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Abstract. This paper presents a methodology for the application of electroencephalographic (EEG) 

Entropy measurements for indoor thermal comfort estimation. Wearables have been demonstrated to be 

capable of providing accurate physiological measurements to interpret individual thermal responses. Several 

studies demonstrated the correlation between the EEG Power Spectrum Density (PSD) variation and the 

subjects' responses exposed to different ambient temperatures. We present a complementary approach based 

on Approximate Entropy (ApEn) of EEG as a measure for the predictability of EEG series in describing the 

human thermal condition. We analysed the ApEn of EEG signals acquired from 24 subjects, exposed to 

three different temperatures (cold: 16°C; neutral: 25°C; warm: 33°C) in a controlled environment, by 4-

channels wearable EEG sensors (256 Hz sampling frequency). Statistical analysis showed for both anterior 

frontal and temporoparietal sites significant differences between neutral, cold, and warm conditions, with a 

higher value of ApEn in the neutral one. In the anterior frontal area, there was a significative trend of ApEn 

with smaller values from the neutral to the warm condition, with the cold intermediate. The outcome opens 

the scenario up to innovative measurement systems, based on wearable EEG devices, for the application of 

personal comfort models to indoor environmental monitoring and control. 

1 Introduction 

The interaction between occupants and buildings is a 

crucial subject largely investigated in the last decades, 

pointing at preserving humans’ well-being with 

minimized energy consumptions [1]. Several studies 

demonstrated that thermal comfort impacts on human 

health, well-being [2], work productivity [3], and 

consequently on the buildings’ energy demand [4,5]. 

Two main models standardize and assess indoor thermal 

comfort in buildings: predicted mean vote (PMV) and 

adaptive models [6]. The PMV, developed through 

laboratory experiments by Fanger [7], which represents 

the actual basis of the standard ISO 7730 [8] and 

ASHRAE 55 [9], expresses occupants’ thermal comfort 

as the result of the heat transfer between the human body 

and its surrounding environment. Instead, the adaptive 

model considers the ability of occupants to adapt to an 

environmental condition in naturally-ventilated 

buildings, furnishing a linear relationship between an 

optimal indoor temperature and prevailing outdoor 

temperature [10]. Despite their widespread adoption, 

both models present several limitations when applied to 

comfort management in buildings. In both of the cases, 

those models have been shown to have a decreasing 

accuracy in predictive performances when applied to 

individuals [11,12], because they are aggregate models, 

aimed at predicting the average comfort of a large 

population without considering the variation in thermal 

perception between people. In addition, they do not 

adapt or re-learn, they are based on fixed input data, 

from the laboratory (PMV) or the field (adaptive) 

measurements, which means they are not able to 

accurately describe the comfort characteristic of 

individual occupants in a particular field setting. Lastly, 

 
* Corresponding author: silviaangela.mansi@uniecampus.it 

both of the models do not allow for the inclusion of some 

other relevant and influencing factors (e.g., sex, body 

mass index, age, psycho-physiological status, etc), thus 

reducing the potential to improve the predictive 

accuracy of human thermal states. Recently, the concept 

of personal comfort models (PCM) has been introduced 

to overcome the drawbacks mentioned above. A PCM 

predicts the individual’s thermal comfort response based 

on the collection of (i) direct feedback from occupants 

(thermal perception, preference, and comfort), (ii) 

physiological measurements, and (iii) environmental 

data, with the capability to adapt as new data is 

introduced to the model [13]. Recent studies [14–17] 

proposed a promising solution to predict the comfort of 

each  occupant based on the usage of wearable sensors 

for physiological measurements paired with 

environmental sensors [18]. Despite their comfortable 

design, optimal for real-life application, wearable 

devices are more prone to collect artefacts, leading to 

increasing the risk of having less accuracy of the 

collected data [19]. Among physiological signals, 

measurable via wearable devices, the EEG has 

instigated interest, in the field of thermal comfort, for 

the possibility of measuring the human physiological 

responses’ changes in real-time [20]. Each bandwidth of 

EEG signals represents a particular mental state [21]. 

