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Abstract Anti-slip control systems are essential for rail-

way vehicle systems with traction. In order to propose an

effective anti-slip control system, adhesion information

between wheel and rail can be useful. However, direct

measurement or observation of adhesion condition for a

railway vehicle in operation is quite demanding. Therefore,

a proportional–integral controller, which operates simul-

taneously with a recently proposed swarm intelligence-

based adhesion estimation algorithm, is proposed in this

study. This approach provides determination of the adhe-

sion optimum on the adhesion-slip curve so that a reference

slip value for the controller can be determined according to

the adhesion conditions between wheel and rail. To vali-

date the methodology, a tram wheel test stand with an

independently rotating wheel, which is a model of some

low floor trams produced in Czechia, is considered. Results

reveal that this new approach is more effective than a

conventional controller without adhesion condition

estimation.

Keywords Adhesion estimation � Traction control � Anti-
slip control � Railway vehicles � Roller-rigs � Swarm

intelligence

List of symbols

s Slip (creepage)

si Slip (creepage) output of eachmodel i ¼ 1; 2; . . .; n

sref Reference slip for the controller

Tcont Torque output of the slip controller applied to the

vehicle wheel (test stand)

xr Roller angular speed

xw Wheel angular speed

x̂r0 Initial velocity estimate for the roller angular

speed

x̂w0
Initial velocity estimate for the wheel angular

speed

f̂ 0 Maximum friction coefficient estimate of the

estimator

f̂ 0i
Maximum friction coefficient estimate of each

model i ¼ 1; 2; . . .; n

Fxi Longitudinal creep force output of each model

i ¼ 1; 2; . . .; n

a Contact patch ellipse semi-axis length

b Contact patch ellipse semi-axis width

Ta Torque exerted by asynchronous motor

Tp Torque exerted by permanent magnet

synchronous motor

rw Wheel radius

rr Roller radius

Jr Total moment of inertia of the roller

Jw Total moment of inertia of the wheel

id; iq d- and q-axis components of stator current

Vd;Vq d- and q-axis components of stator voltage

Ld; Lq d- and q-axis stator self-inductances

Rs Resistance of stator windings

u Flux induced by permanent magnet synchronous

motor
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xe Electrical speed of the rotor of permanent

magnet synchronous motor

p Number of pole pairs for the permanent magnet

synchronous motor

he Electrical position of the rotor of permanent

magnet synchronous motor

T�
p Reference control torque (Tcont in Figs. 2, 3)

i�q Reference torque current component

i�a; i
�
b; i

�
c Three phase current references for a, b, c,

phases

ia; ib; ic Three phase currents for a, b, c, phases

xsyn Synchronous speed of the asynchronous motor

sa Slip of the asynchronous motor

VTh Thevenin equivalent circuit voltage

RTh Thevenin equivalent circuit resistance

XTh Thevenin equivalent circuit reactance

R0
2 Rotor resistance referred to the primary side

X0
2 Rotor reactance referred to the primary side

f0 Maximum (static) friction of coefficient

f Variable friction of coefficient

A Ratio of coefficient of friction limits f1
f0

� �

B Coefficient of exponential decrease

w Slip speed of the wheel

e Scaled slip

kred Reduction factor of the brush contact model

K Tangential stiffness of the contact between

surface layers

pmax Maximum Hertzian pressure at contact

l Coefficient of adhesion

Kp Proportional gain of the controller

Ki Integral gain of the controller

e Slip error

sact Actual (measured) wheel slip

T�
ref Output torque request of the proportional–

integral controller

Tdriver Driver torque request

J Cost function

Vi Velocity of the each particle (i.e. model) of the

estimator i ¼ 1; 2; . . .; n

x Inertia weight of the estimator

c Acceleration coefficient of the estimator

f̂ 0best
Best maximum friction coefficient estimate of

the models

xmin Minimum inertia weight of the estimator

xmax Maximum inertia weight of the estimator

Ni Maximum iteration number for inertia weight

calculation

k Iteration index

Vmin Minimum velocity limit for each particle

Vmax Maximum velocity limit for each particle

1 Introduction

Recently, the locomotive manufacturers have started to

produce more powerful AC traction technologies for the

heavy haul locomotives. However, the traction perfor-

mance of the haul locomotives is limited with the adhesion

condition between the wheel and the rail. Adhesion is

known to be the key element for the determination of the

optimal traction performance. Moreover, the comfort of the

passengers, safety of the goods and energy management of

the vehicles are directly affected by the adhesion condition.

