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Abstract. Feature extraction is an important process for the overall system per-
formance in classification. The objective of this article is to reveal the effectiveness
of texture feature analysis for detecting the abnormalities in digitized mammograms
using Self Adaptive Resource Allocation Network (SRAN) classifier. Thus, we pro-
posed a feature set based on Gabor filters, fractal analysis, multiscale surrounding
region dependence method (MSRDM) to identify the most common appearance of
breast cancer namely microcalcification, masses and architectural distortion. The
results of the experiments indicate that the proposed features with SRAN classifier
can improve the classification performance. The SRAN classifier produces the clas-
sification accuracy of 98.44% for the proposed features with 192 images from MIAS
dataset.

Keywords. MSRDM; Gabor features; fractal analysis; feature extraction; mammo-
gram; SRAN.

1. Introduction

Breast cancer is by far the most prevalent cancer diagnosed in women worldwide. The breast
cancer incident has increased in most countries worldwide in the last decades, with the most rapid
increases occurring in many of the developing countries (International Agency for Research on
Cancer 2008). In many African and Asian countries including India, breast cancer incidence
and mortality rates have been raising (Jemal et al 2011). Until now there is no known way to
avert breast cancer but the earlier the cancer can be detected, the higher the chance of survival
for patients. At present, digital mammography is one of the most appropriate methods for early
detection of breast cancer (Kuhl et al 2005). The most common mammographic signs of breast
cancer are microcalcification, masses, architectural distortion and bilateral asymmetry
(American College of Radiology 1998). Nowadays, vast amounts of mammograms are generated
daily in hospitals and medical centers. Thus, the radiologists have more images to manually
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analyse and the process of diagnosing them becomes tedious, and consequently more susceptible
to errors.

Currently, Computer Aided Diagnosis (CAD) system could offer a cost effective alternative to
double reading of mammograms and can suggest the radiologist about where the abnormalities
present in the mammogram and what types of abnormalities present in it for reducing the errors
in diagnosis (Paradkar & Pande 2011; Karahaliou et al 2008; Mencattini et al 2010; Banik et al
2013; Rangayyan et al 2007; Shanthi & Murali Bhaskaran 2012, 2013; Tiedeu et al 2012; Wei
et al 2005; Oliver et al 2012; Matsubara et al 2000).

Calcifications are small calcium deposits that form in the breast because of benign or malig-
nant processes. Mammographically, they appear as bright white spots of various sizes and
shapes. The important characteristics of calcifications are their size, shape or morphology, num-
ber and distribution. Karahaliou et al (2008) developed a system for breast cancer diagnosis
with microcalcifications based on the features such as Gray-level texture, Laws’ texture energy
measures and wavelet coefficient texture features. In this system, probabilistic neural network is
used for classifying the mammogram and achieved area under Receiver Operating Characteris-
tic (ROC) curve (Az) of 0.989 for 85 mammographic images. The limitation of this work is that
the training and test samples are selected by leave-one-out methodology. Therefore, the correla-
tion between the data of the same patient may have favourably biased the reported classification
performance. In addition, the system is evaluated with limited size of data set.

A ‘Mass’ is a space-occupying lesion seen in two different projections. If a potential mass is
seen in only a single projection it should be called a ‘Density’ until its three-dimensionality is
confirmed (ACR – BIRADS 1998). Radiologists characterize masses by their shape and margin
properties. Mencattini et al (2010) presented a CADx system in which morphological, textural
features based on gray level coocurrence matrix are extracted from regions of interest (ROIs),
and Monte Carlo simulation is employed to classify the ROI as mass or normal tissue. For this
experiment only sixteen mammographic images from the DDSM database are used.

Architectural distortion is the third most common mammographic sign of non-palpable breast
cancer, and is defined by American College of Radiology (1998) in BI-RADS as follows. ‘The
normal architecture (of the breast) is distorted with no definite mass visible. This includes spic-
ulations radiating from a point and focal retraction or distortion at the edge of the parenchyma.
Architectural distortion can also be an associated finding’. Banik et al (2013) used Gabor fil-
ters, phase portrait analysis, analysis of the angular spread of power, fractal analysis, Laws’
texture energy measures, and Haralick’s texture features to detect the sites of architectural dis-
tortion in prior mammograms of interval-cancer cases. Analysis of the performance of the
methods with free-response receiver operating characteristics indicated sensitivity of 0.80 and
0.90 at 5.8 and 8.1 false positives per image, respectively, with the Bayesian classifier and the
leave-one-image-out method.

