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Abstract

The COVID-19 pandemic has disrupted the economy and businesses and impacted all facets of people’s lives. It is critical

to forecast the number of infected cases to make accurate decisions on the necessary measures to control the outbreak.

While deep learning models have proved to be effective in this context, time series augmentation can improve their

performance. In this paper, we use time series augmentation techniques to create new time series that take into account the

characteristics of the original series, which we then use to generate enough samples to fit deep learning models properly.

The proposed method is applied in the context of COVID-19 time series forecasting using three deep learning techniques,

(1) the long short-term memory, (2) gated recurrent units, and (3) convolutional neural network. In terms of symmetric

mean absolute percentage error and root mean square error measures, the proposed method significantly improves the

performance of long short-term memory and convolutional neural networks. Also, the improvement is average for the

gated recurrent units. Finally, we present a summary of the top augmentation model as well as a visual representation of the

actual and forecasted data for each country.
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1 Introduction

Temporary interventions such as social distancing, self-

isolating, quarantining, and shutting down nonessential

activities have been strategies for the governments to pre-

vent the virus from spreading. It is essential to forecast the

number of infected cases using different data types to

notify public health decision-makers by estimating the

likely impact of the COVID-19 pandemic and plan

accordingly [1–4].

Deep learning models have demonstrated successful

performance in language and image processing tasks [6–8].

Also, they exhibited state-of-the-art performance in fore-

casting complex time series data [5, 9–12]. The main

advantage of deep learning models is their ability to learn

representations from raw input data. Among the most

popular deep learning algorithms, long short-term memory

(LSTM) and bidirectional LSTM (Bi-LSTM) [13] have

been used in [14–17], with significant results in COVID-19

forecasting. LSTM is a special type of recurrent neural

networks (RNNs), which is developed to learn temporal

information from sequential data [18].

Despite the fact that deep learning algorithms can reach

acceptable performance in time series forecasting, partic-

ularly in COVID-19 forecasting applications, their fore-

casting capability is primarily dependent on the amount of

data available to fit their parameters appropriately [12, 19].

Another challenge with deep learning for time series

forecasting is that, even though adequate data samples are

available, data from the distant past are typically less useful

for forecasting [12]. In other words, in predicting, recent

observations of an individual series are more valuable. This

may be due to shifts in patterns that formerly occurred in a

series.
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To overcome the aforementioned issue and increase the

performance of deep learning models in time series fore-

casting, we propose exploiting time series augmentation

techniques [19–21] to generate new series with similar

temporal dependencies as the original series. We then

extract new samples from the augmented time series to

enhance model training. Three deep learning models based

on the LSTM, gated recurrent units (GRU) [22], and con-

volutional neural network (CNN) [23] are used to see

whether the proposed approach is useful. A multi-step-

ahead forecasting strategy [24] is used to develop the

models, allowing them to predict the number of cases for

the next few days. It is a preferable alternative to single-

step-ahead forecasting for long-horizon forecasting [25].

The proposed models are applied to COVID-19 data

from the top 10 countries with the most reported confirmed

cases from January 20, 2020, until March 28, 2021. We

show that the proposed method significantly improves the

performance of the LSTM-based and CNN-based models

but has an average improvement on the GRU performance.

To evaluate the effectiveness of the proposed model, we

visualize the forecasting results and provide statistical

characteristics of the data to enable governments to make

long-term decisions on how to deal with the pandemic.

The remainder of this paper is organized as follows.

Section 2 provides a brief review on COVID-19 time series

forecasting and the description of the employed deep

learning methods. In Sect. 3, we present the proposed

approach and the architectures of the designed models.

Section 4 assesses the usefulness of the proposed method

via the experimental study. Discussions are provided in

Sect. 5, and finally, the paper concludes in Sect. 6 with

some suggestions for future work in this area.

2 Related work

This section first presents a review of the COVID-19 time

series forecasting methods and then describes the utilized

models throughout the study.

2.1 COVID-19 Forecasting

Various approaches, mostly mathematical, statistical,

machine learning, and deep learning models have been

utilized in previous studies [3, 4, 14, 16, 17, 26]. Rahimi

et al. [27] provided a review of widely used forecasting

models on COVID-19 data. Here, we concentrate mainly

on COVID-19 time series forecasting studies and present a

brief review in this context.