As it is illustrated in Fig. 1 that the slip curve has a

nonlinear characteristic. The area on the left side of the

peak of the slip curve is called adhesion zone and the area

on the right side of the peak is the slip zone. The adhesion

zone is the stable part of the curve, and adhesion increases

when the wheel slip increases. On the other hand, the slip

zone is non-stable part of the curve, and adhesion decreases

when the wheel slip increases. Most of the wheel slip

control methods aim to keep the slip in the stable part of

the curve. While the aim of the optimization-based meth-

ods is to control the slip towards the peak of the curve

where the maximum traction effort is achieved [1].

Therefore, in this study, we implemented a method to

control the wheel slip towards the peak of the slip curve.

The operation zone of the controllers is limited with the

stable and the unstable parts of the slip curve near the

maximum point [2]. The behaviour of the slip curve

depends on two essential factors and these are the condition

of the wheel-rail contact and the vehicle velocity [3].

The loss of adhesion between the wheel and rail has

serious influences on the traction and braking effort of the

vehicle. Lately, various approaches have been proposed to

outline the reasons for the loss of adhesion [4–7]. These

Fig. 1 Slip-adhesion curve illustrating the characteristic of coeffi-

cient of adhesion (CoA) under dry and wet contact conditions [3]
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studies show that the loss of adhesion may occur due to the

presence of the water in several forms (rain, snow, dew

etc.), grease and leaf contaminants. In other words, this loss

of adhesion is mainly due to the presence of the third body

between wheel and rail. Besides, it is essential to model

this loss of adhesion accurately. The presence of the fric-

tion force also cause a cleaning effect on the contact area

where adhesion recovery occurs due to the removal of the

third body particles. This behaviour is highly nonlinear and

complex. Polach [8] provided a tangential force model for

such conditions and this model is frequently considered.

Recently, more accurate and efficient models are proposed

for degraded adhesion conditions and adhesion recovery

[9–12]. Nevertheless, it has been shown in [13] experi-

mentally that the model proposed in [8] is adequate and

sufficient for a wheel slide protection controller. The model

proposed in [8] is also considered in this study.

It is known that the poor adhesion condition causes

wheel slip during the traction process and wheel skid

during the braking process. The lifetime wear of the wheel

and overall traction performance of a railway vehicle are

greatly influenced by the excessive slip and skid [14].

Therefore, utilization of the maximum adhesion is critical

by considering re-adhesion control methods. A consider-

able amount of literature has been published on wheel slip

control [15–24]. Ryoo et al. [15] proposed a method based

on the conventional pattern and speed difference control to

use a maximum adhesive effort and to improve traction

performance. When the actual value of the wheel slip

exceeds a certain threshold value, the torque of the traction

motor is lowered to prevent the wheel slip. However, it is

observed from the presented results that the controller does

not provide the maximum possible adhesion. A wheel slip

control method without using the speed sensor for the

electric railway vehicle for multiple-induction motor drive

type was proposed by Yamashita and Watanabe [16]. The

advantages of this method are that it reduces the cost of the

controller, the probability of failure and the complexity of

the controller. However, the control system may suffer

from frequent wheel slip oscillations and excessive torque

drop compared to the conventional method. Mei et al.

proposed a method based on torsional analysis of traction

system [25]. The proposed method investigates the varia-

tion in wheel slip dynamic properties due to the condition

change at the wheel-rail contact. The results are used to

detect and control the wheel slip. However, this method is

not a reliable enough for rail vehicle applications [26].

Acceleration based slip regulation method proposed by

Yamashita and Soeda [17] is another alternative wheel slip

control methodology. The method does not require the

longitudinal velocity of the vehicle for the control process.

Even though the method has an effective wheel slip control

performance, optimum utilization of the adhesion is not

realized. Zirek et al. [20] has proposed an adaptive sliding

control scheme. The controller design process considers

system uncertainties and disturbances. The presented

results reveal that the response of the proposed control

algorithm is rather satisfactory in the stabilization of wheel

slip and improvement of traction ability. However, accu-

rate measurement of the adhesion force is required.

Spiryagin et al. [27] highlighted that it is useful to

consider adhesion estimation approaches for anti-slip

control. The majority of these approaches are model-based

[28] and they considered inverse dynamic modelling

[29, 30], family of Kalman filters [31–34], artificial neural

network [35] and swarm intelligence-based method

[36, 37].

The information about the friction condition of the

wheel and rail is essential for realization of the optimum

utilization of adhesion. Such a re-adhesion controller based

on friction estimation is proposed in [33] and for friction

estimation an extended Kalman filter is considered. How-

ever, estimation approach in [33] requires measurements of

voltages, currents and angular velocity of the electrical

motor. Recently, a swarm intelligence-based multiple

model methodology has been proposed [36–39] and this

methodology only requires the measurement of the angular

velocity of a wheel and the translational velocity of the

vehicle, thus, voltage or current measurements are not

needed. In fact, this approach is a multiple models

approach and it is based on manipulating the particle

swarm optimization to work with noisy measurements.

