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ABSTRACT

In these recent years, Compressive Sensing (CS) is
becoming an attractive topic in the field of Informa-
tion Theory. It is widely used in several area includ-
ing networking, image processing and digital camera.
In particular, image reconstruction based on small
number of measured components is known as the
most useful application. In this paper, SLO algorithm
is specially used for the reconstruction process. It sig-
nificantly decrease the processing time by utilizing a
matrix in which the number of row is much smaller
than number of column. Therefore, SLO is known as
one of the fastest and most accurate algorithm in CS.
However due to ill-posed condition, if the prior in-
formation of the original image is undetermined, the
reconstruction procedure of SLO is much affected by
the noise. Unfortunately, the investigation for solving
this SLO ill-posed condition is very limited therefore
SLO is not widely applied in many application. Con-
sequently, this paper proposes a novel regularization
technique for SLO algorithm in the frequency domain.
In order to reduce and constraint the space of recon-
structed image, the frequency domain Tikhonov reg-
ularization technique is employed. It is shown that
the quality of the reconstructed image is much bet-
ter compared to the traditional algorithm under the
noisy environment. The experimental result is exclu-
sively simulated for 3 images: Lena, Sussie and Cam-
eraman under both Gaussian and Non-Gaussian noise
models (such as AWGN, Poisson noise, Salt & Pepper
noise and Speckle noise) at different noise powers.
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1. INTRODUCTION

Shannon and Nyquist sampling theorem has been
applying for a long time as a classical method for a
digital representation of analog signals. It is stated
that, the analog signal can be perfectly reconstructed
if the sampling rate exceeds 2B samples per second
hence the whole bandwidth has to be explored. How-
ever in most of the case, the reconstructed data can be
compressed with a much smaller size as the informa-
tion is only stand at some particular part. The Shan-
non and Nyquist sampling theorem is not efficiency
in these cases. There are several ways to improve
this situation and domain transform is exclusively ap-
plied for sparse representation of the signal and the
source coding is implemented afterward to reduce the
size of processed signal. JPEG format [1] is the most
famous application of source coding in which image
is sparsely represented and compressed in DCT do-
main. With these great impact, source coding is used
widely in the field of video and image process. Unfor-
tunately, it is still not provided the optimal solution
as the raw data has to be stored before compression.
It is a waste when huge amount of data is kept for
compression and most of them is discarded when the
process is finished. The situation is even worst when
the data is stored in terabytes or it is expensive and
physical limiting to keep the measurements.

Subsequently, Compressive Sensing (CS) [7] is in-
troduced to deals with efficient recovery of sparse vec-
tor from the linear measurements. The size of sam-
pled data is then reduced dramatically as only useful
information is captured for the reconstruction pro-
cess. In particular, images are linearly fixed with a
set of independent waveforms in which it is compress-
ible. In many situations, it can be extracted with re-
spect to the combination of several waveform rather
than a basis in order to obtain much sparser repre-
sentations. An example of those transformed domains
[11, 12] are: Discrete Fourier Transform (DFT), Dis-
crete Cosine Transform (DCT), Wavelets Transform
(WT) and Curvelet Transform. The procedure of CS
algorithms are generally divided into 2 steps: small
amount of sensors are used first to efficiently cap-
ture the sparse information, subsequently optimiza-
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tion algorithms are then applied to reconstruct the
full length signal from small amount of collected data
(the sparse information).

The SLO algorithm is known as one of the most
accurate algorithms in CS. However it is usually ill-
posed problem [3-6] and it is highly ill-posed problem
under noisy environments. Simultaneously, a regu-
larization technique is known as one of the most ef-
fective techniques for solving this ill-posed problem.
As a result, this paper proposes the novel frequency
domain Tikhonov regularization for SLO algorithm.
Moreover, the proposed reconstruction algorithm is
exclusively presented for image reconstruction from
small amount of measurement under frequency do-
main. The experimental results obviously confirm
the performance of the proposed algorithm for all the
simulation cases.

The organization of the paper is as follow: section
2 provides an outlines about the SLO algorithms and
the issue of ill-posed problem. Section 3 give a general
ideal of using CS for the image reconstruction. Sec-
tion 4 proposes a novel frequency domain Tikhonov
regularization for improving the quality of the recon-
structed image. Later, section 5 presents the analysis
of experimental result. Finally, section 6 discusses
the conclusion.

2. THE INTRODUCTION OF COMPRES-
SIVE SENSING

A. Introduction of Classical Image Restoration based
on SLO Norm Estimation [4-5]
There are several groups of CS, their performance is
mainly evaluated based on the accuracy and time pro-
cessing. The reconstruction process of CS algorithms
are executed based on norm estimation. Smoothed [°
norm (SLO) algorithm is exclusively presented in this
section as the very first method that employ [®norm.
Assume that there are totally N components in
signal = and has a sparse representation with respect
to a basis (o = Wzx). Suppose @ is an M x N
measurement matrix (M < N), so the observation
signal y is measured by:

y=Paory=2Vz = Az (1)

If there is no additional noise in the system then
the signal can be reconstructed by minimizing I°
norm optimization.

& = min||a||g subject to y = A (2)
[e3%

where ||a||o counts the number of non-zero compo-
nents of a.

