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Abstract

Nowadays, analyzing, detecting, and visualizing abnormal power consumption behavior of householders are among the

principal challenges in identifying ways to reduce power consumption. This paper introduces a new solution to detect energy

consumption anomalies based on extracting micro-moment features using a rule-based model. The latter is used to draw

out load characteristics using daily intent-driven moments of user consumption actions. Besides micro-moment features

extraction, we also experiment with a deep neural network architecture for efficient abnormality detection and classification.

In the following, a novel anomaly visualization technique is introduced that is based on a scatter representation of the micro-

moment classes, and hence providing consumers an easy solution to understand their abnormal behavior. Moreover, in order

to validate the proposed system, a new energy consumption dataset at appliance level is also designed through a measurement

campaign carried out at Qatar University Energy Lab, namely, Qatar University dataset. Experimental results on simulated

and real datasets collected at two regions, which have extremely different climate conditions, confirm that the proposed deep

micro-moment architecture outperforms other machine learning algorithms and can effectively detect anomalous patterns.

For example, 99.58% accuracy and 97.85% F1 score have been achieved under Qatar University dataset. These promising

results establish the efficacy of the proposed deep micro-moment solution for detecting abnormal energy consumption,

promoting energy efficiency behaviors, and reducing wasted energy.

Keywords Energy consumption · Micro-moments · Deep neural network · Anomalies detection · Visualization ·

Energy efficiency

Introduction

Most of today’s end-user behaviors provoke a high energy

cost from keeping the room lights on to watching TV all
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the day long, for instance. Undoubtedly, energy efficiency

and green buildings have been getting an increased amount

of attention in many countries in the last few years [1]. In

short, it is the practice of minimizing energy usage without

enduring a loss in quality. For many motives, end-users have

to support the green energy industry from the first flip on

light to the last push on the start button of computers [2, 3].

In fact, energy efficiency can enhance the manner buildings

consume power in order to diminish detrimental effects on

society, economy, and global environment [4].

In order to preserve what people deem to be a perfectly

natural life; massive use of natural resources for building-

up energy, pollution, and global warming effects should

be reduced and optimized by energy users [5, 6]. For

the sake of their environment and nature, they need for

example to detach themselves from total reliance on fossil

fuels or to cut-in demand to ensure fewer harmful carbon

emissions in the atmosphere [7, 8]. Besides, hundreds of

dollars could be saved on end-users’ energy bills annually.

For such financial-saving reasons, end-users must raise their
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willingness to sacrifice living comforts and to draw a red

line under the undue and harmful energy wasting behaviors

[9]. Forgetting to unplug the charger and leaving on standby

unnecessary appliances are the most common contradicted

behaviors to energy management among households [10,

11]. From a national perspective, conserving energy can

aid to curtail the financial burden of oil imports and so

to reduce the investment needed for the expansion of the

electricity sector, especially in countries with high growth

of the electricity demand [12, 13].

Recent studies demonstrate that roughly 10 to 40% of the

electrical power can be conserved in domestic households if

individuals’ occupation profiles are embedded into building

energy management systems [14]. Moreover, residential and

commercial sectors consume up to 40% of the overall energy

produced worldwide [15]. Furthermore, the consumption

rate is predicted to be increased more in the upcoming years

due to the improvement of living conditions and increas-

ing use of appliances and electrical apparatus [16]. Overall,

the conducted investigations illustrate that both the whole

energy usage rate and plug loads are considerably related

to the occupancy ratios [17, 18]. The presence/absence of

individuals in a building can highly affect energy consump-

tion rate since a big number of users keep appliances

switched on for long time without their physical presence.

This represents an anomalous behavior, especially for a set of

appliances such as televisions, air conditioners, lights, lap-

tops/desktops, and fans. End-users justified such abnormal

behavior by laziness and lack of awareness [19, 20]. Conse-

quently, energy efficiency potential can not be well invested

without paving the way to detect and change abnormal

power consumption behavior.