Therefore, it is different from the conventional particle

swarm optimization which is frequently used in the railway

domain [40].

In order to overcome the disadvantages of the afore-

mentioned control methodologies, the conventional pro-

portional–integral (PI) controller can be employed to

control the wheel slip and increase the traction perfor-

mance of vehicle. However, the main disadvantage of the

conventional PI controller is that the optimum slip-ratio

changes when alteration occurs in adhesion condition.

Therefore, in this paper, a PI wheel slip control method

based on simultaneous adhesion estimation with swarm

intelligence [36, 37] is proposed to control the wheel slip

and improve the traction performance. To validate the

performance of the controller, the mathematical model of

an experimental test stand and measurements from this

roller-rig are considered. The performance of the proposed

control strategy is verified for several wheel-roller surface

conditions (dry, water and greasy). The results show that

the PI wheel slip control method with swarm intelligence-

based adhesion estimation can prevent wheel slip more

effectively than the conventional method and improve the

traction performance.
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2 General structure of the methodology

The adhesion estimation process considered in this study is

based on multiple mathematical models of the system. In

general case, this mathematical model can be a dynamic

model of a railway vehicle with traction. In order to verify

results, a tram wheel test stand, which simulates the trac-

tion system of some trams with independently rotating

wheels in Czechia, is considered. This test stand is a full

scale, wheel on roller type roller-rig, and it was previously

used for validation purpose many times

[9, 20, 36–38, 41–44].

The application of the approach for railway vehicles is

summarized in Fig. 2. The system is initialized by con-

sidering the proper initial conditions and models in these

figures represent the mathematical representations of the

traction system of a vehicle (tram wheel test stand in this

case). In order to estimate adhesion condition, creepage (or

slip) output of each model is compared with the measure-

ments taken from the system. Adhesion information of

each model evolves with respect to the method presented in

[36–38]. Then, a reference creepage for adhesion optimum

is determined by considering the adhesion estimation and

the error between reference creepage and actual creepage is

fed to the slip controller to generate control torque.

Additionally, realization of the methodology on the tram

wheel test stand in this study is illustrated in Fig. 3. In

following sections, details of each model and subsystem

are presented.

3 Experimental set-up and mathematical models

Figures 4 and 5 show a schematic drawing and appearance

of the full-scale tram wheel test stand that is located at the

Educational and Research Centre in Transport of the

University of Pardubice. The test stand is equipped with a

58 kW torque controlled permanent magnet synchronous

motor (PMSM) and a 55 kW scalar controlled asyn-

chronous motor (AM). PMSM controls a tram wheel in

diameter of 696.40 mm and AM controls a roller (rotating

rail) in diameters of 900.44 mm. The traction is provided

by PMSM motor while AM provides opposing torque to

keep the wheel at the constant speed [9, 45]. Both rotating

parts are placed on a main frame in vertical direction. The

roller is placed on a base plate that provides setting of the

angle of attack. On the other hand, the wheel is mounted on

a swinging arm which enables the wheel to move in ver-

tical axis. The swinging arm aims to press the wheel

towards the roller with the help of an air spring [45].

1

2

1

2

3
3

ref

cont

cont

Fig. 2 General structure of the methodology with adhesion estimation approach
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Incremental rotation sensors (type IRC315) installed on

the drive shafts measure the angular speeds of the wheel

and roller. Similarly, a strain gauge torque transducer

placed on the roller drive shaft monitors the adhesion force

between the wheel and roller. A pressure transmitter (type

DMP331) is used to measure the pressure applied by the

pneumatic air spring. The measurements gathered from the

torque transducer and pressure transmitter are used to

calculate the coefficient of adhesion [9].

All measurements from the test stand are recorded with

200 Hz sampling frequency on a data acquisition device

(DAQ-type NI USB-6341). However, the action of the

wheel slip controller is limited with 25 Hz frequency [45].

Measurements contain periodic and parasitic signals and

the main sources of these signals are the imperfection of

the test stand and out-of-roundness of the wheel and roller.

Since the frequency of the parasitic signals is equal to the

rotation frequency of the roller, they can be easily filtered

using an appropriate filtering method [9].
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Fig. 3 Realization of the methodology on the tram wheel test stand
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Fig. 4 Schematic drawing of the test stand [43]
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3.1 Simulation model of the tram wheel test stand

A mathematical model of the above-mentioned experi-

mental tram wheel test stand is created to evaluate the

performance of the PI wheel slip control method along with

the swarm intelligence-based adhesion estimation.

