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ABSTRACT

In these recent years, Compressive Sensing (CS) is
becoming an attractive topic in the field of Informa-
tion Theory. It is widely used in several area includ-
ing networking, image processing and digital camera.
In particular, image reconstruction based on small
number of measured components is known as the
most useful application. In this paper, SL0 algorithm
is specially used for the reconstruction process. It sig-
nificantly decrease the processing time by utilizing a
matrix in which the number of row is much smaller
than number of column. Therefore, SL0 is known as
one of the fastest and most accurate algorithm in CS.
However due to ill-posed condition, if the prior in-
formation of the original image is undetermined, the
reconstruction procedure of SL0 is much affected by
the noise. Unfortunately, the investigation for solving
this SL0 ill-posed condition is very limited therefore
SL0 is not widely applied in many application. Con-
sequently, this paper proposes a novel regularization
technique for SL0 algorithm in the frequency domain.
In order to reduce and constraint the space of recon-
structed image, the frequency domain Tikhonov reg-
ularization technique is employed. It is shown that
the quality of the reconstructed image is much bet-
ter compared to the traditional algorithm under the
noisy environment. The experimental result is exclu-
sively simulated for 3 images: Lena, Sussie and Cam-
eraman under both Gaussian and Non-Gaussian noise
models (such as AWGN, Poisson noise, Salt & Pepper
noise and Speckle noise) at different noise powers.
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1. INTRODUCTION

Shannon and Nyquist sampling theorem has been
applying for a long time as a classical method for a
digital representation of analog signals. It is stated
that, the analog signal can be perfectly reconstructed
if the sampling rate exceeds 2B samples per second
hence the whole bandwidth has to be explored. How-
ever in most of the case, the reconstructed data can be
compressed with a much smaller size as the informa-
tion is only stand at some particular part. The Shan-
non and Nyquist sampling theorem is not efficiency
in these cases. There are several ways to improve
this situation and domain transform is exclusively ap-
plied for sparse representation of the signal and the
source coding is implemented afterward to reduce the
size of processed signal. JPEG format [1] is the most
famous application of source coding in which image
is sparsely represented and compressed in DCT do-
main. With these great impact, source coding is used
widely in the field of video and image process. Unfor-
tunately, it is still not provided the optimal solution
as the raw data has to be stored before compression.
It is a waste when huge amount of data is kept for
compression and most of them is discarded when the
process is finished. The situation is even worst when
the data is stored in terabytes or it is expensive and
physical limiting to keep the measurements.

Subsequently, Compressive Sensing (CS) [7] is in-
troduced to deals with efficient recovery of sparse vec-
tor from the linear measurements. The size of sam-
pled data is then reduced dramatically as only useful
information is captured for the reconstruction pro-
cess. In particular, images are linearly fixed with a
set of independent waveforms in which it is compress-
ible. In many situations, it can be extracted with re-
spect to the combination of several waveform rather
than a basis in order to obtain much sparser repre-
sentations. An example of those transformed domains
[11, 12] are: Discrete Fourier Transform (DFT), Dis-
crete Cosine Transform (DCT), Wavelets Transform
(WT) and Curvelet Transform. The procedure of CS
algorithms are generally divided into 2 steps: small
amount of sensors are used first to efficiently cap-
ture the sparse information, subsequently optimiza-
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tion algorithms are then applied to reconstruct the
full length signal from small amount of collected data
(the sparse information).

The SL0 algorithm is known as one of the most
accurate algorithms in CS. However it is usually ill-
posed problem [3-6] and it is highly ill-posed problem
under noisy environments. Simultaneously, a regu-
larization technique is known as one of the most ef-
fective techniques for solving this ill-posed problem.
As a result, this paper proposes the novel frequency
domain Tikhonov regularization for SL0 algorithm.
Moreover, the proposed reconstruction algorithm is
exclusively presented for image reconstruction from
small amount of measurement under frequency do-
main. The experimental results obviously confirm
the performance of the proposed algorithm for all the
simulation cases.

The organization of the paper is as follow: section
2 provides an outlines about the SL0 algorithms and
the issue of ill-posed problem. Section 3 give a general
ideal of using CS for the image reconstruction. Sec-
tion 4 proposes a novel frequency domain Tikhonov
regularization for improving the quality of the recon-
structed image. Later, section 5 presents the analysis
of experimental result. Finally, section 6 discusses
the conclusion.