19 norm of a vector is known as a discontinuous
function of that vector so it is easily trapped in local
minimization and very sensitive with the noise. SLO
replaces this discontinuous function by a suitable con-
tinuous one, and minimizes it by means of minimiza-
tion algorithm for continuous functions (e.g. steepest

descent method). There are several families of func-
tions, which can be used for the minimization process
but they should have the following property.

fola) ~ 1if o] <o and fo(0) ~ 0if |o| > o (3)

The Gaussian family of function is typically used
in the original algorithm as follow:

fo(a) = exp(—a?/20?) (4)

According to (4), when the value of f, () is close
to zero then the signal « is detected as sparse signal.
Thereby, the behaviour of the approximation function
is affected by o for difference value of the signal a.
The definition of the estimator of the algorithm can
be rewritten as the following maximization problem:

Fo(0)=3"" folan) (5)

lallo =M =3"" folai) = M = Fy(a) (6)

By the steepest descent method, the solution of
problem is:

Gip1 = G; — 71Dy — pd) — y) (7)

where > 0 and is small enough number, A is an
M x N mixing matrix and

§ = [on exp(—ai/20?),...,ap exp(—al /20%)] (8)

Initialization:
1) Let ay be the minimum {* norm solution of y = Aa
obtained by pseudo-inverse of A.

2) Choose a suitable wvalue for ¢ and decreasing
sequence lr;r-| LTy, ey {}');J.
Main loop
forj=12...7J

Seto =o,a =4
21 8 = [ajexp(—a?/2a?), ..., apexp(—al/20%)]
22 a—a—pud
23 aea—-AT(AAT) Y (da —y)

cnd loop
Final Answer:@ = &

Fig.1: Procedure for SLO algorithm.

The procedure of SLO algorithm is basically di-
vided into 2 steps. The sparse components of the
signal or image is determined first. Furthermore, the
classical ML estimation is applied for recovering of
original signal or image from components in first step.
Therefore, the second step of SLO algorithm is also
stated as recovery process. Hence, SLO algorithm is
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attained base on the Maximum Likelihood (ML) es-
timation algorithms.
B. Inverse Problems.
1) Definition of an Inverse Problem.
If the formulation of 2 problems is related with each
other, they are defined as inverse problem. [15-19].
In particular, if the first problem is the direct prob-
lem then the inverse problem is its complementary
part. Therefore the response of the inverse problem
is calculated from the result of the direct problem.
2) Well-Posed and Ill-Posed Problem.
According to Hadamard [20], the well-posed problem
is defined as follow:

a. Existence of solution: The solution of problem or
model must exist. In term of mathematical, the
solution is available for most of the case. However
if the solution is too difference with the original,
it is meaningless.

b. Uniqueness of solution: The solution of the prob-
lem must be unique. For example if the input
data is taken from difference path and in differ-
ence time, the solution of the problem may not
be the same. In discrete linear inverse problems,
non-unique solution is mainly caused by rank in-
sufficient.

c. Dependence of solution: The solution of the prob-
lem is found from input data. Moreover, the solu-
tion of inverse problem is also very sensitive with
the nature of the data, it may be diversed when
the data is changed. As a result it may not present
the properties of solution.

The problem is ill-posed if it does not satisfy all of
these 3 requirements. In fact the information is of-
ten loosed or disturbed in the observation process, so
the content of solution is often lower than the origi-
nal information. In general, the direct reconstruction
problem is not affected much with the loss of infor-
mation. However in case of inverse problem, the re-
construction signal is determined from the observed
information; this information loss has serious issue.
Due to the loss of information, it is not possible to
recover exactly the original information therefore the
inverse problem fails to have unique solution.

C. Regularized Technique and the Solutions to Ill-
Posed Problems

Regularization [5] employs additional information to
compensate for the information loss. This additional
information typically cannot be obtained from the ob-
served data and must be known in advance. Basically,
the prior information cover some desired character-
istics of the solution like total energy, smoothness,
positivity and so on. When the priori information is
supplemented, the space of solutions is constrained or
scaled down to the expectation which is compatible
with the observed data. A general theory of regu-
larization algorithms to ill-posed problems was first
introduced by A. N. Tikhonov.

In the Tikhonov approach, a family of approxi-

mate solutions to the inverse problem is constructed.
In general, it is primarily controlled by a nonnega-
tive real-valued regularization parameter. If there is
no noise in system, the solution is constructed exactly
the same to the original problem as the regularization
parameter goes to zeros. While the noise is existed,
an optimal approximate solution is obtained when the
regularization parameter is positive value. Later, var-
ious stochastic and regularization theories have been
purposed to improve the performance. In these pro-
posed regularization model, the addition of a priori
information is resulted in a new well-posed problem
which is closely related to the original ill-posed one.
This solution of resulted well-posed problem has to
satisfy the Hadamard requirements. Moreover it is
formulated so that its unique solution is meaning-
ful with respect to the original ill-posed one. It is
therefore very important to ensure that the priori
constraints used accurately reflect the required char-
acteristics of the solution.

According to regularization theories, the error be-
tween the reconstructed signal and the original signal
is estimated by a cost function. In general, cost func-
tion is initialled based on two conditions. The first
term is a corresponding error between the observed
signal and the proposed solution. The second term
is the constraint criterion which penalizes for lack of
“smoothness”. According to the inverse problem, the
solution is estimated which minimizes the cost func-
tion. The Tikhonov regularization supports the same
idea in which the problem is posed as constraining the
admissible solution set. The regularization parame-
ters must be chosen first based on the properties of
signal system, the reconstruction signal is then very
sensitive to these parameters and to the additional
noise. Therefore, the solution of inverse problem or
reconstruction image in this case is improved by lim-
iting the solution space. The affections of the outlier
to the cost function are then reduced.