Detection of anomalies and abnormalities is a challeng-

ing field of research employed in many applications, includ-

ing biomedical [21, 22], power generation [23], network

traffic [24], cybersecurity [25], and energy consumption

[26]. Detecting and analyzing abnormal energy usage pat-

terns in real time can not only promote the process of

energy saving, but it can help also tracing appliance fail-

ures through analyzing sudden and unexpected changes in

energy usage [26]. Once the anomalous energy usage behav-

ior is identified, the end-user will be notified, where he

can correspondingly execute opportune power efficiency

schemes. Furthermore, the proliferation of wireless sensors

and sub-meters nowadays, surveying domestic consumption

behaviors in buildings to detect abnormal usage becomes

at hand. Hence, for global energy efficiency motives, a

growing worldwide attention to put technologies accompa-

nying the detection of anomalous consumption in use is

being observed [27]. Supervised, semi-supervised and unsu-

pervised anomaly detections are the three main techniques

of identifying irregular energy patterns according to the

availability or not of labeled data [26, 28].

Furthermore, since the advent of the Internet, mobile

devices have become an indispensable part of our lives.

Worldwide studies have shown that more Google searches

now take place on mobile devices than on desktop com-

puters [29]. This growing and strong reliance of today’s

consumers on smartphones is logical since they enable

them not only to chat and share ideas with their friends

or acquaintances, but also to shop, pay bills, reserve plane

tickets, and even remotely control their own homes and

cars right from anywhere. So, consumer’s behavior is now

altered by such dependency to meet their needs immedi-

ately and on the fly. Consumer’s behavior on mobile devices

varies widely within different situations and moments. In

relation to that, early in 2015, the term of “micro-moments”

was coined by Google [30]. The latter refers to instances

or cases when a consumer spontaneously relies on a device

(generally a mobile) to address an immediate need. Micro-

moments are game changers for both consumers and brands.

Google categorized micro-moments as follows: <I-want-to-

know>, <I-want-to-go>, <I-want-to-do>, and <I-want-

to-buy>. Inspired by this idea, recent works exploring the

use of micro-moments to monitor, analyze, and under-

stand energy consumption behavior have been presented

[31–33].

In recent years, the promising progress in developing

machine learning algorithms has substantiated their effi-

cacy in various research fields. Starting from the fact that

learning-based techniques may be useful to identify rare

occurrences or observations (outliers) that arouse suspicion,

their deployment for anomaly detection for several applica-

tions becomes prevalent, e.g., intrusion detection [34], fraud

detection [35], abnormality detection in video surveillance

[36], turbine combustor anomaly detection [23]. More-

over, machine learning algorithms can be combined with

adequate feature extraction approaches to enhance their

efficiency. Consequently, a well-trained algorithm with in-

depth anomaly types will boost the anomaly detection effec-

tiveness considerably while maintaining an acceptable cost

and complexity [37].

Difficulties and Challenges

Detecting anomalous power consumption suffers from

various issues, difficulties, and challenges that hinder the

progress in this field. These problems are mainly domain-

specific and they can be summarized as follows: (i) there

is often no obvious definition of normal and anomalous

energy consumption; (ii) there is no clear frontier between

normal and anomalous behaviors; (iii) missing unified

metrics deployed for performance assessment; and (iv) there

is missing of ground-truth data, each group of researchers

uses their own data. Thus, this results in a major challenge

for reproducing the outputs of existing solutions; therefore,

1382 Cogn Comput (2020) 12:1381–1401



it is impossible to check which frameworks present the

state-of-the-art in various scenarios.

Specifically, one of the major obstacles to develop and

evaluate anomaly detection techniques is the lack of labeled

ground-truth datasets. Simply put, there is a lack of works

that discuss how to label energy consumption observations

into normal or abnormal, and, to be even more precise,

which kind of abnormalities they are. To that end, we

propose a novel approach for labeling energy consumption

occurrences using occupancy patterns, power consumption

footprints, and the micro-moments paradigm.

In addition, it is difficult to find what are the best

classification schemes that can be deployed to automatically

classify energy consumption observations and further

what are the appropriate evaluation metrics. Consequently,

we propose in this framework a deep neural network

(DNN) algorithm to identify anomalies; its performance is

compared with that of various machine learning classifiers.

Moreover, a set of metrics is selected to assess their

performance and conduct a comprehensive comparison.