Dynamic model of the PMSM, Thevenin equivalent model

of AM, Polach adhesion force model, PI controller and

swarm particle friction estimator are the main components

of the test stand and they are considered in the mathe-

matical model. To solve the differential equations, a fourth-

order Runge-Kutta method is considered with 20 ls time

step to guarantee the accuracy of calculations. On the other

hand, the reaction of the controller is limited to 0.04 ms to

simulate the response of experimental test stand. The

structure of the developed mathematical model is sum-

marized in Fig. 6.

3.1.1 Dynamic model of the tram wheel test stand

A free body diagram of the test stand to derive dynamic

model of the tram wheel test stand is provided in Fig. 4.

The effect of drive shaft and connection elements for

wheel/roller and motors (PMSM/AM) is neglected. In

addition, neglecting the lateral, yaw and pitch rolling

resistance dynamics are among the model assumptions.

The equation of the motion for the wheel and roller is

provided in (1) [20].

_xr ¼
�Ta � Fxrr

Jr
; ð1aÞ

_xw ¼
Tp þ Fxrw

Jw
: ð1bÞ

3.1.2 Dynamic model of PMSM

The test stand has a special PMSM that is developed for

low floor trams. PMSM has 58 kW nominal power,

852 Nm nominal torque, 650 rpm nominal speed and 122

A nominal phase current [46]. PMSM is excited by per-

manent magnets. Simplification of the dynamic equations

are due to the absence of the flux and dumping windings as

shown in (2) [47]:

did

dt
¼

1

Ld
Vd �

Rs

Ld
id þ

Lq

Ld
xeiq; ð2aÞ

diq

dt
¼

1

Lq
Vq �

Rs

Lq
iq �

Ld

Lq
xeid �

u

Lq
xe; ð2bÞ

Tp ¼
3

2
p½uiq � ðLd � LqÞiqid�; ð2cÞ

where Vd andVq are d- and q-axis components of stator

phase voltage, id and iq are d- and q-axis components of

stator current, Rs is the resistance of the stator windings, u

is the flux induced by the permanent magnet of the rotor,

Ld and Lq are d- and q-axis stator self-inductances, xe is the

electrical speed of the rotor, Tp is electromagnetic torque

and p is the number of pole pairs. The electrical speed and

angular position of rotor are determined using (3):

dxe

dt
¼

p

Jw
ð Tp � Fx rwÞ; ð3aÞ

dhe

dt
¼xe; ð3bÞ

where he is the position of the rotor.

It is possible to reach best utilization of the current and

high efficiency of drive if flux current component (id) is set

to zero. This means that the current space vector is per-

pendicular to the flux [47]. Then (2c) can be simplified and

re-written in order to determine the reference torque cur-

rent component as given in (4),

Fig. 5 Photos of the test stand

� �

cont

p
w r

a

Fig. 6 Structure of the developed mathematical model of the tram

wheel test stand
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i�q ¼
T�
p

1:5pu
; ð4Þ

where T�
p is reference control torque and i�q is reference

torque current component. The electrical parameters of the

PMSM are provided in Table 1.

Hysteresis current control strategy is employed to con-

trol the PMSM. The hysteresis current control is a PWM

technique. The actual current signal is compared with the

reference current signal. The states of the inverters change

in case the actual current exceeds the reference current in a

certain range so that the actual current follows the refer-

ence current [48]. The control structure of the PMSM is

illustrated in Fig. 7. Simanek et al. [47, 49] presented

detailed information about PMSM and its drive system.

3.1.3 Dynamic model of asynchronous motor

An asynchronous motor drives the roller to generate a

braking torque against the driving torque of the wheel. In

other words, AM aims to keep the system at a constant

speed. Furthermore, AM is used to simulate different

running speeds of the rail vehicle [50]. The experimental

AM has 55 kW nominal power, 891 Nm nominal torque,

133 A rated current, 3� 380 V rated voltage and 50 Hz

rated frequency [49]. The Thevenin equivalent model of

AM is provided in Fig. 8. Braking torque produced by the

AM can be calculated as by using provided Thevenin

equivalent model in (5):

Ta ¼
3

xsyn

V2
Th

RTh þ
R0
2

sa

� �2

þ XTh þ X0
2

� �2

R0
2

sa
: ð5Þ

The electrical parameters for the Thevenin equivalent

circuit of AM are provided Table 2.

3.1.4 Wheel-roller contact model

The adhesion force between wheel and roller is calculated

using the method of Polach [8]. The method considers the

effect of vehicle speed, longitudinal slip and shape of the

contact ellipse. It has the advantage over more detailed

contact theories by allowing shorter computation time

while not diverging significantly from the exact theory

even pure longitudinal and steady rolling are considered.