Al-Qaness et al. [28] presented an improved adaptive

neuro-fuzzy inference method (ANFIS) that uses an

enhanced flower pollination algorithm (FPA) by the salp

swarm algorithm (SSA) to forecast the COVID-19 cases in

China. Their model is more potent in terms of mean

absolute percentage error (MAPE), root mean squared

relative error (RMSRE), coefficient of determination, and

computing time. Torrealba-Rodriguez et al. [3] used

Gompertz, logistic, and artificial neural network (ANN)

models. Their results from the infected cases in Mexico

showed a high coefficient of determination between the

studied data and those obtained by the proposed models.

Similar studies which considered Gompertz and logistic

models can be found in [3, 29–32]. Castillo and Melin [26]

studied an approach based on fuzzy fractal for data from 10

countries by combining (1) fractal dimension to evaluate

the complexity of the dynamics in the time series and (2)

fuzzy logic to reflect the uncertainty forecasting. Melin

et al. [33] introduced a multiple ensemble neural network

model with fuzzy logic response aggregation. Their

experiments on the data of Mexico infected cases show the

superiority of their proposed model over the single ANN.

Kırbaş et al. [15] used autoregressive integrated moving

average (ARIMA), nonlinear autoregression neural net-

work (NARNN), and LSTM approaches to study the data

of 8 European countries. Shahid et al. [16] proposed

forecast models with ARIMA, support vector regression

(SVR), LSTM, Bi-LSTM in 10 significantly affected

countries. Leila et al. [34] applied ANN and ARIMA

models, and Petropoulos and Makridakis [35] implemented

exponential smoothing forecasting to predict the infected

cases.

Arura et al. [14] utilized recurrent neural network

(RNN)-based variants such as deep LSTM, convolutional

LSTM, and Bi-LSTM for the cases in India. For Russia,

Peru, and Iran, Wang et al. [16] used LSTM networks and

rolling updating mechanisms to feed new forecasting out-

comes into model training for the next iteration. The study

of Hasan [36] suggested a hybrid model consisting of

ensemble empirical mode decomposition (EEMD) and

artificial neural network (ANN), which outperformed

conventional statistical analysis.

Machine learning algorithms were used by Li et al. [37]

in predicting mortality in confirmed cases of COVID-19.

Their results indicated that the gradient boosting decision

tree (GBDT) outperforms logistic regression (LR) models,
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the performance comparison appeared to be independent of

disease severity, and the 5-index LR or LR-5 model is

powerful in death prediction with a high area under the

curve (AUC).

Reviewing the previous studies indicate that computa-

tional intelligence methods and especially deep learning

methods have attracted growing attention in COVID-19

time series forecasting. Even though deep neural networks

have performed reasonably well when applied on COVID-

19 time series data, in this study, we aim to enhance their

predictive power by feeding them with more data. In

general, the performance of the generated model in a deep

learning task is largely determined by the amount of

samples used in the model training phase. The inherent

problem in time series forecasting is that time series are

often short, and accordingly, the number of extracted

samples becomes small. To address this problem, we pro-

pose to generate a new time series with similar character-

istics to the original time series using statistical data

augmentation methods. The obtained series via the aug-

mentation approach is used to create new samples. In this

way, a sufficient number of instances are provided for

model learning.

2.2 Description of the employed models

We use RNN for the sequence processing task, which can

catch the temporal dependencies in a time sequence, unlike

ANN. However, the key issue with RNN is the gradient

vanishing/exploding problem, which makes them difficult

to train. Two new architectures with gating mechanisms,

the LSTM [38] and GRU [39], have been proposed to solve

this problem. In addition, we will use CNN, which is

briefly discussed here, as another deep learning unit in our

experiments.

2.2.1 LSTM

In this section, we explain the structure and mechanism of

the LSTM unit. As illustrated in Fig. 1, each LSTM unit is

comprised of a memory cell C, an input gate i, an output

gate o and a forget gate f.

Considering the following parameters, the learning

procedure of LSTM is described below:

– xt :

the input vector at time step t

– b ¼ fbi; bo; bf ; bcg

are bias vectors of input, output, forget, and memory

cell.

– W ¼ fWi;Wo;Wf ;Wcg

are weight matrix of input, output, forget, and

memory cell.

– U ¼ fUi;Uo;Uf ;Ucg

are the recurrent weights of input, output, forget, and

memory cell.