Asymmetry of breast parenchyma between the two sides has been one of the most use-
ful signs for detecting primary breast cancer. Bilateral asymmetry, i.e., asymmetry of the
breast parenchyma between left and right breast, may indicate breast cancer in its early stage.
Rangayyan et al (2007) proposed a technique to analyse bilateral asymmetry in mammograms by
combining directional information, morphological measures, and geometric moments related to
density distributions. Eighty-eight mammograms from the Mini-MIAS database were used and
achieved the classification accuracies of 84.4% with sensitivity and specificity rates of 82.6%
and 86.4%, respectively.

Several CAD systems have been reported on the detection and classification of microcalci-
fication, masses, architectural distortion and bilateral asymmetry (Tang et al 2009). Although
significant progress has been made over the last 20 years, much work still needs to be done to
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improve the accuracy of the CAD systems. Even though several methods of tissue identifica-
tion are available in literature, not a single method is applicable for identification of all the signs
of breast cancer (Tiedeu et al 2012; Wei et al 2005; Oliver et al 2012; Matsubara et al 2000;
Nemoto et al 2009). Hence,we proposed the combination of features to detect microcalcifica-
tion, masses and architectural distortion. In order to improve the classification performance, we
present a system for the detection of abnormalities in the mammograms based upon Gabor filters,
fractal analysis (Banik et al 2013), discrete wavelet transformation (Shanthi & Murali Bhaskaran
2012), multiscale surrounding region dependence method (Shanthi & Murali Bhaskaran 2013)
and SRAN (Suresh et al 2010) classifier.

The remaining part of the article is organized as follows. Section 2 gives the details of
ROI identification. Section 3 discusses the feature extraction techniques. Section 4 describes
SRAN concepts. Section 5 illustrates the experimental results. Finally, section 6 provides the
conclusion.

2. Identification of ROI

The mammogram images used in our experiments were taken from the Mammographic Image
Analysis Society (MIAS). For each abnormal case, the coordinates of center of abnormality is
provided along with the approximate radius (in pixels) of a circle enclosing the abnormality.
Knowing the location and the approximate size of abnormality allows us to extract ROI with
proper dimension representing the tumour zone.

3. Feature extraction

Critical issue in CAD system is the extraction/selection of the best set of features for detecting
or classifying the suspect lesions. In the present work, features computed from Gabor filters
(Banik et al 2013), fractal analysis (Chaudhuri & Sarkar 1995), multiscale surrounding region
dependence method (Shanthi & Murali Bhaskaran 2013) are used to classify the ROI into normal
or benign or malignant.

3.1 Multi resolution analysis – Discrete wavelet transform

Multiresolution analysis has proved to be useful in mammographic image processing, image
enhancement and feature extraction. The common task is to decompose the original image into
subbands that preserve high and low frequency information. Several studies investigated the use
of Discrete Wavelet Transform (DWT) as a multiresolution analysis tool for feature analysis and
classification. Two-dimensional discrete wavelet transform is computed by applying a separable
filter bank to the image as defined in Eqs. (1)–(4).
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where *denotes the convolution operator, ↓2,1 subsampling along the rows, ↓1,2 subsampling
along the columns and L0 = I (�x) is the original image. H and G are a low and bandpass
filter, respectively. Ln is obtained by low pass filtering and is therefore referred to as the low
resolution image at scale n. The detail images Dni are obtained by bandpass filtering in a specific
direction and they contain directional detail information at scale n. The original image I is thus
represented by a set of subimages at several scales: {Ld, Dni}i=1,2,3;n=1,2..d This is a multiscale
representation of depth d of the image I.