Table 1 Electrical parameters of PMSM

Parameter Value

Rs 0.087 X

Ld 0.8 mH

Lq 0.8 mH

u 0.212 Wb

Jw 0.95 kg�m2

p 22

�

�

cont

cont

1

3

5

w

e

Fig. 7 Control structure of the PMSM [20]

Th

Th

Th 2

2

2

sa

gap

Fig. 8 The Thevenin equivalent model of AM [20]
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The method uses the variable coefficient of friction in

(6a) and scaled slip in (6b) to calculate the coefficient of

adhesion (CoA) as given in (6c).

f ¼ f0½ 1� Að Þe�B wj j þ A�
�

�

�

�

; ð6aÞ

e ¼
aK sj j

pmaxf
kred; ð6bÞ

l ¼
2

p
f arctan eð Þ þ

e

1þ e2

� �

: ð6cÞ

The parameter sets of Polach’s method for various

surface conditions are given in Table 3. The provided

parameter sets are gathered from the experimental

measurements and mathematical model of the test stand.

4 PI wheel slip controller

Proportional–integral-derivative (i.e. PID) controllers are

based on a feedback control loop which calculates an error

signal by taking the difference between the output of a

system and the desired set point. In most of the process

industries, PI and PID are generally used due to their

simple design and tuning methods. However, the PI con-

trollers are more preferable than the PID controllers

because of being less sensitive to the noise and more

simple [51]. Since the measurements from the tram wheel

test stand have noise both due to the electrical and

mechanical subsystems, the PI controller is chosen for the

wheel slip control.

The PI controller can be used for the railway vehicles to

control wheel slip and improve their traction performance.

For an effective control, a reference slip value that is close

to the peak of the slip-adhesion curve can be chosen to be

used as a control signal. It is also important that the

selected reference slip value is on the stable side of the

slip-adhesion curve. However, determination of such ref-

erence is not easy task since the adhesion condition differs

due to the contamination between wheel and rail.

The discrete time form of the control torque produced

by PI controller is expressed as

Tcont kð Þ ¼ Tcont k � 1ð Þ þ Kp

�

e kð Þ � e k � 1ð Þ
�

þ Kie kð Þ;

ð7Þ

where Tcont is the output torque of the controller, Kp is the

proportional gain of the controller, Ki is the integral gain of

the controller, k is the iterative step, e is the error between

the actual slip and desired slip. The error is calculated as

e kð Þ ¼ srefðkÞ � sactðkÞ; ð8Þ

where sref is the reference wheel slip value, and sact is the

actual wheel slip value.

The functionality of the control parameters of PI (Kp and

Ki) controller can be summarized as [52]

• Kp provides an overall control action proportional to the

error signal through the all-pass gain factor.

• Ki reduces the steady-state error through low-frequency

compensation by an integrator.

The effects of increasing PI control parameters on the

system are presented in Table 4.

A block diagram of the PI slip controller is provided in

Fig. 9. The difference between the desired slip and actual

slip (error) is calculated and sent to the PI torque regulator

as an input signal. The PI torque controller regulates the

torque applied to wheel with respect to error signal. The

torque limiter is used to prevent the generated torque to

exceed maximum torque of the synchronous motor. The

comparator is utilized to make the decision between the

driver torque request and regulated torque.

The reference wheel slip is determined according to the

swarm intelligence-based adhesion zone estimation, and

the reference values with respect to the predetermined

zones are provided in Table 5.

5 Swarm intelligence-based multiple models

for adhesion estimation

Particle swarm optimization is a nature inspired method to

optimize nonlinear systems based on the movement of bird

flocks [53]. In [36, 37], the idea behind this optimization

method is arranged for multiple model-based maximum

friction coefficient (f0) estimation.

As stated in [37], in order not to increase computational

complexity, minimum number of models are determined as

Table 2 Electrical parameters for the Thevenin equivalent circuit of

AM

Parameter Value (X )

RTh 0.0226

R0
2 0.0181

XTh 0.2007

X0
2 0.3010

Table 3 Polach creep force model parameters according to the sur-

face contamination

f0 A B kred

Dry 0.437 0.5 0.5 0.4

Water 0.287 0.2 0.1 0.4

Greasy 0.075 0.2 0.1 0.05
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five and this number of models also considered in this

study. The static friction coefficient estimate is distributed

uniformly between models. Considering the adhesion

limits determined from the operation of a railway vehicle,

parameter estimate set is initially chosen as

f̂ 0 ¼ 0:02; 0:19; 0:36; 0; 53; 0:70½ �. The limits for the static

friction is obvious from the Table 5, and it is expressed as

0:02� f0 � 0:70: ð9Þ

Since the static (i.e. maximum) friction coefficient is the

dominant parameter for the adhesion and creep force

model, only it is estimated and other parameters are

assumed to be constant and they are given in Table 3.