The output ht of the LSTM unit is computed as follows:

ht ¼ ot tan hðctÞ; ð1Þ

where ot is the output gate that regulates the outgoing

information of the LSTM unit and ct is the memory. ot is

computed by

ot ¼ rðWoxt þ Uoht�1 þ boÞ; ð2Þ

where r is the logistic sigmoid and ht�1 is the output vector

(hidden state) of the time t � 1. The memory cell is

updated as follows:

ct ¼ ftct�1 þ it ~ct; ð3Þ

where ~ct, the newly computed memory is obtained as

follows:

~ct ¼ tan hðWcxt þ Ucht�1 þ bcÞ: ð4Þ

In fact, the memory cell ct is a combination of the previous

memory multiplied by the forget gate, ft and the new

memory ~c regulated by the input gate, it. ft and are com-

puted as follows:

ft ¼ rðWf xt þ Uf ht�1 þ bf Þ; ð5Þ

it ¼ rðWixt þ Uiht�1 þ biÞ: ð6Þ

2.2.2 GRU

GRU is another variant of RNN that uses gating mecha-

nism to regulate the flow of information inside the unit.

Unlike LSTM, GRU does not contain a memory cell. As

Figure 2 portrays, the GRU has two gates, a reset gate rt
Fig. 1 Structure of an LSTM unit
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and an update gate zt. The rest gate decides how to com-

bine the new input xt with the previous hidden state, ht�1.

Also, the update gate determines how much unit updates its

hidden state.

2.2.3 CNN

CNN has shown promise in a variety of fields, including

machine vision [23]. CNN’s convolutional layers take

input data and extract new features by performing convo-

lution operations on it with convolution kernels. Each CNN

contains a convolution kernel (i.e., a small window) that

slides over the input data and performs convolutional

operations to generate new features, as shown in Fig. 3

[40]. The generated features obtained by the convolution

technique are typically more discriminative than the raw

input data, resulting in better forecasting.

3 Proposed method

Deep learning methods such as LSTM, CNN, and GRU

have been applied successfully in the time series fore-

casting context. These techniques’ performance mainly

depends on having enough data to fit their parameters

suitably [12]. The number of samples extracted from a

short time series may be insufficient to achieve an optimal

model [19]. These methods should be appropriately regu-

larized to prevent them from overfitting. Another difficulty

with time series forecasting is that, even if the series is long

and adequate data are available, the observations from the

far past usually provide fewer determinants for predicting.

In other words, recent observations of an individual series

are more useful in forecasting. This may be because of the

changes that happen in patterns that existed in a series.

The commonly used procedure of data preparation for a

time series forecasting task is illustrated in Fig. 4. As

shown, a given time series is divided into in-samples and

out-samples considering a certain ratio, for example, 80/20.

The out-sample part (test data) ftmþ1; tmþ2; :::; tng is used to

evaluate the obtained model. Also, the in-sample part is

divided into the train data ft1; t2; :::; tkg and the validation

data ftkþ1; tkþ2; :::; tmg. The validation data are utilized to

tune the model’s hyperparameters and to evaluate a model

fit on the train data. Selecting separate validation data leads

to excluding the recent observations from the train data, so

the recent patterns that exist in the data will not be cap-

tured. One simple solution to tackle this problem is to

include the validation data in model training. However, in

this way, overfitting may occur, which usually leads to loss

of accuracy on test data. In this study, we propose to use

time series augmentation methods to avoid model overfit-

ting and improve the accuracy.

Specifically, we utilize a time series augmentation

technique to create new series with the same temporal

dependencies that exist in the original series. The aug-

mented time series is used to create a new validation set.

The overall procedure of the proposed idea is illustrated in

Fig. 5. The proposed model contains preprocessing and

model training phases. Firstly, in the preprocessing phase, a

Fig. 2 Structure of a GRU unit [39]

Fig. 3 Structure of CNN for time series
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time series augmentation technique is applied, and then, the

sample generation procedure is accomplished. In the

modeling phase, the deep learning models are employed on

the generated samples, and the best model is achieved. In

the model training process, we adopt the Bayesian opti-

mization algorithm to fine-tune the hyperparameters of

each model.

To explain our proposal, we describe its procedure using

Algorithm 1. To augment a time series, we apply the

method proposed in [20]. This algorithm firstly applies the

Box–Cox transformation to the series and then decomposes

the series into trend, seasonal, and reminder adopting STL

or Loess [41]. Then it bootstraps the reminder using the

moving block bootstrap (MBB) [42], and the trend and

seasonal components are added together, and finally,

inverse Box–Cox transformation is applied. As illustrated

in Algorithm 1, lines 1-7 show the procedure of computing

bootstrapped series. In lines 8-10, the bootstrapped series

are aggregated, and then, for the original series and the

augmented series, the instances with input–output format

are created considering a Lag, and an output window

(Output_Window). Line 11 concatenates the two validation

sets. In lines 12-18, the benchmarking models are trained

and evaluated, and the best model in terms of RMSE is

returned.