2. THE INTRODUCTION OF COMPRES-

SIVE SENSING

A. Introduction of Classical Image Restoration based
on SL0 Norm Estimation [4-5]
There are several groups of CS, their performance is
mainly evaluated based on the accuracy and time pro-
cessing. The reconstruction process of CS algorithms
are executed based on norm estimation. Smoothed l0

norm (SL0) algorithm is exclusively presented in this
section as the very first method that employ l0norm.

Assume that there are totally N components in
signal x and has a sparse representation with respect
to a basis Ψ(α = Ψx). Suppose Φ is an M × N
measurement matrix (M < N), so the observation
signal y is measured by:

y = Φα or y = ΦΨx = Ax (1)

If there is no additional noise in the system then
the signal can be reconstructed by minimizing l0

norm optimization.

α̂ = min
α

∥α∥0 subject to y = Aα (2)

where ∥α∥0 counts the number of non-zero compo-
nents of α.

l0 norm of a vector is known as a discontinuous
function of that vector so it is easily trapped in local
minimization and very sensitive with the noise. SL0
replaces this discontinuous function by a suitable con-
tinuous one, and minimizes it by means of minimiza-
tion algorithm for continuous functions (e.g. steepest

descent method). There are several families of func-
tions, which can be used for the minimization process
but they should have the following property.

fσ(α) ≈ 1 if |α| ≤ σ and fσ(α) ≈ 0 if |α| > σ (3)

The Gaussian family of function is typically used
in the original algorithm as follow:

fσ(α) = exp(−α2/2σ2) (4)

According to (4), when the value of fσ(α) is close
to zero then the signal α is detected as sparse signal.
Thereby, the behaviour of the approximation function
is affected by σ for difference value of the signal α.
The definition of the estimator of the algorithm can
be rewritten as the following maximization problem:

Fσ(α) =
∑M

i=1
fσ(αi) (5)

∥α∥0 = M −
∑m

i=1
fσ(αi) = M − Fσ(α) (6)

By the steepest descent method, the solution of
problem is:

α̂i+1 = α̂i − Φ−1(Φ(αi − µδ)− y) (7)

where µ > 0 and is small enough number, A is an
M ×N mixing matrix and

δ =
[

α1 exp(−α2
1/2σ

2), . . . , αn exp(−α2
n/2σ

2)
]

(8)

Fig.1: Procedure for SL0 algorithm.

The procedure of SL0 algorithm is basically di-
vided into 2 steps. The sparse components of the
signal or image is determined first. Furthermore, the
classical ML estimation is applied for recovering of
original signal or image from components in first step.
Therefore, the second step of SL0 algorithm is also
stated as recovery process. Hence, SL0 algorithm is
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attained base on the Maximum Likelihood (ML) es-
timation algorithms.

B. Inverse Problems.
1) Definition of an Inverse Problem.

If the formulation of 2 problems is related with each
other, they are defined as inverse problem. [15-19].
In particular, if the first problem is the direct prob-
lem then the inverse problem is its complementary
part. Therefore the response of the inverse problem
is calculated from the result of the direct problem.

2) Well-Posed and Ill-Posed Problem.
According to Hadamard [20], the well-posed problem
is defined as follow:

a. Existence of solution: The solution of problem or
model must exist. In term of mathematical, the
solution is available for most of the case. However
if the solution is too difference with the original,
it is meaningless.

b. Uniqueness of solution: The solution of the prob-
lem must be unique. For example if the input
data is taken from difference path and in differ-
ence time, the solution of the problem may not
be the same. In discrete linear inverse problems,
non-unique solution is mainly caused by rank in-
sufficient.

c. Dependence of solution: The solution of the prob-
lem is found from input data. Moreover, the solu-
tion of inverse problem is also very sensitive with
the nature of the data, it may be diversed when
the data is changed. As a result it may not present
the properties of solution.

The problem is ill-posed if it does not satisfy all of
these 3 requirements. In fact the information is of-
ten loosed or disturbed in the observation process, so
the content of solution is often lower than the origi-
nal information. In general, the direct reconstruction
problem is not affected much with the loss of infor-
mation. However in case of inverse problem, the re-
construction signal is determined from the observed
information; this information loss has serious issue.
Due to the loss of information, it is not possible to
recover exactly the original information therefore the
inverse problem fails to have unique solution.