There are three different adhesion zones presented in

Table 5, namely low adhesion zone (0:02� f̂ 0\0:15), wet

zone (0:15� f̂ 0\0:30) and dry zone (0:30� f̂ 0\0:70).

Other parameters, which are used in the calculation of

creep force and adhesion, considered with respect to the

static friction coefficient estimate. If static friction

coefficient estimate falls into low adhesion zone

(0:02� f̂ 0\0:15) for example, then A;B and kred are

taken with respect to the values given in Table 3 for

greasy contact condition. Selection of the best model is

straightforward and expressed as the model with minimum

cost function. It is given as

J ¼ si � sactj j; i ¼ 1; 2; . . .; n ; ð10Þ

where J is the cost function, n is the number of models

(n ¼ 5 in this study) and i represents the model index. The

evolution of the models is determined based on the velocity

of each particle, and it is expressed as

Vi ¼ x� Vi þ c� r � f̂ 0best � f̂ 0i

� �

; i ¼ 1; 2; . . .; n

ð11Þ

where Vi is the velocity of each particle, f̂ 0best is the best

estimate from previous time step, f̂ 0i is the current estimate

for the corresponding parameter, x is the inertia weight,

c is the acceleration coefficient (considered as 2 here), and

r is a random number between zero and one.

The difference between the conventional particle swarm

optimization technique and the method presented here is

the exclusion of the global best particle in (11). This is

mainly due to the noise exists in measurements. In order to

decrease the effect of noise, it is useful to eliminate the

historical information (i.e. the global best model) [54].

Therefore, the global best model is omitted in this study.

According to the [55], a linearly decreasing inertia

weight provides the minimum error criterion, it is also

considered in this study and expressed as

x ¼ xmax �
xmax � xmin

Ni

k; ð12Þ

where xmin and xmax are selected as 0.4 and 0.9,

respectively, Ni ¼ 1000 is the maximum iteration

number, and k is the iteration index. Lastly, parameter

estimates of the models are updated as

f̂ 0i ¼ f̂ 0i þ Vi: ð13Þ

Velocities in conventional particle swarm optimization

method may explode to larger values quickly. Shahzad

et al. [56] proposed a velocity clamping method to

overcome such an issue. It is given as

V ¼
Vmax if Vmax\V; Vmax ¼ 0:02;

Vmin if V\Vmin; Vmin ¼ �0:02:

	

ð14Þ

Furthermore, in order to enhance the exploration capability

of the models a velocity based re-initialization [57] is

applied in this study. If the mean absolute value of the

Table 4 Effect of increasing PI control parameters to the system

Rise time Overshoot Settling time Steady state error Stability

Kp Decrease Increase Small increase Decrease Degrade

Ki Decrease Increase Increase Large decrease Degrade

ref
ref ref cont

driver

act

Fig. 9 Block diagram for PI slip controller

Table 5 Reference slip determination

Static friction estimation (f̂ 0) sref

0:02� f̂ 0\0:15 0.0228

0:15� f̂ 0\0:30 0.0202

0:30� f̂ 0\0:70 0.0180
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velocities of the model is smaller than a threshold value (it

is 10�4 here), the parameter set of the models is initialized

to f̂ 0 ¼ 0:02; 0:19; 0:36; 0; 53; 0:70½ �. Thus, exploration

capability of the method is improved.

The performance of the swarm intelligence-based

adhesion estimation considered here is discussed in [37] for

which the same method applied in same experimental

conditions. In case of five models, it has shown in [37] that

elapsed time for all simulation and experiment duration

approximately corresponds to each other. Therefore, this

method is suitable to be used in practice. Ref. [37] provides

further details.

6 Model validation, results and discussion

6.1 Validation of the model

In this study, measurements taken from the test stand are

considered, and the use of test rigs is a common validation

strategy for such applications [20, 21, 33, 44, 58]. This

model has been validated several times in previous studies

[36, 37, 39, 41, 43, 59]. Two cases are given hereby to

show that the constructed model represents the physical

system. The first measurements are taken for wet condi-

tions at 5 km/h translational speed, and the second one is

obtained for greasy conditions at 20 km/h. The results for

the first case are provided in Fig. 10. Noise on the mea-

surements is also shown. Noise is especially apparent for

the roller speed. The sources of this noise is mentioned in

Sect. 3. In order to filter out this noise, a moving average

filter is considered based on the translational speed since

the period of this noise depends on the speed. This

dependency is revealed in Fig. 12 where the model is

validated for greasy conditions at 20 km/h speed.