Paper Contributions

As explained in the aforementioned section, the lack of ground-

truth data hinders developing and testing novel techniques

because of the absence of an explicit methodology to test

their performance and efficiency. Aiming at addressing

the challenges encountered in the validation of anomaly

detection solutions, our paper provides a set of original

contributions that can be summarized as follows:

– Inspired by the micro-moment paradigm, a novel

approach to detect abnormal energy consumption is

introduced in which, a definition of normal and abnor-

mal power consumption is introduced and power con-

sumption observations are divided into five major

classes, denoted as follows: “good usage,” “turn on a

device,” “turn off a device,” “excessive consumption,”

and “consumption while outside.”

– In addition to detecting excessive power consumption

anomalies, a novel form of abnormal consumption is

detected, which is mainly related to the consumption

while end-users are absent (i.e., outside the house-

hold/office). In contrast to existing frameworks, which

can only detect anomalies related to excessive/low con-

sumption using traditional outlier detection methods.

– A novel rule-based algorithm to label power consump-

tion datasets is proposed based on the micro-moment

paradigm as a feature extraction module. Practically,

the proposed system exploits the micro-moments of

power consumption as the features representing rele-

vant moments, especially when users make decisions

and share preferences to discriminate between vari-

ous user consumption moments. This was possible by

analyzing energy consumption signals and occupancy

patterns collected through different sensors deployed

in buildings with reference to each appliance’s active

consumption rate, its maximum operation time, and

its standby consumption level. Specifically, observa-

tions of time-series consumption are then categorized

into the aforementioned classes after undergoing a

pre-processing step, which includes data cleaning and

resampling.

– A DNN-based anomaly classifier is implemented to

automatically identify abnormal consumption classes

generated via the micro-moments procedure. Further-

more, its performance has been validated and compared

with that of various machine learning classifiers using a

K-fold cross-validation.

– An anomaly detection dataset based on real data

with its ground-truth labels is generated based on an

experimental campaign performed at Qatar University

Energy Lab, namely Qatar University dataset (QUD),

in order to test and validate the proposed anomaly

detection system. In addition, two other existing

datasets, namely Dutch Residential Energy Dataset

(DRED) [38] and Power Consumption Simulated

Dataset (PCSiD) [39], are also considered in this study.

Accordingly, their ground-truths are also generated and

used to investigate the performance of the proposed

solution.

– Finally, by using the proposed anomaly detection

scheme, promising performance has been obtained,

especially on the real datasets, i.e., QUD and DRED.

Various metrics have been used to assess the perfor-

mance of the proposed technique, such as the accuracy,

F1 score, confusion matrix, and under area receiver

operating characteristic (AUROC) curves.

The rest of this work is arranged as follows.

Section “Related Works” summarizes related works and

outlines their limitations. The proposed approach for the

detection of abnormal energy consumption is described in

“Proposed Methodology.” In “Experimental Results,” the

new designed dataset named QUD is explained together

with an overview of other databases from the litera-

ture review. Then, the performance of the proposed sys-

tem is evaluated using different evaluation criteria. In

“Conclusion,” conclusions derived from this work are

resumed and future directions are drawn.

RelatedWorks

Developing efficient approaches for abnormal energy

consumption and energy saving necessitates two main

steps. First, creating new challenging datasets that fit user
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consumption behavior and collect other data sources that

can influence energy usage, such as consumer occupancy

patterns, indoor ambient conditions, and outdoor weather

information. Second, elaborating powerful algorithms to

handle large amounts of data. In this context, this section

summarizes the most important works that address these

challenges.

Energy Consumption Datasets

Investigating the first step, a set of realistic and simu-

lated datasets and repositories have been created to help

researchers test their algorithms. However, most of them

focused only on collecting electrical power consumption.

Furthermore, each database has its specific application rang-

ing from energy disaggregation, non-intrusive load moni-

toring (NILM), and appliance recognition to energy sav-

ing. Unfortunately, there is no particular dataset dedicated

only for power consumption anomaly detection. Simply

put, there is a lack of publicly available annotated power

consumption datasets to train/learn anomaly detection algo-

rithms, in which power consumption variables are clearly

labeled as normal or anomalous. Furthermore, predeces-

sor works mainly focus on using unsupervised anomaly

detection techniques that have been implemented in other

fields (e.g., fraud detection, cyber-intrusion detection, video

surveillance, medical anomaly detection), which do not

require annotated datasets. In addition, for the case of

anomaly detection in energy consumption, there are other

particular anomalies which can not be detected using con-

ventional unsupervised anomaly detection algorithms, such

as the consumption while end-users are outside. In this con-

text, the need to define the specific anomalies that should be

detected in energy consumption is of paramount importance

and further the necessity to produce annotated datasets that

can be used to train/learn supervised algorithms is a current

hot topic.