C. Regularized Technique and the Solutions to Ill-
Posed Problems
Regularization [5] employs additional information to
compensate for the information loss. This additional
information typically cannot be obtained from the ob-
served data and must be known in advance. Basically,
the prior information cover some desired character-
istics of the solution like total energy, smoothness,
positivity and so on. When the priori information is
supplemented, the space of solutions is constrained or
scaled down to the expectation which is compatible
with the observed data. A general theory of regu-
larization algorithms to ill-posed problems was first
introduced by A. N. Tikhonov.

In the Tikhonov approach, a family of approxi-

mate solutions to the inverse problem is constructed.
In general, it is primarily controlled by a nonnega-
tive real-valued regularization parameter. If there is
no noise in system, the solution is constructed exactly
the same to the original problem as the regularization
parameter goes to zeros. While the noise is existed,
an optimal approximate solution is obtained when the
regularization parameter is positive value. Later, var-
ious stochastic and regularization theories have been
purposed to improve the performance. In these pro-
posed regularization model, the addition of a priori
information is resulted in a new well-posed problem
which is closely related to the original ill-posed one.
This solution of resulted well-posed problem has to
satisfy the Hadamard requirements. Moreover it is
formulated so that its unique solution is meaning-
ful with respect to the original ill-posed one. It is
therefore very important to ensure that the priori
constraints used accurately reflect the required char-
acteristics of the solution.

According to regularization theories, the error be-
tween the reconstructed signal and the original signal
is estimated by a cost function. In general, cost func-
tion is initialled based on two conditions. The first
term is a corresponding error between the observed
signal and the proposed solution. The second term
is the constraint criterion which penalizes for lack of
“smoothness”. According to the inverse problem, the
solution is estimated which minimizes the cost func-
tion. The Tikhonov regularization supports the same
idea in which the problem is posed as constraining the
admissible solution set. The regularization parame-
ters must be chosen first based on the properties of
signal system, the reconstruction signal is then very
sensitive to these parameters and to the additional
noise. Therefore, the solution of inverse problem or
reconstruction image in this case is improved by lim-
iting the solution space. The affections of the outlier
to the cost function are then reduced.

Up to now, there are several researches about reg-
ularization algorithms. Each of them has advantage
and disadvantage for specific case. However, one of
the most common algorithms is to constrain the spa-
tial energy of first or second spatial derivative of the
solution. In this paper we propose the problems to
incorporate constraints on second spatial derivative
(Laplacian) of the solution. The general framework
for the inverse problem with regularization is pre-
sented in Figure 2.

D. SL0 as an Ill-Posed Inverse Problem
1) SL0 is an Inverse Problem

In the field of image processing, SL0 is applied for
recovering original image from the incomplete ob-
servation. The whole framework is actually an in-
verse problem because the reconstruction image is es-
timated by the observed image [21]. If the character-
istics of the imaging process and system are granted,
the simulation is the forward problem, while the re-
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construction is the inverse problem.
2) SL0 is an Ill-Posed Problem

It is stated above that ill-posed problem implies the
failure of any of the Hadamard conditions. SL0 al-
gorithm may fail to satisfy Hadamard conditions be-
cause only small amount of the observed signals is
used for the recovery process. Little change in ob-
served signal may cause a big change in the solution.

2.1 Nonexistence of the Solution: If the noise is
existed in the observation process, the characteristic
of the image system may be changed [15]. There are
many cases in which the reconstructed image cannot
represent the properties of original image. Therefore
the system is non-invertible and the expected result
cannot be obtained.

2.2 Uniqueness of Solution: lack of information in
the reconstructed process usually makes the solution
of SL0 to be non uniquesss [20].

2.3 Dependence of solution: The inverse problem
can be extremely sensitive to the outliers for some
specific imaging system [15, 16]. Little amount of the
noise in the system can lead to an arbitrarily large
unauthentic signal in the restoration process.

Fig.2: General Model for Inverse Problem with Reg-
ularization.