Several studies demonstrated, for example, the 

correlation between the EEG Power Spectrum Density 

(PSD) variation and the subjects' responses when 

exposed to different ambient temperatures. They 

reported that different temperatures correspond to 

modulation of power in particular brain frequency 

bands. For example, Yao et al. [22] compared brain 

frequency bands of subjects exposed to low, neutral, and 

high temperatures, finding that the beta band was 
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significantly higher in cold and warm states compared 

with the neutral condition. Lv and colleagues [23] 

demonstrated a higher value of the delta band in the 

warm condition compared with the neutral one. 

Although the studies based on the calculation of the PSD 

give results relating to the thermal condition of the 

subjects, these often appear to be in disagreement. In 

addition, none of these unambiguously identifies the 

thermal state of the subject. In this view, we proposed a 

novel methodological approach based on a combination 

of the usage of wearable sensor for EEG data recording 

and a novel method of EEG data analysis based on the 

calculation of entropy. The concept of entropy was 

introduced by Clausius [24] in the field of 

thermodynamics at the end of the 19th century. Later, 

Shannon [25] applied this concept to information theory, 

proposing its application in a wide range of information 

science fields. The human brain, as a dynamic complex 

system, can be studied with entropy (non-linear method) 

to quantify the complexity of brain areas’ changes [26] 

. Different types of entropy are available to quantify the 

complexity of EEG signals, such as Approximate 

Entropy (ApEn) [27], Sample Entropy (SamEn) [28], 

and MultiScale Entropy (MSE) [29]. In the current 

study, ApEn was selected for the analysis, due to its 

properties: good reproducibility to time series of at least 

50 data points; low-noise, and reliability for both 

stochastic processes and noisy deterministic systems 

[30]. The calculation of ApEn is not based on the 

underlying distribution of the data; instead, it measures 

the predictability of future amplitude values of time 

series using the knowledge of the general one or two 

previous amplitude values, leading to the possibility to 

apply this approach to signals of short length without the 

necessity to make the model estimation [31]. Despite 

entropy being used in the analysis of EEG signals in 

many fields of application [32–34], it represents a novel 

approach applied to the analysis if EEG signal to assess 

thermal states differences of a building’s occupants. 

This study explores brain responses applying ApEn 

measure for assessing thermal sensation differences of 

subjects exposed to three predetermined ambient 

temperatures, a representative for cold (18℃), neutral 

(24 ℃), and warm (33℃) environments. A 4-channels 

wearable EEG was used for signal acquisition.  

2 Materials and Methods 

2.1 Experimental equipment and environment 

The experimental sessions were carried out in the 

NEXT.ROOM [35,36], a human multidomain comfort 

test room built at the Environmental Applied Physic Lab 

(eplab.net) at the University of Perugia (Italy). It is a 

laboratory facility of 4x4x2.7 𝑚3  where a set of 

environmental sensors  allow to monitor and control of 

the parameters listed in Table 1 [37]. 

Table 1. Technical specification of the installed 

environmental sensors in the NEXT.ROOM.  

Measured 

Parameters 

Technical 

specification 
Position 

Air temperature 
Accuracy:  

± 0.1 °C 

Height: 

0.10/0.60/1.10/

1.60 m 

Relative 

humidity 

Accuracy: 

 ± 1.5%  
Height: 1.10 m 

Air velocity 
Accuracy:  

± 0.2 m/s 
Height: 1.10 m 

𝐶𝑂2 

Concentration 

Accuracy:  

± 50 ppm  
Height: 1.10 m 

Illuminance 
Range:  

20÷ 2000 𝑙𝑥 

On the desk 

surface 

2.2 EEG measurements device 

A brain sensing headband Muse 2 (Interexon Inc.) [38] 

was used for electroencephalographic measurements. 

Researchers provided evidence that Muse is an effective 

portable tool for continuous recording EEG data 

[39,40], applicable also outside of its designed 

functionality (meditation and training device). In the 

field of thermal comfort evaluation, the authors 

validated the usage of this portable device for EEG 

measurements, assessing its capabilities to discriminate 

different human thermal sensation and its low 

invasiveness for the participants, during experimental 

session [41,42]. The EEG signals were obtained from 4 

input electrodes. The two input electrodes are on the 

forehead (left and right of the reference: AF7, AF8, 

silver made) identifying the anterior frontal site and one 

input electrode above each ear (TP9 and TP10, 

conductive silicone -rubber), identifying the 

temporoparietal site. Three reference electrodes (FPz - 

CMS/DRL) are placed in the middle between the two 

input electrodes on the forehead, Fig. 1. The Muse 2-

Bundle does not require the application of a conductive 

gel; however, the skin of the forehead and mastoids were 

dampened to enhance electrical conductance. EEG data 

were recorded using the Muse application [43] paired 

with a smartphone via Bluetooth low Energy (BLE) at 

256 Hz sampling frequency.  
 

 
 

Fig. 1. Left: MUSE 2 sensors overview. Right: Top-down 

view of the EEG electrode positions on the subject’s head. 