3.2 MSRDM

For each ROI, the 2D-DWT is applied using the Db3 wavelet and obtained three detail coefficient
matrices and one approximation coefficient matrix. During various levels of decomposition, the
multiscale surrounding region dependence matrices are computed from each subbands (Shanthi
& Murali Bhaskaran 2013). Consider three square windows w1, w2 and w3 centred at a current
pixel (x, y) of the decomposed image as in figure 1.

Where R1 is the inner surrounding region and R2 is the outer surrounding region, and w1, w2
and w3 denote the sizes of each square region. Then, the surrounding region dependence matrix
is obtained for each subband using Eq. (5).

M (q) = [∝ (i, j)
]
, 0 ≤ i ≤ m, 0 ≤ j ≤ n, (5)

where q is the given threshold value, and the values of m and n are the total numbers of pixels of
regions R1 and R2, respectively. The elements of α (i, j) is defined as in Eq. (6).

∝ (i, j) = #
{
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}
, (6)

where # represents the number of elements in the set, and Lx × Ly is the 2-D image space. In
Eq. (6), cR1(x, y) and cR2(x, y) are the inner and outer count of the current pixel (x,y) as given
in Eqs. (7) and (8), respectively.
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where I(x, y) is the image intensity of the current pixel (x, y). The threshold value q is obtained
as 80 by experiments. The window size of w1, w2, w3 are 7, 5 and 3, respectively.

Figure 1. Configuration of the surrounding regions on the current pixel (x,y).



A novel approach for classification of abnormalities in mammograms 1145

From the multiscale surrounding region dependence matrix, the Horizontal Weighted Sum
(HWS), Vertical Weighted Sum (VWS), Diagonal Weighted Sum (DWS) and Grid Weighted
Sum (GWS) features are calculated by using the Eqs. (9)–(12).

HWS = 1

N

m∑

i=0

n∑

j=0

j2r(i, j), (9)

V WS = 1

N

m∑

i=0

n∑

j=0

r2r(i, j), (10)

DWS = 1

N

m+n∑

k=0

k2

⎡

⎣
m∑

i=0

n∑

j=0

r(i, j)

⎤

⎦

i+j=k

, (11)

GWS = 1

N

m∑

i=0

n∑

j=0

ijr(i, j), (12)

where N is the total sum of elements in the surrounding region dependence matrix,
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3.3 Fractal analysis

Fractal analysis provides a powerful tool in many medical imaging applications because of the
self-similarity property (Lopes & Betrouni 2009). Fractal Dimension (FD) is a real number
describes the fractal property of the object. There are several different methods to calculate FD,
such as box counting, differential box counting, extended counting method, triangular prisms
method, power spectrum, Isarithm method (Lopes & Betrouni 2009). The presence of architec-
tural distortion disrupts the self-similarity properties, and thereby changes the fractal dimension
of breast parenchyma. Hence, FD can be used as a discriminating feature to distinquish normal
and abnormal with architectural distortion. The differential box counting method was chosen for
its simplicity and efficiency. The differential box counting method work on grey-scale image and
thus the conversion step is avoided (Chaudhuri & Sarkar 1995). By covering the ROI with boxes
of size s, the FD is calculated as

FD = limr→0
log (N (s))

log (s)
, (15)

where N(s) is the difference between the minimum and the maximum grey levels in the (i,j)th

box. Lacunarity is a counterpart to the fractal dimension that describes the texture of a fractal. If
a fractal has large gaps or holes, it has high lacunarity; on the other hand, if a fractal is almost
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translationally invariant, it has low lacunarity. Different fractals can be constructed that have the
same dimension but that look widely different because they have different lacunarity. FD and
lacunarity are calculated for each ROI.

3.4 Gabor filter

Gabor filters are similar to those of the human visual system, and they found to be particularly
appropriate for texture representation and discrimination. The Gabor filters are self-similar. A set
of Gabor filters with different frequencies and orientations may be helpful for extracting useful
features from an image. In the spatial domain, a 2D Gabor filter can be viewed as a Gaussian
kernel function modulated by a sinusoidal plane of particular frequency and orientation. It can
be written as

f (x, y) = 1
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where, u denotes the radial frequency of the Gabor function. The constants σx and σy define
the spread of Gabor envelop along x and y-axes. After applying Gabor filters on the image with
different orientation at different scale, we obtain an array of magnitudes. These magnitudes rep-
resent the energy content at different scale and orientation of the image. Sixteen Gabor filters are
generated at 4 scales (2, 4, 32, 64) and 4 orientations (horizontal, vertical, 45 and 135). There-
fore, 16 sub images obtained from Gabor filter bank are considered for computation of energy.
The Gabor energy is closely related to the local power spectrum. The local power spectrum
associated with pixel in an image is defined as the squared modulus of the Fourier transform of
the product between the image and a window function. This window function has the role of
choosing a neighbourhood pixel of interest.