Fig. 4 An example of time

series

Fig. 5 Proposed schema
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3.1 Architecture of the utilized deep learning
models

Three state-of-the-art deep learning models are employed

to explore whether the forecasting performance of the

proposed scheme is better than the performance of the

regular approach. The list of benchmarking models along

with their architectures is provided in Table 1.

Also, Fig. 6 illustrates the full architectures of the pro-

posed methods. As can be observed from the figure, the

dense and output layers are the same for LSTM, CNN, and

GRU. Every model learns a representation (a feature vec-

tor) of the input data and feeds it into the fully connected

(dense) layer; afterward, the predictions are computed

using the output layer.

3.2 Hyperparameter selection procedure using
bayesian optimization

The choice of optimal hyperparameters is essential in

obtaining a forecasting model with high accuracy [43].

Deep learning-based models usually contain several

hyperparameters. Although grid search is a popular strat-

egy for finding the optimal hyperparameters, it requires

more computational time and resources to fine-tune deep

learning methods. This is due to the fact that the grid search

method exhaustively considers all parameter combinations,

so it needs more computational resources, especially in the

case of deep learning. The main reason behind using the

Bayesian hyperparameter optimization is that it does not

consider all hyperparameter combinations, and so less

training time and resources are needed. The Bayesian

hyperparameter optimization uses Bayesian models based

on Gaussian processes to predict good tuning parameters

[43]. The study of Wu et al. [43] indicated that the Baye-

sian optimization-based method could find the optimal

hyperparameters for the popular machine learning algo-

rithms. In line with [11, 12, 43], the Bayesian optimization

technique [44, 45] is used to tune the hyperparameters in

all of the experiments in this study. The Bayesian opti-

mization algorithm uses the error on the validation data to

determine the appropriateness of each model.

Table 1 Architecture of three deep learning models used to evaluate

the proposal

Benchmarking models Architecture

LSTM LSTM layer

Dense

Output

GRU GRU layer

Dense

Output

CNN 1D convolution layer

Dense

Output
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4 Experimental study

In this study, we use R forecast package1 version 8.14 to

generate the augmentation of each time series. Also, the

deep learning models are implemented with Keras [46], the

Python deep learning library.

4.1 Dataset

The Humanitarian Data Exchange (HDX) [47] is the source

of the data utilized in this study. The Corona Virus

Resource Center at Johns Hopkins University has compiled

and released a credible source of COVID-19 reported cases

on HDX so that scientists can model the disease’s spread

and conduct data analysis [48]. The dataset contains the

daily record of confirmed cases in the time series format,

including temporal patterns. In this study, the experiments

were conducted using the time series data for ten countries

with the highest number of confirmed cases from January

20, 2020, to March 28, 2021. These countries are the USA,

Brazil, India, France, Russia, the UK, Italy, Spain, Turkey,

and Germany. The last 28 days of each series are used as

the test set, and the remaining days are used as the training

data. We also made the validation set the same size as the

test set (28 days).

4.2 Statistical properties of the data

In Tables 2 and 3, we apply statistical properties to the

aforementioned ten countries with the highest COVID-19

cases to better interpret the dataset.

The sample size refers to the number of observations

included in the experiment for each country which is not

necessarily equal because it is counted from the day the

first COVID-19 cases were reported.

The mean or average of the data is the most popular and

well-known measure of central tendency and is equal to the

sum of all the values in the dataset divided by the number

of observations. It is worth noting that the total cases can

be obtained by multiplying the sample size by the sample

mean during the study period. Other than mean, two other

measures of central tendency are median and mode.

Median is the middle value for the dataset that has been

arranged in order of magnitude. An essential property

about the median is that it is less affected or ‘‘Robust’’ by

outliers and skewed data. Mode, on the other hand, is the

most frequent number of daily cases in our dataset. It does

not give a fair measure of central tendency when compared

to median and mean [50]. The obtained mode for most of

the countries is zero. The reason for that could be having

days without any new cases or failing to report instances

due to holidays or weekends.