Up to now, there are several researches about reg-
ularization algorithms. Each of them has advantage
and disadvantage for specific case. However, one of
the most common algorithms is to constrain the spa-
tial energy of first or second spatial derivative of the
solution. In this paper we propose the problems to
incorporate constraints on second spatial derivative
(Laplacian) of the solution. The general framework
for the inverse problem with regularization is pre-
sented in Figure 2.

D. SLO as an Ill-Posed Inverse Problem
1) SLO is an Inverse Problem

In the field of image processing, SLO is applied for
recovering original image from the incomplete ob-
servation. The whole framework is actually an in-
verse problem because the reconstruction image is es-
timated by the observed image [21]. If the character-
istics of the imaging process and system are granted,
the simulation is the forward problem, while the re-



184 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION TECHNOLOGY VOL.7, NO.2 November 2013

construction is the inverse problem.

2) SLO is an Ill-Posed Problem
It is stated above that ill-posed problem implies the
failure of any of the Hadamard conditions. SLO al-
gorithm may fail to satisfy Hadamard conditions be-
cause only small amount of the observed signals is
used for the recovery process. Little change in ob-
served signal may cause a big change in the solution.

2.1 Nonexistence of the Solution: If the noise is
existed in the observation process, the characteristic
of the image system may be changed [15]. There are
many cases in which the reconstructed image cannot
represent the properties of original image. Therefore
the system is non-invertible and the expected result
cannot be obtained.

2.2 Uniqueness of Solution: lack of information in
the reconstructed process usually makes the solution
of SLO to be non uniquesss [20].

2.3 Dependence of solution: The inverse problem
can be extremely sensitive to the outliers for some
specific imaging system [15, 16]. Little amount of the
noise in the system can lead to an arbitrarily large
unauthentic signal in the restoration process.

. I . .
Original — Observed | |
| Acequisition | Restored
Tmage # I »  TInage
7 Aty | e Image
5 — | | A¥stn T
Tnverse
Problem
i Find s
knowing A
Energy
Minimization
Regularizalion

Fig.2: General Model for Inverse Problem with Reg-
ularization.

3. THE IMAGE RESTORATION IN CS

A. Classical Image Restoration Algorithm in Spa-
tial Domain
This section represents the classical image restoration
in spatial domain and the necessary for the regulariza-
tion of inverse problem. In general, the purpose of im-
age restoration is to produce the best estimate of the
source image, given the recorded image and some a
priori knowledge. However, in the inverse process the
observed image is always degraded. Therefore, the
restoration of degraded images is a crucial problem
because it allows the recovery of lost information. In
spatial domain, there are 2 common types of degrada-
tion: blurring is due to lens aberrations, atmospheric
turbulence and motion; whereas point degradations
are caused by photo electronic, photochemical and
electronic random noises. In the presence of addi-
tional noise, spatial degradation is ill-conditioned and
is very difficult to invert the solution. Regularization
is one of the most effective approaches in ill-posed
recovery problem. It is stated that, recorded data
and priori knowledge are use in a complementary way

to obtain the best possible solution. The regulariza-
tion parameter trades off fidelity to the available data
to smoothness of the solution while the smoothness
properties of the image are captured by the regular-
ization operator.

B. Proposed Image Restoration Algorithm in Fre-
quency Domain
In this section, the novel algorithm for image restora-
tion in frequency domain is proposed. It is then
proved that the new algorithm has many benefits over
the image restoration in spatial domain. As stated
above, SLO is used to restore the image from small
amount of observed information. It overcomes the
classical image restoration in term of time and re-
quired information. However, in spatial domain, the
information of an image is spread all over or it is not
in a sparse form. Hence, the image is first trans-
formed into frequency domain (by FFT in this case)
where the sparse representation of image is obtained.
According to image property: the Fourier Transform
of image contains component of all frequencies, but
most of the energy is concentrated in few transform
coefficients and the other is almost zero. These fre-
quency components are then employed by SLO to re-
cover the original image. In general, most of the im-
age’s structure can be restored by SL0O. However, the
detail and the smoothness of the image are stayed on
high frequency components. The exact restoration
of these components cannot be implemented by SLO.
The situation is even worst in case of noise where SLO
algorithm may mistakenly detect noise as restoration
signal. As a result, the novel regularization for SLO
algorithm in frequency domain is proposed to give a
better performance for image restoration algorithm
in CS.

4. PROPOSED PROBLEM DEFINITION
AND FORMULATION

Tikhonov’s Regularization Algorithm.

The difficulties of the ill-posed problem can be solved
by regularization algorithms. In general, the prior
information is added up to the process, so that the
solution is put under some constraints. When the
process is affected by noise, Eq. (1) is rewritten as
follow:

y(i) = Pal(i) + (i) (9)

where y(7) is a measured image or signal at time in-
stant (i), (4) is the unknown original signal or image
at the same time, ® is the measurement matrix and
¢(4) is the additional noise. The measurement matrix
® is often ill-posed for the Cauchy problem of the
Laplace equation, so regularization algorithm which
regularizes the measurement matrix is essential. In-
stead of solving Eq. (9) directly, Tikhonov proposed
a method to transform ill-posed problem into a well-
posed one by solving the following problem:
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minimizel||a||?subject to ||®;a — ;|2 <e  (10)
where ¢ is the prescribed error tolerance. The pro-
posed problem in Eq. (10) can be also resolved as:

(11)

where T is the regularization parameter (Lagrange
parameter).