It is evident from Fig. 11 that there are three phases, and

these are constant speed, acceleration and deceleration of

the wheel due to the PMSM torque request. Torque

requests from PMSM are provided in Figs. 11 and 13.

In order to show the effectiveness of the proposed

scheme, another simulation case including an adhesion

condition change at 20 km/h speed is provided. In this

case, the torque request from PMSM is given in Fig. 14. It

is assumed that at 30 s, maximum friction coefficient drops

from 0.437 to 0.2. Gaussian noise is added to the speed

results of the model in this case, and measurements are

generated. When controller is applied for this case, these

generated measurements from the model are considered.
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7 Results and discussion

The performance of the PI controller with swarm intelli-

gence-based adhesion estimation is verified using the

mathematical model of the tram wheel test stand and

measurements that is mentioned in previous sections. This

model is developed to match the measurements from the

experimental test stand and with regard to nonlinear effects

resulted by time delay and disturbances. The simulation

strategy is intended to simulate dry, wet and greasy wheel-

roller surface conditions. For the investigation, two speeds

of 5 km/h and 20 km/h are selected to simulate the
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Fig. 11 Torque request from PMSM and wheel angular acceleration obtained from model for wet condition at 5 km/h speed
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operational modes of the test stand. The control parameters

of the PI controller are set as following: Kp ¼ 1000 and

Ki ¼ 4800. The reference wheel slip is obtained from the

results of the swarm intelligence-based adhesion estimation

as provided in Table 5.

Figure 15 shows the simulation results for the tram

wheel test stand at 20 km/h wheel speed and wet wheel-

roller surface condition. The driver torque request, the

controller torque request and the PMSM torque response

are illustrated in Fig. 15a. The corresponding wheel slip is

provided in Fig. 15b. By analysing Fig. 15a, b, it is seen

that the wheel slip is controlled effectively, where maxi-

mum 2.2% slip is observed. In addition, it can be seen in

the slip curve provided in Fig. 15d that the wheel slip is

stabilized where the maximum adhesion is observed. Fig-

ure 15c is the friction estimation results of the swarm

intelligence-based estimation. Due to the characteristics of

the estimator, the reference wheel slip is estimated
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Fig. 13 Torque request from PMSM and wheel angular acceleration obtained from the model for greasy condition at 20 km/h speed
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correctly when the wheel slip is higher than 1%. Since the

lowest threshold value for the wheel slip is 1.5%, the

controller is not affected by the reference slip fluctuations.

The simulation results of the controller at 20 km/h and

with the steady grease contaminant are shown in Fig. 16.

Figure 16a presents the torque requests and PMSM torque

response. The input torques and output torque are lower

compared to the wet case since the lower friction condition

exists. The resultant wheel slip is presented in Fig. 16b. It

could be seen that the controller stabilizes the wheel slip at

the reference value (2.28%) in a very short time. Fig-

ure 16d demonstrate the effectiveness of the controller in

terms of the utilization of the adhesion. It should be noted

that the swarm intelligence-based adhesion estimation

provides better results compared to the wet case in terms of

the determination of the reference wheel slip as illustrated

in Fig. 16a, b.

Figure 17 shows the simulation results for the proposed

control algorithm at 5 km/h and with the wet wheel-roller

surface condition. By analysing the results obtained in

Fig. 17a, b, it is possible to see that the controller shows

stable results in terms of slip control. The wheel slip is

controlled effectively at 2% without any overshoot.

Furthermore, the controller provided optimum utilization

of the adhesion by stabilizing the wheel slip at the refer-

ence value that is determined by results of estimated fric-

tion condition shown in Fig. 17c.

The simulation results of the proposed method at 5 km/h

and steady grease wheel-roller surface contaminant are

provided in Fig. 18. It is observed from Fig. 19a, b that

when the wheel slip exceeds the reference value, the con-

troller stops torque increase and stabilize the wheel slip at

2.28%. There is no significant overshoot observed in the

wheel slip result. Moreover, the traction performance of the

PMSM is improved with maintaining the adhesion at the

peak of the slip curve. Similar to the previous results, the

swarm intelligence-based adhesion estimation provides

correct estimation, during the period when the controller is

activated to prevent wheel slip.