The sample’s square root of variance often known as

standard deviation is a measure of the amount of variation

or dispersion of the dataset, using the same unit as the

mean. A small standard deviation implies that the values

tend to be close to the mean of the dataset, whereas a high

standard deviation suggests that the values are spread out

over a wider range [51]. Besides standard deviation, two

other dispersion measures are (1) skewness, where it

measures the amount of asymmetricity, and (2) kurtosis,

where it determines the heaviness of the distribution tails,

also known as is the ‘‘tailedness’’ or the ‘‘peakedness.’’ For

a country dataset with one mode (uni-modal), a positive

Fig. 6 Architecture of the utilized models

1 https://pkg.robjhyndman.com/forecast/.
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skewness shows that the data are asymmetric and skewed

to the right, a negative skewness explains that the data are

asymmetric and skewed to the left, and finally, a symmetric

dataset always has a zero skewness. To provide a com-

parison to the standard normal distribution, it is common to

use an adjusted version known as the excess kurtosis,

which is the kurtosis minus 3. A dataset with zero excess

kurtosis is called ‘‘Mesokurtic,’’ with a positive excess

kurtosis is named ‘‘Leptokurtic’’ indicating heavy tails with

large outliers and less variable, and with a negative excess

kurtosis is known as ‘‘Platykurtic’’ which have the flattest

peak and highly dispersed [52].

A Z-score for skewness and kurtosis can be obtained by

dividing the skew values or excess kurtosis by their stan-

dard errors, respectively, which are shown as ZSkewness and

ZKurtosis in Tables 2 and 3. As the studied sample size of the

countries is large, either an absolute skew value larger than

2 or an absolute kurtosis larger than 7 can be used as

reference values for determining the significance of non-

normality [53]. It is worth mentioning that the utilized

models in this study are based on neural networks and deep

learning. These methods are nonparametric that model the

data without prior assumptions of their distribution [54].

Finally, the range for each country is the difference

between the dataset’s largest and smallest observations,

which expresses a country dataset’s dispersion.

4.3 Measures of evaluation

The two forecasting performance measures used in the

comparison are (1) symmetric mean absolute percentage

error (SMAPE) which is defined as

Table 2 Statistical properties of

the daily data of the COVID-19

cases for the USA, Brazil, India,

France, and the UK

Country USA Brazil India France UK

Sample size 432 397 424 430 423

Mean 70,052 31,574 28,395 11,088 10,277

Median 47,043 28,629 18,537 4321.5 4,329

Mode 0 0 0 0 0

Standard deviation 68,074.5 23,178.8 27,378.6 14,657.6 13,657.4

Skewness 1.31 0.45 0.83 2.24 1.88

Standard error of skewness 0.12 0.12 0.12 0.12 0.12

ZSkewness 11.15 3.68 6.98 19.01 15.82

Kurtosis 0.76 �0.53 �0.42 7.43 3.37

Standard error of kurtosis 0.23 0.24 0.24 0.24 0.24

ZKurtosis 3.26 �2.16 �1.78 31.60 14.21

Min 0 0 0 0 0

Max 300,416 100,158 97,894 106,091 68,192

Range 300,416 100,158 97,894 106,091 68,192

Table 3 Statistical properties of

the daily data of the COVID-19

cases for Russia, Italy, Spain,

Turkey, and Germany

Country Russia Italy Spain Turkey Germany

Sample size 423 423 422 383 427

Mean 10,566 8,351 7,965 8,376 6,521

Median 8,764 2,843 1,931 2,026 1,898

Mode 0 0 0 987 0

Standard deviation 8,348.8 9,959.9 12,779.9 42,585.6 8,722.4

Skewness 0.68 1.16 2.85 18.45 1.76

Standard error of skewness 0.12 0.12 0.12 0.13 0.12

ZSkewness 5.75 9.77 23.97 147.56 14.88

Kurtosis �0.57 0.41 11.14 353.45 2.90

Standard error of kurtosis 0.24 0.24 0.24 0.25 0.24

ZKurtosis �2.41 1.74 47.00 1,419.46 12.29

Min 0 0 0 0 0

Max 29,499 40,902 93,822 823,225 49,044

Range 29,499 40,902 93,822 823,225 49,044
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SMAPE ¼
1

n

X

n

t¼1

yt � ftj j
ytj jþ ftj jð Þ

2

� 100; ð7Þ

and (2) the root mean square error (RMSE) which is

obtained by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

t¼1

yt � ftð Þ2

s

ð8Þ

where ft and yt are the predicted and observed values at

time point t, respectively.