3. THE IMAGE RESTORATION IN CS

A. Classical Image Restoration Algorithm in Spa-
tial Domain
This section represents the classical image restoration
in spatial domain and the necessary for the regulariza-
tion of inverse problem. In general, the purpose of im-
age restoration is to produce the best estimate of the
source image, given the recorded image and some a
priori knowledge. However, in the inverse process the
observed image is always degraded. Therefore, the
restoration of degraded images is a crucial problem
because it allows the recovery of lost information. In
spatial domain, there are 2 common types of degrada-
tion: blurring is due to lens aberrations, atmospheric
turbulence and motion; whereas point degradations
are caused by photo electronic, photochemical and
electronic random noises. In the presence of addi-
tional noise, spatial degradation is ill-conditioned and
is very difficult to invert the solution. Regularization
is one of the most effective approaches in ill-posed
recovery problem. It is stated that, recorded data
and priori knowledge are use in a complementary way

to obtain the best possible solution. The regulariza-
tion parameter trades off fidelity to the available data
to smoothness of the solution while the smoothness
properties of the image are captured by the regular-
ization operator.

B. Proposed Image Restoration Algorithm in Fre-
quency Domain
In this section, the novel algorithm for image restora-
tion in frequency domain is proposed. It is then
proved that the new algorithm has many benefits over
the image restoration in spatial domain. As stated
above, SL0 is used to restore the image from small
amount of observed information. It overcomes the
classical image restoration in term of time and re-
quired information. However, in spatial domain, the
information of an image is spread all over or it is not
in a sparse form. Hence, the image is first trans-
formed into frequency domain (by FFT in this case)
where the sparse representation of image is obtained.
According to image property: the Fourier Transform
of image contains component of all frequencies, but
most of the energy is concentrated in few transform
coefficients and the other is almost zero. These fre-
quency components are then employed by SL0 to re-
cover the original image. In general, most of the im-
age’s structure can be restored by SL0. However, the
detail and the smoothness of the image are stayed on
high frequency components. The exact restoration
of these components cannot be implemented by SL0.
The situation is even worst in case of noise where SL0
algorithm may mistakenly detect noise as restoration
signal. As a result, the novel regularization for SL0
algorithm in frequency domain is proposed to give a
better performance for image restoration algorithm
in CS.

4. PROPOSED PROBLEM DEFINITION

AND FORMULATION

Tikhonov’s Regularization Algorithm.
The difficulties of the ill-posed problem can be solved
by regularization algorithms. In general, the prior
information is added up to the process, so that the
solution is put under some constraints. When the
process is affected by noise, Eq. (1) is rewritten as
follow:

y(i) = Ψα(i) + ε(i) (9)

where y(i) is a measured image or signal at time in-
stant (i), α(i) is the unknown original signal or image
at the same time, Φ is the measurement matrix and
ε(i) is the additional noise. The measurement matrix
Φ is often ill-posed for the Cauchy problem of the
Laplace equation, so regularization algorithm which
regularizes the measurement matrix is essential. In-
stead of solving Eq. (9) directly, Tikhonov proposed
a method to transform ill-posed problem into a well-
posed one by solving the following problem:
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minimize∥α∥2subject to ∥Φiα− yi∥
2 ≤ ε (10)

where ε is the prescribed error tolerance. The pro-
posed problem in Eq. (10) can be also resolved as:

α̂ = argmin
α̂

(∥y − Φα̂∥2 +Υ∥Rα̂∥2) (11)

where Υ is the regularization parameter (Lagrange
parameter).

According to [33], the regularization parameter Υ
has strong effect to the inverse problem so the selec-
tion of it is very important. There are several ways
to search for it but the selection is based on a priori
properties of the system. In general, various proper-
ties are put under consideration: for example the ad-
ditional noise in the system or the basis structure of
the model. Normally, small values of ? direct the so-
lution to the least square results of α̂ = (ΦTΦ)−1Φy.
This is also called as under-regularization which may
cause ill-posed condition with the presence of out-
liers. Vice versa, large value of regularization param-
eter can lead the solution toward zero (over regular-
ization). Therefore, an optimal choice of regulariza-
tion parameter is required to balance accuracy and
smoothness in the solution.

B. Proposed Regularization for SL0 Algorithm.
1) General Regularization for SL0 in Frequency Do-
main
As stated above, SL0 is an ill-posed problem for
the under-determined cases therefore infinite num-
ber of solutions can be obtained. The solution for
squared and over-undetermined cases is known as
unstable and additional noise in the measurements
produce large disturbance in the reconstructed im-
age. The regularization algorithms compensate the
disturbed information with some general prior infor-
mation about the desire solution, it remove artifacts
from the final answer and improve the rate of conver-
gence. The recovery process of SL0 algorithm with
regularization function is rewritten as the following
minimization problems:

α = Argmin

{

∑M

i=1
(Φiα− yi) + λΥ(α)

}

(12)

where Υ(α) is the regularization function and λ is
scalar defining the regularization parameter.