According to [33], the regularization parameter Y
has strong effect to the inverse problem so the selec-
tion of it is very important. There are several ways
to search for it but the selection is based on a priori
properties of the system. In general, various proper-
ties are put under consideration: for example the ad-
ditional noise in the system or the basis structure of
the model. Normally, small values of 7 direct the so-
lution to the least square results of & = (@7 ®)~1dy.
This is also called as under-regularization which may
cause ill-posed condition with the presence of out-
liers. Vice versa, large value of regularization param-
eter can lead the solution toward zero (over regular-
ization). Therefore, an optimal choice of regulariza-
tion parameter is required to balance accuracy and
smoothness in the solution.

& = argmin(|ly — ®a|* + T||Ra|*)

B. Proposed Regularization for SLO Algorithm.

1) General Regularization for SLO in Frequency Do-
main

As stated above, SLO is an ill-posed problem for
the under-determined cases therefore infinite num-
ber of solutions can be obtained. The solution for
squared and over-undetermined cases is known as
unstable and additional noise in the measurements
produce large disturbance in the reconstructed im-
age. The regularization algorithms compensate the
disturbed information with some general prior infor-
mation about the desire solution, it remove artifacts
from the final answer and improve the rate of conver-
gence. The recovery process of SLO algorithm with
regularization function is rewritten as the following
minimization problems:

a = Argmin {Zi]\:(@ia —yi)+ Xf(a)} (12)

where T («) is the regularization function and A is
scalar defining the regularization parameter.

2) Laplacian Regularization for SLO in Frequency
Domain
In general, Tikhonov regularization Y(«) is a matrix
recognition of the Laplacian kernel (the simple and
small kernel). There are different sets of integer and
kernel and this paper apply the simplest form of ker-
nel in spatial domain:

Isp = [Oa 1707 1a _47 1: Oa 13 O] (13)

Fourier transformation of filter is also executed as
the image reconstruction process is taken under fre-
quency domain. The most classical and simplest reg-
ularization norm function preg(), is prec(:) = (+)?
thus the solution of the SLO is defined as:

M
«a = Arg min [Zi_l(‘bia —y)+ A (FFDa)z}

(14)
Basically, the frequency domain filtering selects
a transfer function that can modifies regularization
function ”(14)” in specific manner. Fig. 3 and Fig.
4 expresses the Laplacian regularization function in
spatial domain and frequency domain respectively.
Fig. 5 illustrates the image presentation in frequency
domain. It is shown that the components that con-
tain information are mainly located at low frequency.
In frequency domain, low frequencies present
smooth areas while high frequencies show edges and
noise. The frequency domain Laplacian regulariza-
tion is actually used as filtering. It mainly allow the
low frequency value while dismiss the high frequency
one. Therefore when it is employed for SLO algo-
rithm, the reconstructed value is constrained and is
more robust to the noise.

Fig.3: Proposed Laplacian Regularized Kernal
Function in Spatial Domain (T'sp ).

Fig.4: Proposed Laplacian Regularized Kernal
Function in Frequency Domain (T'rp ).

Fig.5: FEzxzample of Reconstructed Image in Fre-
quency Domain («).
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Due to image characteristic, the classical regular-
ized technique in spatial domain is Laplacian regu-
larized kernel, which is expressed in Eq. (13). From
Eq. (13) we can observed that the Laplacian kernel
(T'sp) is one of the high pass filters in spatial domain
(or edge amplification) therefore the frequency regu-
larization I'p p which is used for cooperating the opti-
mization problem can be formulated from the Lapla-
cian regularized function.

The general framework for SLO regularization al-
gorithm is exclusively presented in Fig. 6.

5. NUMERICAL RESULTS AND DISCUS-
SION

This section presents the image reconstruction
simulation which is obtained by SLO and SLO reg-
ularized algorithm. It is simulated in MATLAB for 3
images such as Lena, Cameraman and Sussie. Images
are firstly converted to the Frequency Domain by a
Fourier Transform. The additional noises are then
randomly added to the system. There are 3 differ-
ent types of noises model: Additive White Gaussian
Noise (AWGN), Salt & Pepper Noise, and Speckle
Noise. The power of each noise model is also varied
from low to high.

There are only small numbers of components
(Sparsity Number) are used for the reconstruction
process. In the reconstruction process, image is re-
constructed column by column. The Sparsity Num-
ber (K) is calculated as the percentage of total com-
ponents at each column. Therefore, each column
is reconstructed by both SLO algorithms based on
K. For example, assume that an image has size of
200x250 and K is 5%. K is first calculated as
5%%200=10; therefore each row is reconstructed by
using only 10 mostly sparse components. As a result,
the reconstructed image is a combination of the re-
construction of 250 rows. Table 1, 2 and 3 indicates
the results in PSNR (dB) between the reconstructed
image and original image. Due to page limitation, the
illustrations of some reconstructed images (K =5%)
are shown in Fig. 13, 14 and 15. At each figure,
“a” represents the original image, “b” express the re-
constructed image by SLO and “c” shows the recon-
structed image by our proposed SLO regularization.
A. Ezxperimental Estimation of Regularization Pa-
rameter
According to (14), Regularization Parameter (1)) is
undetermined. In this section, the relationship be-
tween the PSNR of the reconstructed image and A
is demonstrated. The result is displayed in table in
which: the first row present the values of A and the
first column represent the noise model. The value of
A is varied from 0.01 to 0.1, whereas the power of
noise model is varied from low to high. There are 3
demonstration figures: Lena is shown in Fig. 7, Susie
(40th frame) sequence is shown in Fig. 8 and Cam-
eraman is shown in Fig. 9. At each table, the last

row represents the average PSNR value for all differ-
ent noise power. The best result for S is estimated as
the one with highest averaged PSNR value. For the
best chosen S, the illustration of restoration image is
also presented for the lowest and highest noise power.
Additionally, the graph in Fig. 10, 11 and 12 is exclu-
sively present the average PSNR value for each type
of noise. The row express the regularization param-
eter which is varied from 0.01 to 0.1 and the column
is the average PSNR value. When the value of A is
varied, the average PSNR value tend to increase to
the peak value before decreasing and saturating.