4.4 Hyperparameter selection

Table 4 illustrates the domain of all hyperparameters uti-

lized in the implemented models. The lag hyperparameter

exploited in transforming input time series into samples

suitable for deep learning techniques has a significant

impact on obtaining models that can forecast future values

with minimum error [49]. Another important hyperpa-

rameter is the learning rate that regulates how the weights

are adjusted during the model training. Additionally, the

utilized models throughout this study have different key

hyperparameters that influence the forecasting accuracy of

obtained models. The hyperparameters specific to each

model are provided in Table 4. Also, as outlined in the

previous section (see Table 1), each utilized deep learning

techniques contain a dense layer that follows the sequence

capturing layer (e.g., LSTM, CNN, or GRU) and an output

layer, which produces the outputs. These layers are com-

mon in all the utilized models, and their ranges are also

given in Table 4.

4.5 Data preprocessing

According to the methodology shown in Fig. 5 and the

procedure described in Algorithm 1, firstly, a new time

series is generated via augmentation. Next, the original and

the augmented series are transformed into samples with the

input–output format. Then, the resulted samples are split

into train set, validation set, and test set following the

holdout procedure. Finally, a new validation set is created

by concatenating the validation samples corresponding to

the original series and the augmented one. It should be

noted that this study adopts multi-output forecasting, and

the sample generation process is performed using the lag

(size of the input window) and the output window. In all

experiments, the output window is set to 7 days. Following

the multi-output forecasting strategy, for time series T :

t1; t2; t3; t4; t5; t6; t7; t8; . . .; tn and Lag ¼ 5, Output_window

¼ 2, the created instances are shown in Table 5.

4.6 Evaluation of the effectiveness
of the proposed approach

In this section, we investigate whether our proposed

approach is able to enhance the forecasting accuracy of the

deep learning models based on LSTM, CNN, and GRU.

We run our experiments on the data of the before-men-

tioned ten countries. All experiments are repeated ten

times, and the average performance measures are reported.

Table 4 Range of the

hyperparameters
Hyperparameter Range

Common hyperparameters Lag: [10, 11, 12, 13, 14, 15]

Learning rate: [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05]

Dense activation function: [ReLU, Linear]

Output activation function: [ReLU, Linear]

LSTM Activation function: [ReLU, Linear]

Dropout rate: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

Number of units: [4, 8, 16, 32, 64, 128]

CNN_FE Kernel size: [2, 3, 4]

Number of filters: [32, 64, 128, 256]

GRU Activation function: [ReLU, Linear]

Number of units: [4, 8, 16, 32, 64, 128]

Dropout rate: [0.0, 0.1, 0.2, 0.3, 0.4, 0.5]

Table 5 An example of the sample generation function

Input Output

t1; t2; t3; t4; t5 t6; t7

t2; t3; t4; t5; t6 t7; t8

t3; t4; t5; t6; t7 t8; t9

. .

tn�ðLþOÞþ1; tn�ðLþOÞþ2; tn�ðLþOÞþ3; tn�ðLþOÞþ4; tn�ðLþOÞþ5 tn�1; tn
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4.6.1 LSTM

Table 6 shows the results obtained using the deep learning

model based on LSTM. As it can be seen, the model

obtained using the proposed approach (LSTM_Aug) leads

to a lower error in terms of SMAPE and RMSE for eight

countries. LSTM_Aug achieves superior results for the

USA, Brazil, India, France, Russia, the UK, Spain, and

Turkey. Also, the mean SMAPE for LSTM_Aug is 0.82,

which is lower than the one for LSTM, which has a mean

of 1.30. Also, regarding RMSE, the mean RMSE measure

for LSTM_Aug is significantly lower than the mean RMSE

of LSTM. The experiments indicate that the results of

LSTM_Aug are excellent, and the proposed approach sig-

nificantly impacts the performance of LSTM.

4.6.2 Convolution model

The results of experiments using deep learning model

based on CNN are given in Table 7. The best values are

shown in boldface. In terms of SMAPE, the CNN_Aug

model achieves better performance in 9 countries out of 10.

Also, in terms of RMSE, we see a similar performance

where CNN_Aug beats CNN in 9 cases. To give a com-

prehensive report on the performance of models, the mean

SMAPE and mean RMSE measures also are computed.

The mean SMAPE for CNN_Aug is 0.63, which is lower

than that for CNN (0.73). Also, this is true for mean RMSE

in which the CNN_Aug achieves lower error than CNN.

The results indicate that CNN_Aug outperforms CNN, and

that using the proposed data preparation strategy consid-

erably enhances the accuracy of CNN-based deep learning

models.