2.3 Experimental procedure 

Twenty-four healthy volunteers, 10 females and 14 

males (age 24 ± 1.8), were enrolled in the experimental 
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campaign. The three test sessions were conducted in 

May 2022. The average clothing thermal insulation was 

0.6 clo, typical for springtime. The metabolic rate of the 

participant was 1.1 met according to standards ISO 7730 

[44]. Each subject took part in the experiment 

individually, Fig. 2. All the participants were invited to 

not smoke, perform physical activity, and not eat or 

drink anything at least one hour before their test, to 

avoid the metabolic process alteration. Subjects were 

asked to sit down and keep relaxed; no activity was 

allowed to reduce artifact movements in the 

physiological measurements.  

 

 
 
Fig. 2. Measurements of EEG signals with headband Muse 2 

(Interexon Inc.)  in the NEXT.ROOM. 

 

The three experimental sessions were designed to 

reproduce the same environmental conditions in terms 

of relative humidity, air velocity, CO2 concentration, 

and illuminance level, which were kept constant, while 

the air temperature was set at the operative value 

recognized for thermally cold, neutral, and warm 

environment, according with ISO 7730:2005 [8]. Table 

2. reports the mean and the standard deviation (SD) of 

each environmental parameter monitored during each 

test using data logging system [37].  

 
Table 2. Mean values and SD of the environmental 

monitored parameters during experimental sessions. 

 

Measured 

Parameters 
Cold Neutral Warm 

Air temperature 

[℃] 

16.1 ± 0.4  

 

25.2 ± 0.3  

 

 
33.4 ± 0.5  

 

Relative humidity 

[%] 

26.1 ± 0.5  

 

21.2 ± 0.3  

 

17.9 ± 0.3  

 

Air velocity [m/s] 
0.1 ± 0.03  

 

0.08 ± 0.02  

 

0.07 ± 0.04  

 

𝐶𝑂2 

Concentration 

[ppm] 

485 ± 9  

 

493 ± 5  

 

503 ± 7  

 

Illuminance [lx] 
500 ± 22  

 

498 ± 25  

 

502 ± 23  

 

 

The tests were scheduled from 9:00 a.m. to 1:00 p.m. 

and from 3:00 p.m. to 6:00 p.m. Each test lasts 20 min, 

15 min for thermal adaptation (according to the 

literature [45]), and 5 for data recording. Before starting 

the subjects were informed about the aim of the project, 

and they were asked to sign an informed consent for 

personal data management. At the end of each session, 

they filled out a second questionnaire to provide their 

responses about the environmental perception in terms 

of thermal sensation using a score based on a Likert 5-

point scale where 0 represents the neutrality. 

2.4 EEG data processing 

2.4.1 EEG data cleaning 

The data were processed using a processing custom code 

was implemented in MATLAB software, based on 

EEGLAB toolbox codes[46,47]. EEG data were band-

pass filtered using a finite impulse filter (FIR) to extract 

data in the frequency range from 0.2 to 47 Hz [48]. EEG 

continuous data were segmented in 2 seconds length 

epochs and trials with artifact activity (such as scalp 

muscle activity and cardiac activity) or aberrant 

waveforms were removed by an expert data visual 

inspection [49]. After this inspection, about 4 minutes of 

EEG data remained for each session. Fig. 3. shows EEG 

data of a single subject before and after pre-processing 

data cleaning. 

 

 

Fig. 3.  Raw EEG data of subject 101 in warm condition, 

before pre-processing. Cleaned EEG data of subject 101 in 

warm condition, after pre-processing. 