In theoretical point of view, A can be set from 0-1.
The higher the noise power is, the Regularization Pa-
rameter is set to larger and closer to 1. Vice versa the
lower the noise power is, A is set to lower and closer
to 0. Following the observation from large amount
of experimental, if the noise has low power, it is sug-
gested to set A=0.02 to obtain the best performance.
Furthermore if the noise has high power, A is set to
0.04 to obtain the best performance. According to
Fig. 10, 11 and 12 the PSNR value for the recon-
structed image is dropped and saturated when A is
greater than 0.05.

B. Performance Evaluation

In this section, the results from the simulation are
analysed. It is shown that the result of our pro-
posed regularization algorithms overcome original
SLO based algorithm in both conception and percep-
tion.

- According to Table 1, 2 and 3, the result in PSNR
by the proposed SLO regularization is much higher
than by the original SLO about 2-3 dB in all tested im-
ages. Moreover the illustration of the reconstructed
image in Fig. 13, 14 and 15 give a much clearer vision
compared to the original SLO.

- In order to virtually illustrate the proposed al-
gorithm performance, an example of single column
reconstruction from image is exclusively presented in
Fig. 16. A ’log’ function is executed before plotting
to give a clearer view of vector representation. There
are 2 columns: at each column, the original vector
and the reconstructed vector by difference algorithms
are presented. The column on the left hand side ex-
presses the vectors in frequency domain. Meanwhile,
the column on the right hand side conveys the vec-
tors in spatial domain. It is shown in Fig. 16(b-1)
and Fig. 16(b-2) that the original SLO algorithm just
recovers the sparse number while treats small number
as zero. In fact, each small value has its own contribu-
tion for the image reconstruction process. Therefore
classical SLO algorithm does not give a clear view
of reconstructed image. On the contrary, by using
the proposed regularization SLO algorithms (shown
in Fig. 16(c-1) and Fig. 16(c-2)), all the component
are constrained and recovered as close to the original
value as possible. Thus, the reconstructed image by
the proposed algorithm is much better than classical
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algorithm in both subjective and objective view.

It is shown that, a good reconstructed image is
given by original SLO algorithm under the noise free
or noise with low power. However if the observed im-
age is effected by the non-Gaussian noise model or
Gaussian noise model with high power, the original
SLO fail to give an acceptance reconstruction image.
The cause of this situation is in the recovery process
where the error between the reconstruction image and
the observed image is multiplied with the inverse of
the matrix; this step is taken iteratively until the ex-
pected result is obtained. Nevertheless if the error is
too big, the whole process may be diverted and the
result is too much difference with the original one.
The regularization filter is then added up to the orig-
inal algorithm to constraint the error. As a result, the
error is put under a boundary and the overall process
is improved. The shape of reconstruction vector by
regularization algorithms is much closed to the origi-
nal vector compared to the non-regularized ones. The
image illustration for the single column reconstructed
is exclusively represented in Fig. 17 to illustrate the
reconstruction process of each image.

6. CONCLUSIONS

In general, SLO algorithm can be used to recon-
struct the image based on small number of compo-
nents based on Fourier Domain transformation. The
quality of the reconstructed image is recognized for
the noiseless environments but it is very poor un-
der the noisy environment. In this paper we pro-
pose a novel regularization method for SLO algorithm
which is based on Tikhonov’s regularization for ML
estimation in frequency domain. The regularization
function compromises fidelity to the available data
to smoothness of the solution. From the simulation
result, we can confirm that the frequency domain reg-
ularization technique evidently improve the SLO per-
formance. The proposed algorithm yields a better
performance in both subjective and objective mea-
surement.
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Figure 6. General Framework for SL0 Regularization Algorithm.
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Sparse Number =5% AWGN

A=0.01 A=002 A=004 A=003 A=006 A=007 A=008 A=002 =0l
1548 21.835 22.66 22,95 20.53 5.73 3.70 3.68 3.68 3.6 3.69
17.5dB 22,49 2318 2353 23.32 3.86 3.69 3.68 3.68 3.69 5.69
2048 2333 2394 2431 2433 597 37 3.70 3.69 3.69 5.69
22548 23.05 2444 2472 2477 6.40 5.75 372 571 57 57
2548 2488 2336 25.59 2368 7.23 5.76 Y7L 5.71 35.70 571
Average 2330 23.92 2422 23.73 6.24 3.72 370 370 370 3.70

Salt&Pepper

A=004 A=005 A=006 A=007 A=008 =009 2A=0!

