative study is 

summarized in Table 1. 

Table 1 Comparative table of the proposed sensor and three 

important recent contributions. 

 
This 

work 

Ref. 

[76] 

Ref.  

[64] 

Ref. 

[58] 

Ref. 

[84] 

Ref. 

[85]

Ref. 

[82]

Sensitivity of the 

sensing system 

(∆λ/∆y) 

0.485 0.0472 1.23–1.41 0.368 0.032 0.069 3 

Operating band 

width (nm) 
High High High Medium Low Low

Very 

high

5. Conclusions 

In summary, we design a novel MEMS 

accelerometer sensor utilizing an ultrafast AOS in a 

two-dimensional hexagonal PhC structure. The 

fundamental PhC consists of a 19×13 matrix of 

silicon rods with a 100 nm rod radius and a 500 nm 

lattice constant. The proposed AOS includes a ring 

resonator with a movable rod (connected to the 

proof mass by a holder) at the center of the ring and 

two fixed waveguides in the PhC platform with an 

area of 104.35 µm2. We calculate the characteristics 

of the AOS for nanocavity displacements in the 

x-direction and y-direction from –200 nm to 200 nm 

with steps of 50 nm. Numerical results demonstrate 

that the AOS has a resonant peak of 0.8 at 1.644 µm, 

a quality factor of 3 288, FWHM of 0.5 nm, and 

FOM of 0.97 for the non-displacement of the 

nanocavity. We also compute those parameters for 

the maximum displacements of ±200 nm in the 

x-direction and y-direction. Simulations reveal to 

achieve the maximum quality factor and the 

minimum FWHM, and the best radius of the central 

rod in the resonator is 350 nm. Simulations also 

demonstrate that the proposed AOS has the 

sensitivities of 0.13 and 0.485 for the displacements 

of 200 nm in the x-direction and y-direction, 

respectively. These functional characteristics make 

the proposed AOS appeal for several applications in 

the navigation systems and safety tools. 
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