Energy = ��‖Mpq (x, y) ‖2. (17)

4. Self adaptive resource allocation network (SRAN) classifier

The SRAN classifier is a sequential learning algorithm with self-regulated control parameters.
Since, the SRAN classifier uses explicit classification error in growing/learning criterion and dis-
carding similar samples, it prevents overtraining and provides better generalization performance
(Suresh et al 2010). Assume that, there are observation data {(x1, y1), (x2, y2), . . . .(xt, yt), ..}
where xtεRm is an m-dimensional features of observation t and ytεRn is its coded class label.
Here, n represents the total number of classes. If the feature observation x is assigned to the class
label c, then cth element of y = [y1, y2...yc, . . . yn]T is 1 and other elements are −1.

In the SRAN system, the training sample record arrives one by one and the network adapts
its parameters on the basis of the difference in knowledge between the network and the current
sample record. The maximum error E is calculated by using hinge loss function as defined in
Eq. (18).

E = maxi=1,2,3....n|ei|, (18)

ei =
{

yi − ýi
0

if yiýi < 1
Otherwise

i = 1, 2, . . . n, (19)
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where yi is the actual class label of ith sample and ýi is the predicted class label of ith sample.
The output of this classifier is defined with k hidden neurons as defined in Eq. (20).

ýi =
∑k

j=1
∝ij yj

h i = 1, 2, . . . n, (20)

where αij is the weight connecting the ith output neuron and jth Gaussian neuron and yj
h Gaussian

basis function as defined in Eq. (21).
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where μl
j and σ l

j are the mean and standard deviation, respectively, and ||_|| denotes the
Euclidean norm. As each new sample is presented to the network, according to the sample error
the self-regulatory system would perform any one of the following three actions.

(1) The sample is used for:

a) Network growing: if the predicted and actual class label is not the same and the error
E is greater than self-regulated control parameter (ηg), then the sample is to be used
to add a new hidden neuron in the network.

ĉ �= c and E ≥ ηg. (22)

b) Network learning: if the predicted and actual class label is same and the error E
is greater than the self-regulated learning control parameter (ηl), then the network
parameters are updated.

ĉ = c and E ≥ ηl. (23)

The SRAN classifier uses the extended Kalman filter (EKF) to update the network
parameters as defined in Eq. (24).

W(t) = W(t−1) + KL(t)e, (24)

where KL(t) is the Kalman gain and e is the error obtained from hinge loss function.
The self-regulated control parameters

(
ηl, ηg

)
are updated using the Eqs. (25) and

(26).

ηl = δηl − (1 − δ) E, (25)

ηg = δηg − (1 − δ) E, (26)

where δ is a parameter that controls the slope of the decrease of the control parameter
which is close to one.

(2) If Eqs. (22) and (23) are not satisfied then the sample has moved to the rear end of the stack
for learning in future.

(3) If the sample error E is less than 0.05, the sample has deleted from the dataset without using
as a training sample to construct the network and thus it prevents over-training.
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5. Experimental results and discussion

The data set used in the current experiment has been taken from the Mammographic Image
Analysis Society (Suckling et al 1994). Its corpus consists of 322 images belonging to three big
categories: normal, benign and malign. The benign and malign which indicate different signs of
abnormalities such as calcification (CALC), well-defined circumscribed masses (CIRC), spec-
ulated masses (SPIC), ill-defined masses (MISC), architectural distortion (ARCH), asymmetry
(ASYM). In this work, we have considered only microcalcification, mass and architectural dis-
tortion. Therefore, we have selected the images with microcalcification, mass and architectural
distortion along with the 100 normal images to have an equal proportion of normal and abnormal
images. Figures 2a–b show the different signs in benign and malignant categories from MIAS
data set and samples selected from MIAS database for the current study, respectively.