¥=0.01 2433 2477 2499 2513 2298 737 3.90 3.72 3.62 5.68
V=0.02 24.72 23.16 2337 15.46 16.77 6.57 382 3.70 3.6 3.68
¥=0.02 23.65 2407 24.29 2441 10.64 5.86 5.70 3.70 3.71 5.70
F=0.04 22.02 2241 2262 22.77 7.67 5.80 371 5.70 370 570
¥=0.05 2048 20.79 2090 20.94 15.52 6.49 579 3.70 5.68 5.67
Average 2368 24.10 2432 24.44 1451 6,45 378 370 J.e9 5.69

A=009 A=01
D=0.01 23.58 2403 2427 2438 23.37 7.33 3.9 3N 3.69 5.68
D=0.02 23.01 2332 2348 23.57 2233 7.03 591 37 368 5.67
D=0.03 2225 22.50 22.62 22.69 2171 6.89 382 370 3.67 5.67
D=0.04 22.08 2239 22.50 22.51 10.98 6.58 3.80 5.60 3.67 5.66
D=0.05 21.95 2227 2246 22,59 2198 7.40 384 5.60 3.67 5.67
Average 2232 22.62 2277 1284 21.50 6.98 344 370 3.67 3.67

Sparse Number =10% AWGN

A=006 A=007 A=008 A=009 A=01

17.5dB 2291 23.87 24.07 10.52 5.70 570 570 5.70 3.70 5.70
2045 2478 23.70 25.97 14.00 5.7 368 370 5.60 3.60 5.69
22.5dB 26.14 26.96 7. 19.14 5.5 3.68 3.68 3.68 3.69 3.69
2548 27:51 28.17 28.45 2444 3.96 573 5.73 5:1 37 571
Average  24.32 23.39 2572 1314 376 370 3 369 370 3.70

A=006 A=007 A=008 A=009 A=01

=0.01 26.74 26.90 26.98 2693 11.44 304 5.62 5.64 364 5.64

F=0.02 23.56 23.89 26.10 26.13 10.532 3.92 3.67 3.63 3.65 .64 S

¥=0.03 2316 2340 1553 2553 10.40 392 3.67 364 364 5.64 :

¥=0.04 23.65 23.73 23.66 23.57 10.92 591 3.67 364 3.63 5.65 5

F=0.05 23.33 2331 2322 23.09 947 387 5.67 364 364 5.63 I
Average  24.89 23.05 25.10 23.05 10.55 3.91 3.67 364 .64 5.64

D=0.01 2837 28.73 28.87 28.67 7.90 5.79 5.69 5.68 3.69 3.69
D=0.02 2750 27.04 28.16 28.14 8.05 597 5.69 371 570 3.70
D=0.03 17.93 17.68 17.63 17.64 6.32 5.74 5.70 5.70 5.69 3.71
D=0.04 2156 21.84 2191 2186 647 5.73 541 5.70 3.70 3.70
D=0.05 16.42 16.33 16.30 16.23 6.11 5.73 5.70 5.70 5.70 5.69
Average 22.36 2230 22.57 22.51 7.0 3.73 .70 3.70 3.70 370

Sparse Number =152 AWGN

A=004 A=005 A=006 A=007 i
1548 26.7: 26.90 26.98 2693 11.44 394 5.68 3.64 364 5.64
17.5dB 23.56 23.89 26.10 26.13 10.52 592 3.67 5.63 3.65 5.64
2045 2316 23.40 1553 23.53 10.40 592 3.67 3.64 364 5.64
22.5dB 23.65 2373 13.66 23.57 10.92 501 5.67 364 3.63 5.63
25dB 2333 2331 23.22 23.09 947 5.87 3.67 .64 364 5.63
Average  24.89 25.05 25.10 23.05 1055 5.91 3.67 364 J64 5.64

Salt&Pepper

A=003 A=004 A=005 A=006 A=007 A=008 A=009 A=0!

V=0.01 2335 2870 2883 24355  6.22 5.73 371 3.71 3. 5.70
V=0.02 2000 2023 2041 1907 618 373 371 370 371 570
V=0.03 1448 1463 1486 1437 598 573 373 51 570 539
V=0.04 2179 2224 2250 1940 376 3.69 5.69 5.69 568 369
V=0.05 1975  20.18 2048 1817 3.9 570 568 5.69 560 5690
Average 2087 2020 2142 1929  3.99 372 570 570 370 567

A=003 A=006 A=007 A=008 A=009 A=0!

D=0.01 2043 2073 2080 2033  7.33 576 570 5.70 570 369

D=0.02 2732 2766  27.80 2754  8.19 580 5.9 363 560 371

D=0.03 2386 2408 2422 2415 707 575 370 370 571 369

D=0.04 2328 2312 13.07 2288 654 573 571 571 570 5.60

D=0.05 2314 2293 2281 2270 720 573 5.9 570 570 575
dverage 2540 2551 1556 2537 744 573 570 570 590 570 PSNR-=29.80

Fizure 7. Experimental Estimation of Parameter Estimation for Lena (512 x 5121
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Sparse Number =3%