4.6.3 GRU model

Table 8 provides the results of experiments using the deep

learning method based on GRU. Similar to the previously

mentioned models, we compare the model obtained using

the regular experimental setting (GRU model) with the

model obtained using the proposed augmentation approach

(GRU_aug). GRU_Aug and GRU perform similarly as

each of them achieves minimum error in terms of SMAPE

and RMSE in 5 cases out of 10 countries. This can be

attributed to the fact that the GRU model uses different

Table 6 LSTM results for ten countries in terms of SMAPE and

RMSE for regular and augmentation approaches—LSTM_Aug is

obtained following the proposed approach

Country SMAPE RMSE

LSTM_Aug LSTM LSTM_Aug LSTM

USA 0.87 1.73 291935.32 570575.55

Brazil 0.62 0.76 83105.03 101239.26

India 0.50 0.77 81741.89 112064.7

France 0.60 0.66 40719.57 45009.65

Russia 0.86 1.23 41813.95 59394.68

UK 0.46 2.32 22279.42 106723.4

Italy 0.62 0.44 22976.17 18834.81

Spain 1.29 2.37 51592.85 86450.37

Turkey 1.71 2.13 66494.82 78740.49

Germany 0.73 0.65 24476.58 21542.29

Mean 0.82 1.31 72713.56 120057.52

Bold values indicate the best results

Table 7 Results of CNN for ten countries in terms of SMAPE and

RMSE for regular and augmentation approaches. CNN_Aug is

obtained following the proposed approach

Country SMAPE RMSE

CNN_Aug CNN CNN_Aug CNN

USA 0.24 0.32 81157.55 104899.61

Brazil 0.54 0.67 73194.5 88552.5

India 0.66 0.52 102096.63 81892.72

France 0.49 0.51 30442.08 33311.58

Russia 0.32 0.48 15545.49 23084.47

UK 0.89 0.93 39566.78 41051.61

Italy 0.35 0.50 14129.16 19769.05

Spain 1.16 1.41 47599.51 54012.22

Turkey 1.04 1.22 39365.34 45970.07

Germany 0.62 0.73 22090.1 26058.33

Mean 0.63 0.73 46518.71 51860.22

Bold values indicate the best results

Table 8 GRU results for ten countries in terms of SMAPE and RMSE

for regular and augmentation approaches—GRU_Aug is obtained

following the proposed approach

Country SMAPE RMSE

GRU_Aug GRU GRU_Aug GRU

USA 0.28 0.44 97535.03 152119.5

Brazil 0.75 0.77 99050.16 101927.57

India 0.53 0.72 83931.57 109283.11

France 0.60 0.55 40609.86 36529.07

Russia 0.54 0.93 26955.22 47059.80

UK 0.51 0.52 24700.29 24989.78

Italy 0.43 0.36 18585.69 15907.25

Spain 4.1 1.25 145384.97 50215.92

Turkey 1.64 1.48 64087.62 57313.48

Germany 0.76 0.66 25800.14 21647.34

Mean 1.01 0.77 62664.06 61699.28

Bold values indicate the best results
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gating units and use less training parameters and this pre-

vents it from overfitting.

4.7 Overall comparison of the proposed method
with regular approach

To provide an overall description of the results, we sum-

marize the results of experiments and show the top aug-

mentation model for each country in Table 9. As can be

seen from the table, for all ten countries, the models based

on the proposed augmentation approach show the top

accuracy in terms of both SMAPE and RMSE. This

demonstrates the effectiveness of the proposed approach in

increasing the forecasting accuracy of the deep learning

methods. Also, CNN Aug performs excellently and reaches

the best model for eight countries including, the USA,

Brazil, France, Russia, Italy, Spain, Turkey, and Germany.

Besides, LSTM_Aug achieves the best accuracy for two

countries. Furthermore, as illustrated in Table 9, in no

country is GRU_Aug superior.

4.8 Visualizing the results

To further demonstrate the forecasting ability of the

obtained models, in this section, the actual and forecasts for

each country are visualized in Figs. 7, 8, 9, 10, 11, 12, 13,

14, 15, and 16. The actual values are shown in red in all

figures, while the forecasts are shown in black using the

best deep learning model (Figs. 7, 8, 9, 10, 11, 12, 13, 14,

15 and 16). As Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16

indicate, the predicted cases for the USA, Brazil, France,

Russia, UK, Italy, Turkey, and Germany are very close to

the actual values; and there is a minimum error. Also, there

are overlaps at some of the time points that demonstrate the

power of the proposed approach. The plot for India (Fig-

ure 9) indicates that from time point 1 to time point 15, the

forecasted values are very close to the real values but after

time point 15, the error increases. Furthermore, as shown in

Fig. 14, the inaccuracy is rather substantial in various time

points for Spain. This is primarily due to the noise in the

country’s input data.