In [40], Reference Energy Disaggregation Dataset

(REDD) was introduced where power consumption of six

households in MA, USA, was monitored. The aggregated

electricity consumption was measured at a sampling rate

of 15 KHz for a period of 119 days. In [41, 42],

two widely used open-access databases were proposed,

called the Almanac of Minutely Power Dataset versions

1 and 2 (AMPds1 and AMPds2). They include energy

usage footprints for each individual appliance collected

at 1-min sampling spans. In both versions, data were

assembled from inspecting only one home. The main

difference between them is that the AMPds1 monitored

energy usage for 1 year, while in AMPds2, data were

accumulated for 2 years. Furthermore, aggregated power

consumption data were collected at a frequency of 1 Hz

as well. In [43], authors launched the rainforest automation

energy (RAE) dataset that was collected through monitoring

two different households in Vancouver, Canada. Energy

consumption profiles were gathered at a sampling frequency

of 1 Hz for the aggregated circuits and device level.

Moreover, outdoor and indoor ambient conditions were

also picked up, including temperature, wind speed, and

humidity. In [38], the DRED, namely Dutch Residential

Energy Dataset, is introduced. It captures energy usage

samples, occupancy patterns, and environmental data of

one household in the Netherlands. Sensor units have

been installed to measure aggregated energy consumption

and appliance-level electricity usage. In fact, 12 different

domestic appliances were sub-metered at sampling intervals

of 1 min while 1-Hz sampling rate was used to gather

aggregated consumption. In [44], the REFIT electrical load

measurements database was developed, which encompassed

power usage fingerprints collected from 20 houses at the

grouped circuits and individual appliances. The power

consumption profiles were obtained from 20 households

in the UK at 8-s sampling intervals. Data about the

number of occupants in each house were also provided.

In [45], the UK domestic appliance-level electricity (UK-

DALE) dataset was proposed. It outlined current and voltage

patterns of three different domestic buildings at 16-KHz

frequency samples and monitored two other dwellings at

a frequency of 1 Hz. In addition, consumption profiles

of individual devices from five other households were

collected at a sampling rate of 6 s for various collection

periods varying from 39 to 655 days. And besides, in [39],

the PCSiD (http://em3.i-know.org/datasets/) was proposed,

which was conceived based on data generation of hourly

consumption profiles for a period of 2 years at a device

level. Device’s manufacturer specifications were used to

define power consumption patterns of each appliance in

watts. Additionally, occupancy patterns were then generated

employing some occupancy rules that represented the

percentage of the occupancy per day for every room in the

household.

As we have mentioned above, the main issue with

these datasets is the lack of ground truth references about

abnormal and normal consumption. Specifically, there is no

dataset in the state-of-the-art that includes such information.

In this regard, developing strategies to label observed energy

consumption footprints as normal or abnormal is a must in

order to detect and report anomalous behaviors.

Detection of Energy Consumption Anomalies

Machine Learning–Based Techniques

In this section, we go beyond a retrospective review of

machine learning and its application for detecting abnormal

energy consumption. Aiming at building robust machine
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algorithms to promote energy saving, a set of works has

been solicited in literature. In [46], the authors propose

an unsupervised scheme to detect anomalous energy

consumption footprints for comprehensive visual analytics

of power data. In that regard, electricity consumption

anomalies are caught according to either a classification-

based technique or a time-weighted forecasting. Moreover,

anomaly detection score outputs are visualized based on

different visualization tools guiding the user in extracting

relevant time points and proposing solutions to correct

abnormal behavior. Unfortunately, more in-depth analysis

is desired since this approach did not consider external

knowledge, such as familiar events affecting the power

usage data or ambient and weather conditions. In [27], an

identification method that detects abnormal energy usage

behavior is developed. This technique pinpoints anomalous

activities in two steps: consumption forecasting and

abnormal identification. Overall, real power consumption is

forecasted from daily domestic actions requiring electricity

using combined auto-regressive integrated moving average

and neural networks (ARIMA-NN). Then, anomalies are

then captured through estimating the difference between

forecasted and realistic consumption fingerprints according

to a two-sigma regulation for a period of 17 weeks.