AWGN

; A=002 A=003 A=004 A=005 A=006 A=007 A=008 A=009 A=0I
1548 2185 2266 2285 2055 5.73 5.70 568 5.68 5.68 560
17.5d6 2249 23.18 2353 2332 336 3.60 568 3.68 3.60 560
2046 2333 2394 2431 2435 397 571 370 3.60 3.60 560
22548 2395 2444 2472 247 640 573 372 371 571 571
25dF 2488 2536 25590 2368 773 5.76 571 571 570 571
Average 2330 2302 2422 2372 6.24 5.72 5.70 570 370 5.70 PSNR=11.05 PSNR=15.59
] A=005 A=006 A=0.07 A=008 A=0.09 A=0.]
V=0.01 2433 2477 2499 2513 2298 7.57 390 3.72 3.68 368
V=0.02 2472 2316 2337 2546 1677 657 382 5.70 3.68 568
V=0.03 2365 2407 2430 2441  10.64 386 570 3.70 571 570
V=0.04 2202 2241 2262 2277 767 5.80 571 35.70 570 570 a
V=0.05 2048 2079 2080 2084 1352 640 579 5.70 5.68 567
Average 2368 2410 24.32 24.44 1451 6.43 3.78 5.70 3.69 3.69 PSNR=15.13 PSNR=20.04
D=0.01 2358 2405 2427 2438 2337 7.53 5.91 571 5.60 568
D=0.02 2301 2332 2348 2357 2233 7.03 391 571 5.68 567
D=0.03 2225 2250 2262 2269 2171 6.59 5.82 370 367 567
D=0.04 2208 2239 2250 2251  10.9% 658 380 5.69 567 566
D=0.05 2105 2227 2146 2350  219% 7.40 554 5.60 567 567
Average 2232 226 2277 2284 2150 6.98 584 570 367 567 PSNR=24.33
Sparse Number=10% AWGN
] A=004 A=005 A=006 A=007 A=008 A=009 A=0.7
1546 2125 2223 2279 7.62 3.69 3.70 3.70 3.70 3.70 3.71
17546 2201 2387 2407 1032 3.70 370 370 3.70 370 570
20dB 2478 3570 2587 1400 371 3.68 570 5.60 3.60 560
22546 2614 2696 2734 19.14 573 5.68 368 5.68 560 569
2546 2751 2817 2845 2444 5.96 373 573 571 571 571
Average 2452 2339 2572 1514 376 370 570 5.69 5.70 5.70 PSNR=22.79 PSNR=28.45
A=008 A=0.09 A=0.]
V=0.01 2837 2873 2887 2867 7.90 379 3.60 3.68 3.60 560
V=0.02 27350 2794 2816 2314 8.03 577 360 501 370 570
V=0.03 1793 1768  17.63 1764 6.52 5.74 370 35.70 5.60 571
V=0.04 2156 2184 2181 2186 647 573 571 5.70 570 570
V=0.05 1642 1633 1630 1623 611 373 570 3.70 370 560
Average 2235 2250 2257 2251 701 373 570 3.70 570 570 PSNR=28.87

A=004 A=005
D=6.01 2674 2690 2698 2693 1144 3.04 3.68 3.64 364 364
D=0.02 2556 2589 2610 2613 1052 5.02 3.67 363 3.63 3.64
D=0.03 2516 2540 2553 2553 1040 502 367 5.64 564 5.64 5"
D=0.04 2365 2373  23.66 2337 1092 501 367 3.64 363 3.63 &
D=0.05 2333 2331 2322 2309 9.47 387 367 3.64 564 5.63 al
Average 2489  23.03 2510 23505 1033 395 567 564 3.64 5.64 PSNR=26.08 PSNR=23.22
Sparse Number=135% AWGN
A=0.03 A=004 =005 A=0.08 =009 A=01
15dB 1898 2006 2058 391 3.60 370 3.69 3.69 369 3.68
17.5dB 2133 2236 2238 508 360 360 3.70 571 570 569
20dB 2351 2453 2479 6.29 370 5.70 3.69 .69 369 370
225dB 2556 2654  26.65 739 5.60 5.67 5.68 568 569 568
25dB 2766 2853 2870 1042 371 368 368 5.68 568 568 .
Average 2347 24.40 24.72 7.20 370 3.69 3.69 369 .69 3.69 PSNR=20.58 PSNE=28.70
02 A=004 A=005 A=006 A=007 A=008 A=009 A=01I
V=g.01 2835 2870  28.83 2455 6.22 373 371 571 369 3.70
V=0.02 2000 2023 2041 1937 6.18 573 371 3.70 371 3.70
V=0.03 1448 1463 1486 1457 5.98 573 373 571 570 559
V=g.04 2179 2224 2250 1940 376 5.69 3.60 5.69 568 5.69
V=0.05 1975 2018 2048 1817 579 370 3.68 3.69 369 3.69
Average 2087 2120 21.42 19.29 399 572 5.70 5.70 3.70 5.67 PSNR=18.83 PSNR=20.48
A=0.03 A=004 A=005 A=006 A=007 A=008 A=009 =01
D=0.01 2943 2073 2980 2933 7.33 3.76 370 370 370 3.69
D=0.02 27327 2766  27.80 2754 210 5.80 3.69 368 360 571
D=0.03 2386 2408 2422 2415 797 5.73 370 3.70 3.71 3.69 ,
D=0.04 2328 2312  23.07 2288 6.54 573 371 371 570 3.69 ’
D=0.05 2314 2298 22081 2270 720 573 3.60 370 570 575 3 .
Average 2540 2551 1586 2342 744 373 370 370 370 57 PSNR=29.80 PSNR=22.91

Figure 8. Experimental Estimation of Parameter Estimation for Sussie (160 x 160)
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Sparse Number=5% AWGN

A=001 A=002 A=003 A=004 A=005 A=006 2A=007 A=008 =009 A=01

15dB 2065 2154 2190 1829 347 545 543 544 545 545
17.5d6 2201 2284 2315 2232 3.53 344 343 5.44 343 543
20dB 2307 2378 2400 2386 3.60 543 343 544 44 544
22.5dB 2374 2440 2478 2479 6.00 546 544 543 543 545
25dB 2462 2519 2549 2531 6.67 5.48 343 343 543 343 [
Average 2282 2353 2300 2295 587 346 345 345 345 545 PENR=11.29