2.4.2 EEG Entropy 

The complexity of brain activity was studied by 

entropy measure evaluated by Approximate Entropy 

(ApEn) [50,51]. These values were computed, for each 
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participant and for each channel in the Total Spectrum 

(0.2-47 Hz) using a processing custom code 

implemented in MATLAB software. Firstly, a value of 

ApEn was computed for each channel and each epoch, 

then, those values were averaged among the epochs to 

obtain a single ApEn value for each channel. The 

software estimates ApEn dimensionless values. The 

higher the value of ApEn, the more irregular and less 

predictable the signal is. On the other hand, the lower 

this value, the more periodic and stable the signal tends 

to be [52,53]. The obtained ApEn values range from 0 

(regular time series) to 2 (random time series). In the 

ApEn analysis two input parameters need to be defined: 

a model length m and a tolerance factor r, also called 

similarity factor, used to identify a range of similarities 

between data points. In this study, m and r were set equal 

to the default MATLAB values: thus, m = 2 and r = 0.2 

* variance (x)  [54] were used, in which x corresponds 

to an epoch of length of 2 seconds of a specific channel. 

[55]  

In particular, the calculation of ApEn is described 

as follows [56]: 

1. A point-by-point comparison is made between 

each data sequence of a model length m and all 

other sequences. If the distance between points 

is less than the tolerance factor r a match is 

scored. 

All the matches are counted as described by the 

expression (1) 

𝑁𝑖 = ∑ (‖𝑌𝑖 − 𝑌𝑘‖∞ < 𝑟)

𝑁

𝑖=1,𝑖≠𝑘

                         (1) 

 

where 𝑌𝑖 is the m-dimensional vector sequence, 

defined as a delayed reconstruction of the time 

series {𝑦(𝑖)} = 𝑦(1)  , 𝑦(2), … , 𝑦(𝑁), where i 

ranges from 1 to N, number of data points: 

 
   𝑌𝑖 =  [𝑦(𝑖), 𝑦(𝑖 + 1), … , 𝑦(𝑖 + 𝑚 + 1)]            (2) 

 

2. The comparison is performed on each 

successive m+1-long sequence, starting form 

the first sequence of m+1 points, as shown in 

the equation (2). 

3. The number of matches is converted to a 

natural logarithm value, and afterwards 

normalized by the number of data points (N):  

   𝜙𝑚 =  (𝑁 − 𝑚 + 1)− 1 ∑ log(𝑁𝑖)        (3)
𝑁−𝑚+1

𝑖=1
 

 

Finally, the ApEn is calculated using the 

following expression:  

 
𝐴𝑝𝐸𝑛 =  𝜙𝑚 − 𝜙𝑚 +1                  (4) 

 

2.4.3 Statistical analysis 

A statistical Analysis of Variance (ANOVA) design 

between three factors, Temperature (cold, neutral, 

warm), Site (anterior frontal, temporoparietal), and Side 

(Left, Right) was used to evaluate the statistical 

differences in terms of ApEn values between the three 

thermal conditions, with a statistical cut-off level of 

p<0.05. ANOVA was implemented with the software 

Statistica (StatSoft Inc.). The normality of the data was 

tested using the Kolmogorov-Smirnov test, and the 

hypothesis of Gaussianity could not be rejected. 

ANOVA was chosen since it is known to be robust for 

the departure of normality and homoscedasticity of data 

being treated. Greenhouse and Geisser correction was 

used for the protection against the violation of the 

sphericity assumption in the repeated measure ANOVA. 

Moreover, the post-hoc analysis was performed using 

Duncan’s test and a 0.05 significance level. 

3 Results 

The ANOVA for the evaluation of the ApEn index 

showed a statistically significant main effect (F (1, 23) 

=21.037, p=0.00013) for the factor Site 

(temporoparietal, Anterior frontal) demonstrating as the 

temporoparietal site exhibited lower values of entropy 

regardless the temperature condition. Furthermore, the 

ANOVA also showed a significant interaction (F (2,46) 

= 3.8170, p= 0.02926) between the factors’ temperatures 

(cold, neutral, warm) and Site (anterior frontal, 

temporoparietal). As shown in Fig. 4., in both sites, the 

neutral temperature condition presented higher values of 

ApEn for the cold and warm ones, as well as every 

variation from the thermal neutrality, reflecting lower 

entropy in the EEG signals. In particular, the Duncan 

post hoc analysis revealed as, in the temporoparietal 

area, the neutral condition presented higher entropy 

compared to the cold condition (p=0.00019) and the 

warm one (p=0.00348). Likewise, in the anterior frontal 

area, the neutral condition exhibits higher entropy 

compared to the cold (p= 0.02417) and warm 

(p=0.00007) ones. Additionally, while cold and warm 

temperatures elicited similar entropy values in the 

temporoparietal site, in the anterior frontal area, it is 

notable a trend of ApEn with gradually smaller values 

from the neutral to the Warm condition, with the cold 

one that results intermediate (neutral > cold > warm). 