Considering the fact that building energy consumption

takes about 41% of the total energy consumption in

China, Ma and Zhang [47] propose a real-time detection

method of abnormal building energy consumption. They

connect fractal correlation dimension (FCD) and proper

orthogonal decomposition linear stochastic estimation

(POD-LSE) to finally generate a higher correctness rate.

In their conclusion, Ma et al. indicate that the validity

of their method depends on a proper threshold of the

FCD deviation. Thus, they suggest integrating other

intelligent algorithms. In [48], abnormal events in a

school building are appointed by capturing anomalous

patterns occurred in electrical consumption. Accordingly,

Cui and Wang have explored a hybrid system that

merges the polynomial regression and Gaussian model to

detect abnormal consumption observations. By reference

to this design, anomalous consumption events are spotted,

visualized, and submitted to a power management firm, and

hence helping their engineers analyzing and comprehending

load usage behavior. However, this model shows some

limitations, especially for the reason that it can only pinpoint

abnormal usage in consumption profiles of the weekend

days. Furthermore, when trying to use the Gaussian kernel

to track down anomalous patterns in weekly data, a high

false positive rate is induced, leading to an overfitting issue.

In addition, with the proliferation of DNN and its

deployment in different fields and applications, a set of

works has been proposed in the literature to assess its

applicability for anomaly detection [49, 50]. In this context,

deep learning-based abnormality detection solutions receive

an increasing interest [51]. In [23], Yan proposes a

deep anomaly detection to identify gas turbine combustor

anomalies based on two principal stages: (i) it uses a

DNN for learning characteristic representations extracted

from multivariate time-series sensor records; and (ii) it

deploys a one-class classification for modeling normal

variables in the training feature set and helps in identifying

anomalies through capturing the variables that do not

fall into the normal class. In [34], a deep learning

approach based on an autoencoder architecture is proposed

for intrusion detection. It relies on using statistical data

analysis with a deep autoencoder–based long short-term

memory (LSTM) for extracting optimal, robust, and highly

correlated characteristics. In [52], non-technical anomalies

and electricity theft detection are performed using a hybrid

DNN. Specifically, a deep architecture based on both LSTM

and multilayer perceptron (MLP) network is proposed. To

learn the characteristics of the abnormalities, raw data

are fed into the first module to analyze historic data

while the second architecture is responsible for integrating

non-sequential variables, including its contracted power

and/or geographic coordinates. In [36], a deep learning

solution to detect abnormalities in crowded scenes for video

surveillance applications is proposed. In this context, a

convolutional architecture based on autoencoder and LSTM

is used to identify local anomaly events via learning raw

image sequences and detected edges.

Statistical Techniques

Abnormal energy consumption based on statistical models

extracts statistical features of the normal usage for estab-

lishing a norm profile and utilizes statistical experiences for

measuring the divergence of the monitoring consumption

patterns from the norm value [53].

In [54], a temperature-based approach called the DET-

Toa is proposed by Lin and Claridge to provide a better

fault detection process. This system distinguishes an anoma-

lous energy consumption behavior through assessing the

deviation between collected and simulated energy usage

patterns. Next, by defining an empirical threshold using

the standard deviation of the residuals, an abnormal con-

sumption or a fault is detected. Unfortunately, this scheme

witnesses the weakness of using limited assumed cases,

and thereby the authors suggest more field tests to fortify

the performance of the process. In [55], by assimilating

contextual characteristics and historical sensor data using

a sliding window framework, Araya et al. detect anoma-

lous behavior. This framework introduces a classification

system of anomalous consumption patterns using sliding

windows. This system ascertains anomalous consumption

footprints by making use of overlapping sliding windows.
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Moreover, for the sake of enhancing the abnormal detec-

tion accuracy, the ensemble anomaly detection framework

is developed as well, which is a general arrangement. It

fuses various classification approaches according to a voting

process. The performance of this scheme is assessed on a

real dataset delivered by Powersmiths (Brampton), Ontario,

Canada. Authors in [56] develop a supervised learning and

statistical-based anomalous power consumption detection

system, and use a Lambda scheme that is based on both in-

memory distributed computing algorithms, Spark and Spark

streaming. Moving forward, a real time anomalous iden-

tification is achieved by analyzing scalable live patterns

in addition to an iterative process, which helps refreshing

consumption signatures from realistic databases. Table 1

resumes the characteristics of anomaly detection–related

works discussed in this section.