5 Discussion

In this study, we proposed a method that uses augmentation

techniques to enhance time series forecasting. To conduct

experimental study and to test the effectiveness of the

proposed idea, we selected three deep learning methods,

LSTM, GRU, and CNN. Furthermore, due to the impor-

tance of accurate forecasting of COVID-19 infections, data

Table 9 Top model for each

country
Country Top model

USA CNN_Aug

Brazil CNN_Aug

India LSTM_Aug

France CNN_Aug

Russia CNN_Aug

UK LSTM_Aug

Italy CNN_Aug

Spain CNN_Aug

Turkey CNN_Aug

Germany CNN_Aug

Fig. 7 Actual and forecasted number of cases for test set—USA

Fig. 8 Actual and forecasted number of cases for test set—Brazil

Fig. 9 Actual and forecasted number of cases for test set—India
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of ten countries with highest cases of infections have been

chosen. The results of experiments demonstrated that the

models obtained employing LSTM and the proposed idea

greatly outperforms the regular LSTM model. Similarly,

the proposed method significantly improves the perfor-

mance of the CNN models. Besides, for GRU, the proposed

method achieves an average performance.

5.1 Assumptions

Similar to any time series forecasting task, in this study, we

utilize the series past values to train the models. Also, we

assume that an optimal hyperparameters for the utilized

models have been chosen.

5.2 Implications of the results

Unlike the one-step-ahead forecasting, where a forecasting

model uses the previous observations to predict a single

Fig. 10 Actual and forecasted number of cases for test set—France

Fig. 11 Actual and forecasted number of cases for test set—Russia

Fig. 12 Actual and forecasted number of cases for test set—UK

Fig. 13 Actual and forecasted number of cases for test set—Italy

Fig. 14 Actual and forecasted number of cases for test set—Spain

Fig. 15 Actual and forecasted number of cases for test set—Turkey
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time step, the multi-step-ahead forecasting strategy [24],

which was used in this study, allows forecasting two or

more steps. In the COVID-19 forecasting, the multi-step-

ahead forecasting is attractive to policymakers. In fact, a

longer window forecasting uncovers the trend of pandemic

effectively and thus appeal more significant for govern-

ments. Also, in terms of SMAPE, the models generated

following the proposed idea demonstrate excellent perfor-

mance. Besides, the Mean SMAPE values for LSTM_Aug,

CNN_Aug, and GRU_Aug are 0.82, 0.63, and 1.01,

respectively indicating the forecasting power of the pro-

posed method.

5.3 Practical implications

As we mentioned previously, in this study, we formulate

forecasting the number of infected cases as a time series

forecasting problem in which the data of past observations

of a series is used for predicting the future time points. The

proposed models forecast the number of infected cases for

a longer horizon with minimum error in comparison to

their regular counterparts. The forecasts can be utilized by

governments to take appropriate decisions in controlling

the pandemic.

5.4 Limitations

In this study, we did not access to the other sources of

information such as the interventions implemented by each

country or vaccination of COVID-19. The models only

were learned using the time series of the infections.

Another limitation of this study is related to the hyperpa-

rameter selection for deep learning methods. As these

methods contains a complex architecture, they require

more computation. Therefore, investigating every hyper-

parameter configuration, similar to way performed in the

grid search method, may not practicable. Therefore, in this

study we used the Bayesian optimization algorithm to

search the optimal hyperparameters.

6 Conclusion and future work

A new schema based on time series augmentation was

suggested in this study to improve the performance of deep

learning techniques in time series forecasting. The pro-

posed method’s main idea is to use a time series aug-

mentation technique to create a new time series with the

same properties in the original series. Then, we use the

generated series to obtain enough samples to train the deep

learning methods optimally. The proposed method is

implemented in the context of COVID-19 time series

forecasting data of the 10 most affected countries using the

LSTM, GRU, and CNN models. According to the findings

of the experiments, in the majority of countries, the

LSTM_Aug model outperformed the standard LSTM

model and the CNN_Aug model achieved significant per-

formance than the regular CNN. In addition, GRU_Aug

obtained an average performance when compared to the

regular GRU. Overall, the models’ performance following

the proposed idea is excellent and significantly improves

the regular models. As future work, we intend to evaluate

the proposed method using other time series augmentation

approaches such as dynamic time warping barycentric

averaging.
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