The cold condition presented less entropy compared to 

the neutral one (p= 0.02417) as mentioned above, but 

more entropy (p= 0.00952) compared to the warm one. 

 
Table 3. Approximate Entropy values in terms of Mean and 

Standard Error (Mean ± SE) between subjects for each thermal 

condition (cold, neutral, warm) and each brain region (anterior 

frontal, temporoparietal). 

 
Brain 

Regions 
Cold Neutral Warm 

Anterior 

frontal 
0.719 ± 0.026 0.78 ± 0.027 0.736 ± 0.022 

Temporopar

ietal 
0.836 ± 0.020 0.869 ± 0.026 0.798 ± 0.028 
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Fig. 4. ANOVA significant interaction (F (2,46) = 3.8170, p= 

0.02926) of Approximate Entropy values among the factors’ 

temperatures (cold, neutral, warm) and Site (anterior frontal, 

tmporoparietal). The Duncan post hoc analysis revealed as, in 

the temporoparietal site, the neutral condition presented higher 

entropy compared to cold condition (p=0.00019) and to the 

warm one (p=0.00348). Likewise, in the anterior frontal site, 

the neutral temperature exhibits higher entropy compared to 

the cold (p= 0.02417) and warm (p=0.00007) ones. 

4 Discussion 

The presented research proposed a novel EEG data 

analysis approach based on the calculation of EEG 

Entropy aimed at identifying differences between 

human thermal conditions. An experimental campaign 

was designed and conducted in a controlled 

environment to expose twenty-four subjects to three 

ambient temperatures, a representative of the thermally 

cold, neutral, and warm scenario. EEG data were 

recorded using a wearable device. Results confirmed 

previous research findings in the application of wearable 

sensors, highlighting that they are a promising solution 

for providing reliable data for thermal comfort 

investigation. In particular, for both anterior frontal and 

temporoparietal sites there were significant differences 

between neutral, and cold, and warm conditions, 

showing a higher value of ApEn in the neutral condition 

with respect to the other ones. In an oversimplification 

of how the brain may work, we can imagine the brain’s 

neural population as a system that persists in a sort of 

firing baseline state, that in response to a stimulus can 

deviate from this state to a different firing state that may 

give rise to a less complex system (more regular firing 

pattern) or to a more complex one (neural activity is 

more random). In this sense, we could hypothesize that 

the low randomness values of the revealed electrical 

activity in specific thermal conditions are the results of 

the subjects’ thermal changes from the baseline of the 

neutral temperature. Additionally, it is important to 

highlight that, while cold and warm temperatures 

elicited similar entropy values in the temporoparietal 

site, in the anterior frontal area, it is notable a 

significative trend of ApEn index with gradually smaller 

values from the neutral to the warm condition, with the 

cold intermediate (neutral > cold > warm). In this sense, 

the anterior frontal region seems to be more sensitive to 

thermal changes, distinguishing the single temperature 

conditions, at least in terms of entropy values. Few 

neuroimaging research have shown different activation 

of brain areas associated with different thermal 

sensations (discriminative rating process) [57]. Among 

the brain areas more active in thermal rating processes 

the anterior cingulate cortex (ACC) in the prefrontal 

cortex seems to be the highest active including other 

regions such as the medial prefrontal cortex, and the 

orbitofrontal cortex in the frontal lobe. In this view, we 

can speculate that the frontal area can be one of the best 

candidates involved in the discriminative thermal 

processes. Although deeper research is necessary, the 

measurement of entropy can represent a potential 

approach for studying brain response to thermal stimuli.  

5 Conclusion 

The present is the first study that experimentally 

demonstrate the applicability of a novel data analysis 

approach for EEG measurements based on the entropy 

index, aimed at discriminating human thermal 

conditions. Further analysis is necessary to validate 

these methods and to evaluate different environmental 

conditions, where other factors (light, noise, air quality) 

can alter the human thermal perception. In general, 

entropy analysis seems to provide an additional 

instrument for improving the existing physiological 

interpretation of human thermal response, having the 

potential to give support and robustness to the actual 

personalized thermal comfort models. 
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