2) Laplacian Regularization for SL0 in Frequency
Domain
In general, Tikhonov regularization Υ(α) is a matrix
recognition of the Laplacian kernel (the simple and
small kernel). There are different sets of integer and
kernel and this paper apply the simplest form of ker-
nel in spatial domain:

ΓSD = [0, 1, 0; 1,−4, 1 : 0, 1, 0] (13)

Fourier transformation of filter is also executed as
the image reconstruction process is taken under fre-
quency domain. The most classical and simplest reg-
ularization norm function ρREG(·), is ρREG(·) = (·)2

thus the solution of the SL0 is defined as:

α = Argmin

[

∑M

i=1
(Φiα− yi) + λ · (ΓFDα)2

]

(14)

Basically, the frequency domain filtering selects
a transfer function that can modifies regularization
function ”(14)” in specific manner. Fig. 3 and Fig.
4 expresses the Laplacian regularization function in
spatial domain and frequency domain respectively.
Fig. 5 illustrates the image presentation in frequency
domain. It is shown that the components that con-
tain information are mainly located at low frequency.

In frequency domain, low frequencies present
smooth areas while high frequencies show edges and
noise. The frequency domain Laplacian regulariza-
tion is actually used as filtering. It mainly allow the
low frequency value while dismiss the high frequency
one. Therefore when it is employed for SL0 algo-
rithm, the reconstructed value is constrained and is
more robust to the noise.

Fig.3: Proposed Laplacian Regularized Kernal
Function in Spatial Domain (ΓSD).

Fig.4: Proposed Laplacian Regularized Kernal
Function in Frequency Domain (ΓFD).

Fig.5: Example of Reconstructed Image in Fre-
quency Domain (α).
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Due to image characteristic, the classical regular-
ized technique in spatial domain is Laplacian regu-
larized kernel, which is expressed in Eq. (13). From
Eq. (13) we can observed that the Laplacian kernel
(ΓSD) is one of the high pass filters in spatial domain
(or edge amplification) therefore the frequency regu-
larization ΓFD which is used for cooperating the opti-
mization problem can be formulated from the Lapla-
cian regularized function.

The general framework for SL0 regularization al-
gorithm is exclusively presented in Fig. 6.

5. NUMERICAL RESULTS AND DISCUS-

SION

This section presents the image reconstruction
simulation which is obtained by SL0 and SL0 reg-
ularized algorithm. It is simulated in MATLAB for 3
images such as Lena, Cameraman and Sussie. Images
are firstly converted to the Frequency Domain by a
Fourier Transform. The additional noises are then
randomly added to the system. There are 3 differ-
ent types of noises model: Additive White Gaussian
Noise (AWGN), Salt & Pepper Noise, and Speckle
Noise. The power of each noise model is also varied
from low to high.

There are only small numbers of components
(Sparsity Number) are used for the reconstruction
process. In the reconstruction process, image is re-
constructed column by column. The Sparsity Num-
ber (K) is calculated as the percentage of total com-
ponents at each column. Therefore, each column
is reconstructed by both SL0 algorithms based on
K. For example, assume that an image has size of
200×250 and K is 5%. K is first calculated as
5%*200=10; therefore each row is reconstructed by
using only 10 mostly sparse components. As a result,
the reconstructed image is a combination of the re-
construction of 250 rows. Table 1, 2 and 3 indicates
the results in PSNR (dB) between the reconstructed
image and original image. Due to page limitation, the
illustrations of some reconstructed images (K =5%)
are shown in Fig. 13, 14 and 15. At each figure,
“a” represents the original image, “b” express the re-
constructed image by SL0 and “c” shows the recon-
structed image by our proposed SL0 regularization.
A. Experimental Estimation of Regularization Pa-
rameter
According to (14), Regularization Parameter (λ) is
undetermined. In this section, the relationship be-
tween the PSNR of the reconstructed image and λ
is demonstrated. The result is displayed in table in
which: the first row present the values of λ and the
first column represent the noise model. The value of
λ is varied from 0.01 to 0.1, whereas the power of
noise model is varied from low to high. There are 3
demonstration figures: Lena is shown in Fig. 7, Susie
(40th frame) sequence is shown in Fig. 8 and Cam-
eraman is shown in Fig. 9. At each table, the last

row represents the average PSNR value for all differ-
ent noise power. The best result for S is estimated as
the one with highest averaged PSNR value. For the
best chosen S, the illustration of restoration image is
also presented for the lowest and highest noise power.
Additionally, the graph in Fig. 10, 11 and 12 is exclu-
sively present the average PSNR value for each type
of noise. The row express the regularization param-
eter which is varied from 0.01 to 0.1 and the column
is the average PSNR value. When the value of λ is
varied, the average PSNR value tend to increase to
the peak value before decreasing and saturating.