A=002 A=003 A=004 A=005 A=6008 =009 A=01
F=0.01 23.57 24.02 2423 2436 2440 23.66 13.13 652 3.65 549
¥=0.02 2277 2312 2327 2336 2341 22.66 12.48 653 345 546
¥=0.03 10.42 10.45 19.38 19.34 19.29 18.78 11.29 6.11 345 544
V=0.04 17.01 17.05 17.00 16.94 16.91 16.71 10.22 379 345 544
¥=0.05 16.54 16.83 17.00 17.11 17.18 16.67 0.94 573 345 543

Average 13.86 2010 2018 2022 20.24 12.70 1141 644 3.3l .43

A=004 A=005

D=0.01 24.47 2489 2509 2518 25.20 2428 1222 627 361 548
D=0.02 23.89 2424 2437 24.40 2437 2324 1247 658 563 547
D=0.03 22.54 22.7. 2282 2283 1235 22.20 11.87 6.24 3.60 546
D=0.04 2208 2213 2208 2203 21.08 21.54 2.80 398 354 546
D=0.05 20.68 20.87 2093 2096 20.97 2033 11.12 6.24 3 543

Average 2273 2297 2306 2308 23.08 2232 1150 6.26 3.60 346

Sparse Number=10% AWGN

A=006 A=007 A=008 A=009 2A=01

15dB 10.43 2047 2115 7.16 343 343 343 343 4 345
17.5dB 21.51 2255 2117 219 345 343 343 343 344 545
2048 2342 2446 24.78 12.01 346 345 343 545 343 545
22.5dB 2315 26.13 26.40 17.83 343 3.43 543 543 345 345
25dB 26.64 2751 17.82 21.80 5.50 545 343 344 344 544
Average 2327 2422 24.67 13.40 347 345 345 343 343 345

Salt&Pepper

A=004 A=003 A=006 A=007 A=008 A=009 A=01!

F=0.01 21.94 2217 2227 2233 2.4 750 5.61 347 345 543
¥=0.02 2135 21.50 2157 21.63 21.68 7.88 3.60 347 343 548
¥=0.03 20.61 20.85 2093 2098 21.01 833 3.66 347 344 544
=0.04 17.52 17.48 17.48 17.53 17.56 243 3.67 346 343 544
P=0.05 16.36 16.29 16.25 16.26 16.29 7.51 3.62 346 343 344

Average 1896 19.03 19.06 19.10 19.14 812 64 J4s 544 545

A=008 A=009 A=01

D=0.01 27.13 27.26 27.25 27.20 27.08 175 3.60 3.46 343 545
D=0.02 2491 2512 2519 2522 2319 1.87 359 347 343 545
D=0.02 23.32 2332 2326 2320 2312 236 5.66 547 344 546
D=0.04 22.82 2299 23.04 23.05 23.05 724 5.57 346 345 544
D=0.05 22.65 2264 12.65 22635 2263 742 5.57 346 345 543
Average 2417 2427 2428 24.26 24.21 7.73 .60 347 343 345

Sparse Number=15% AWGN

A=006 A=0.07 A=0.08 A=009 S=01

15dB 1685  17.83 17.85 3.50 343 3.43 343 343 343 545
17.5dB 1915 2020 2057 561 543 543 543 543 s44 544
20dB 2145 2252 22.99 5 343 343 343 543 544 545
22.5dB 2368 2475 25.06 599 5435 545 545 545 545 545
25dB 2578 26.86 27.06 822 546 544 543 543 543 545
Average 2138 2243 27 6.22 5.45 54 543 543 543 345
Salt&Pepper
A=002 A=003 =004 A=005 A=006 4=007 A=008
V=0.01 2827 2834 2830 2825 2781 363 5.46 5435 543 5.45
V=0.02 176¢ 1781 15.01 1823 1812 3.76 547 543 544 544
V=0.03 1684 1692 17.04 1683 546 5.09 5.06 507 5.06 5.07
V=0.0f 1665  16.78 16.95 17.16 16.07 5.54 3.46 5.43 547 544
V=0.05 14350 1479 15.08 1333 1437 3.50 346 346 343 545
Average 1926 1926 1930 959  ]922 922 546 546 545 545
| S |
A=0.02 A=005 A=006 A=007 A=008 A=0.09 A=0.!
D=g.01 2333 2363 2570 2576 2339 3.56 3.46 343 5.43 5.43
D=0.02 2534 2338 2322 24.80 6.58 5.08 5.06 5.06 5.06 5.09
D=0.03 2345 2332 2357 2362 2333 353 5.46 343 543 543
D=0.04 2191 2194 2204 2215 2210 356 346 343 543 544
D=0.05 2046 2040 2054 2060 2036 556 546 543 s44 546 \
Average  22.84 12290 2296 1303 2290 333 348 343 343 343 PSNR=11.85

Fisure 9. Expenimental Estimation of Parameter Estimation for Cameraman (256 x 2561
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Table 1: FEzxperimental Result of Lena. Table 3: Ezxperimental Result of Resolution Chart.

Table 2: FEzxperimental Result of Cameraman.

a. Original image b. SLO c. SLO Regularized
Figure 13. Experimental Result of Lena (AWGN case)

a. Original Image b. SLO ¢. SLO Regularized
Figure 14. Experimental Result of Resolution Chart (AWGN case)
: . - k rEh

a. Original Image o b. SLO c. SLO eguied
Figure 15. Experimental Result of Cameraman (AWGN case)
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Figure 16. Vector Representation of Cameraman Figure in Frequency Domain (Left) and Spatial Domamn (Right).

(a) Original Vector

(b) Reconstructed Vector by SLO
Figure 17. Iinage Illusiration for the reconstruction of first colunn i Spatial Domain.

(c) Reconstructed Vector by SLO_Regularization
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