To evaluate the discriminating abilities of the feature set, the C4.5, RBFN and SRAN clas-
sifiers have been employed. The dataset is divided into k subsets, and the holdout method is
repeated k times. Each time, one of the k subsets is used as the test set and the other k-1 subsets
are put together to form a training set. Then the average performance across all k trials is com-
puted. Every data point appears in a test set exactly once, and appears in a training set k-1 times.
In this study the value of k is 10.

Table 1 summarizes the classification accuracy of the existing features and the classification
accuracy of the proposed integrated features using SRAN classifier.

Note that each approach used a different set of images coming also from different databases
with different signs of abnormalities and hence the comparison has been done only in a qual-
itative way. Examination of table 1 indicates that the performance of the proposed technique
is comparable and better than that achieved by a number of existing techniques. A direct com-
parison with our earlier work on analysis of microcalcification and mass (Shanthi & Murali
Bhaskaran 2013) indicates that the proposed technique has performed better on the dataset.

The principle of a good discriminating feature is more correlated with decision attribute and
uncorrelated with other conditional attributes. The MSRDM features highly correlated with deci-
sion attributes and uncorrelated with the conditional attributes (Shanthi & Murali Bhaskaran
2013). Cancerous tumours demonstrate a certain degree of randomness related with their growth,
and are naturally asymmetrical and intricate in shape; therefore, FD can provide a better measure
of their complex patterns. The energy is computed at each pixel for each combination of wave-
length and orientation; the energy is the sum, over the phases, of the squared convolution values.

(a) (b)

Figure 2. The distribution of abnormalities in benign and malignant categories. (a) MIAS data set.
(b) Samples used in the current work from MIAS data set.
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Table 1. Summary of classification performance with existing techniques and proposed features.

Signs of breast Accuracy

Method cancer MIAS DDSM Real data set

Banik et al 2013 ARCH – – ROC of 0.75
Biswas 2011 ARCH Sensitivity of 81.3 –
Karahaliou et al 2008 CALC – AUC of 0.989 –
Matsubara et al 2000 ARCH – – 94%

84%
Oliver et al 2012 CALC ROC of .903 ROC of .918 –
Shanthi & Murali Bhaskaran 2012 CALC, Mass 92.3%
Shanthi & Murali Bhaskaran 2013 CALC, Mass 84.29% 98.3%
Tiedeu et al 2012 CALC – – 89%
Wei et al 2005 CALC – – Az of .085
Proposed method CALC, Mass, ARCH 98.44% – –

Table 2. Number of samples used by different classifiers for
training the model.

Classifiers No. of samples used by the classifier for training

C4.5 192
RBFN 192
SRAN 180

Therefore, the proposed combination of MSRDM, FD and Gabor energy features outperforms
the other features.

From table 2 we can observe that the SRAN classifier used only 180 samples for training the
model while C4.5 and RBFN classifiers used the entire 192 samples for generating best classifier.

In standard online/sequential learning, the samples are presented only once, and all the sam-
ples are learnt and the arrival of similar samples leads to over-training of particular pattern. In
SRAN, the sequence of the training sample is controlled internally using self-regulated control
parameters. The sample without significant information is removed from the training set. Hence,
this avoids over-training, reduces learning time, and minimizes the computational effort. There-
fore, the SRAN classifier generates the best sequence of training samples from a given training
sequence such that the classifier produces better generalization performance (Suresh et al 2010).

6. Conclusion

The advantage of this approach lies in the fact that it concentrates on three types of abnormalities.
In addition, the SRAN classifier removes the training samples, which are similar to the knowl-
edge already stored in the model. Therefore, it avoids the overtraining and reduces the learning
time. Although by now some progress has been achieved, there are remaining challenges and
directions for future research, such as

• Better enhancement and segmentation algorithms are required.
• Defining a standard test set and better evaluation criteria are still very important.

Further studies can be conducted with large number of real databases in a clinical environment.
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