Lastly, results for a case, which adhesion condition

changes from dry to wet, are given in Fig. 19. In this case,

generated measurements are used unlike the previous

application cases. Gaussian noise is added up to the wheel

and roller speed measurements. To show the system

behaviour for noisy measurements, the moving average

filter used in previous cases is not considered. Due to this
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surface condition
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fact that estimation results highly fluctuates and it can be

seen in Fig. 19c. Nevertheless, it is obvious that the aver-

age of these estimation results represent the actual friction

coefficient. In this noisy measurement case, it can be seen

that controller is also stable. In previous application cases,

a moving average filter is a solution to the noisy mea-

surements. Another solution could be to use a state filter

(e.g. Kalman filter) which can further enhance the results.

The experimental test stand data acquisition device

records the data with 200 Hz frequency. On the other hand,

the control action of the wheel slip controller is limited

with 25 Hz. Simulations are carried out by using Matlab�

on an MSI� GP72QF Leopard Pro laptop with a 2.8 GHz

dual-core Intel� CoreTM i7-7700HQ processor and 8 GB

of RAM. Step time is set as 20 ls for simulation. The

decision of the step time is due to the mathematical model

of the electrical components. It is found out that the higher

step times cause high amplitude vibrations on the torque

output of the PMSM and AM. The action of the controller

is limited with 25 Hz similar to the built-in controller of

the experimental test stand. The simulation of a 17.355 s of

experiment takes 30.17 s. In practical application, the

proposed control method can work faster since the output

of the electrical components are not calculated but mea-

sured. Moreover, the simulation is carried out by Matlab�

which is a high-level language. The computation time can

be significantly reduced by using low-level languages such

as C and C??. Furthermore, multiprocessor system-on-

chip methodologies are available, and it is possible to

realize such mathematical models for rail vehicles by using

parallel processing. Thus, the methodology proposed in our

work can be implemented in real time by considering

multiprocessor systems and low-level languages. A recent

study [60] discussed how such models for roller-rigs can be

rearranged to work in real time. Same conclusion in [60] is

valid also for this study.

The proposed control algorithm in this study is espe-

cially suitable for vehicles with motorized independently

rotating wheels (i.e. IRW). The main problem for these

vehicles is that their curving ability and stability is worse

than the ones with solid axle wheelsets due to lack of yaw

moments and restoring lateral forces. In order to overcome

this issue, several controllers are proposed for IRW in the

literature [61–64]. Either active elements [61, 63] or indi-

vidual torque control for wheels [62, 64] are considered for

this purpose. In addition, integration of both individual
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torque control and active elements was investigated [61].

To provide required stability and curve negotiation ability

for such vehicles, the proposed slip controller can be

considered here along with these controllers. If there is

insufficient adhesion to apply required torque, then, the slip

controller limits the torque. However, when used along

with the proposed controller, such individual torque con-

trollers can adjust the torque values of other wheels based

on speed or torque difference of left and right motors

[61, 63, 64].

8 Conclusions

The PI wheel slip controller with swarm intelligence-based

adhesion estimation has been proposed in this study. The

performance of the proposed controller has been verified

by a mathematical model of a tram wheel test stand. The

simulations are carried out for wet and greasy wheel-roller

surface conditions. Furthermore, to investigate the effect of

speed, two speeds of 5 km/h and 20 km/h were selected to

simulate the operational modes of the test stand. The

obtained results show that the proposed controller provides

an effective wheel slip control performance for both wet

and greasy surface conditions. Furthermore, almost similar

results are obtained at 5 km/h and 20 km/h. The controller

provides an improvement in the traction performance of the

PMSM by stabilizing the wheel slip at the peak of the slip

curve which helps to establish optimum utilization of the

adhesion.

The fluctuations are observed in the selection of the

reference wheel slip. Due to the persistency of excitation

characteristic of the parameter estimation for the swarm

intelligence-based adhesion estimation, the friction during

the low wheel slip cannot be estimated correctly. The

provided estimation result causes the fluctuation in refer-

ence slip value. However, the wheel slip controller is

activated during relatively high wheel slip, when enough

torque (i.e. excitation) is exerted on the system. Therefore,

when the wheel slip results of the simulations are analysed,

it could be seen that the optimal reference slip value is

provided when the controller is activated.

The simulation results have similarities with the previ-

ous study, which is about a wheel slip control method

based on adaptive sliding mode control [20]. Both control

methods have effective performances in the stabilization of
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the wheel slip. Due to optimal selection of reference slip

value, the PI controller with swarm intelligence-based

adhesion estimation in this study ensures better adhesion

utilization. In addition, it is not required to measure the

adhesion force to employ the control torque. However, the

controller has poor performance when the reference slip

value is selected in the unstable part of the slip curve.

In the future work, authors plan to combine the swarm

intelligence-based method with an unscented Kalman filter

which is used for friction estimation [32]. Thus, the esti-

mation results can be enhanced significantly by considering

a state filter. In order to combine two methods, the

approach proposed in [65] will be considered.
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