In theoretical point of view, λ can be set from 0-1.
The higher the noise power is, the Regularization Pa-
rameter is set to larger and closer to 1. Vice versa the
lower the noise power is, λ is set to lower and closer
to 0. Following the observation from large amount
of experimental, if the noise has low power, it is sug-
gested to set λ=0.02 to obtain the best performance.
Furthermore if the noise has high power, λ is set to
0.04 to obtain the best performance. According to
Fig. 10, 11 and 12 the PSNR value for the recon-
structed image is dropped and saturated when λ is
greater than 0.05.

B. Performance Evaluation
In this section, the results from the simulation are
analysed. It is shown that the result of our pro-
posed regularization algorithms overcome original
SL0 based algorithm in both conception and percep-
tion.

- According to Table 1, 2 and 3, the result in PSNR
by the proposed SL0 regularization is much higher
than by the original SL0 about 2-3 dB in all tested im-
ages. Moreover the illustration of the reconstructed
image in Fig. 13, 14 and 15 give a much clearer vision
compared to the original SL0.

- In order to virtually illustrate the proposed al-
gorithm performance, an example of single column
reconstruction from image is exclusively presented in
Fig. 16. A ’log’ function is executed before plotting
to give a clearer view of vector representation. There
are 2 columns: at each column, the original vector
and the reconstructed vector by difference algorithms
are presented. The column on the left hand side ex-
presses the vectors in frequency domain. Meanwhile,
the column on the right hand side conveys the vec-
tors in spatial domain. It is shown in Fig. 16(b-1)
and Fig. 16(b-2) that the original SL0 algorithm just
recovers the sparse number while treats small number
as zero. In fact, each small value has its own contribu-
tion for the image reconstruction process. Therefore
classical SL0 algorithm does not give a clear view
of reconstructed image. On the contrary, by using
the proposed regularization SL0 algorithms (shown
in Fig. 16(c-1) and Fig. 16(c-2)), all the component
are constrained and recovered as close to the original
value as possible. Thus, the reconstructed image by
the proposed algorithm is much better than classical
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algorithm in both subjective and objective view.
It is shown that, a good reconstructed image is

given by original SL0 algorithm under the noise free
or noise with low power. However if the observed im-
age is effected by the non-Gaussian noise model or
Gaussian noise model with high power, the original
SL0 fail to give an acceptance reconstruction image.
The cause of this situation is in the recovery process
where the error between the reconstruction image and
the observed image is multiplied with the inverse of
the matrix; this step is taken iteratively until the ex-
pected result is obtained. Nevertheless if the error is
too big, the whole process may be diverted and the
result is too much difference with the original one.
The regularization filter is then added up to the orig-
inal algorithm to constraint the error. As a result, the
error is put under a boundary and the overall process
is improved. The shape of reconstruction vector by
regularization algorithms is much closed to the origi-
nal vector compared to the non-regularized ones. The
image illustration for the single column reconstructed
is exclusively represented in Fig. 17 to illustrate the
reconstruction process of each image.

6. CONCLUSIONS

In general, SL0 algorithm can be used to recon-
struct the image based on small number of compo-
nents based on Fourier Domain transformation. The
quality of the reconstructed image is recognized for
the noiseless environments but it is very poor un-
der the noisy environment. In this paper we pro-
pose a novel regularization method for SL0 algorithm
which is based on Tikhonov’s regularization for ML
estimation in frequency domain. The regularization
function compromises fidelity to the available data
to smoothness of the solution. From the simulation
result, we can confirm that the frequency domain reg-
ularization technique evidently improve the SL0 per-
formance. The proposed algorithm yields a better
performance in both subjective and objective mea-
surement.
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Table 1: Experimental Result of Lena.

Table 2: Experimental Result of Cameraman.

Table 3: Experimental Result of Resolution Chart.
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