Despite the fact that only a few numbers of works have

been proposed in literature to tackle the abnormal energy

consumption, most of the existing techniques are hard to

implement and have time-consuming architectures. By con-

trast, in our case, we propose a simple yet effective solution

to detect anomalous consumption through analyzing the

electricity footprints with a novel micro-moments–based

DNN algorithm. Furthermore, the performance of the pro-

posed deep micro-moments system is assessed on both

simulated and real-world datasets. Experimental datasets

considered in the validation phase, named QUD and DRED,

are collected from two different regions with completely

distinct climate conditions; hence, this emphasizes the

objectivity of our study. In addition, this helps identify-

ing the advents and limitations of the proposed solution in

different scenarios.

ProposedMethodology

In this work, the use of micro-moments as a feature

extraction of energy consumption signals is introduced. The

latter are acquired from building sensors and utility sub-

meters. Precisely, the features are extracted considering

occupancy patterns of individuals in order to detect

anomalous consumption of the end-users. Moreover, the

micro-moment features are employed by Google to model

consumers’ behavior for marketing applications. To the

best of our knowledge, although they have been recently

investigated as relevant features that characterize consumer

needs and consequently the properties of the marketers

required to be a part of, the use of micro-moments for

energy applications and particularly for anomalous energy

consumption has not yet been explored. Moving to the

fieldwork, micro-moments are extracted from various raw

signals gathered from multiple sensors. Figure 1 describes a

general flowchart of the proposed system. In what follows,

the details of the resulting design are presented.

Table 1 An overview of related anomaly detection frameworks

Work Feature Method Type

Liu et al. [23] Multivariate time-series data One-class DNN Semi-supervised

Chou et al. [27] Difference between real and Neural networks-ARIMA Supervised

predicted consumption

Ieracitano et al. [34] Statistical features Autoencoder base LSTM Unsupervised

Ramchandran et al. [36] Raw images and detected edges Convolutional DNN-based Unsupervised

autoencoder and LSTM

Janetzko et al. [46] Power spectrum Clustering and visual analytics Unsupervised

Ma el al. [47] Standard deviation of temporal FCD-POD-LSE Unsupervised

coefficients

Cui and Wang [48] Power consumption time series Polynomial regression and Semi-supervised

Gaussian distribution

Buzau et al. [52] Historic and non-sequential power data DNN-based LSTM and MLP Supervised

Lin and Claridge [54] Power consumption deviation between measured Unsupervised

and temperature and simulated consumption

Araya et al. [55] Contextual/behavioral features Detecting incomplete data in Unsupervised

sliding window

Liu et al. [56] Power and temperature Lambda architecture Supervised

Current paper Micro-moment consumption and DNN and rule-based algorithm Supervised

occupancy data
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Fig. 1 Block diagram of the proposed system for detecting abnormal energy consumption

Pre-processing

Data collected through different energy and occupancy

sensors are firstly cleaned and pre-processed to remove

or correct invalid records. Specifically, gathered footprints

are raw data or incomplete where missing values are

occurring and some interesting attributes are also lost during

the collection process. The absence of these values is

normally attributed to hardware and/or software failures of

measurement devices. Furthermore, other data are noisy,

i.e., containing errors or outliers. To this end, making use of

a data cleaning process is essential. Consequently, attributed

mean values are utilized to fill all missing values in power

datasets.

Anomaly Assumption

Defining excessive usage of an electrical device is not a

straightforward task, especially with the lack of resources

that record appliance power consumption; let us alone set

excessive power consumption levels. For that reason, we

define “excessive usage” behavior based on two criteria:

the appliance operating time and the maximum power the

appliance consumes. Fortunately, the study described in

[57] provided the maximum operation times of a set of

domestic appliances per day for a period of 4 weeks in an

apartment of 3 rooms leased by 2 adults and 2 children.

Furthermore, other works have already explored standby

power measurements of several home devices in Turkey

and Austria [58]. By using the data at hand, Table 2 is

introduced, which recapitulates operation times together

with maximum power consumption rates at normal and

standby modes for a set of domestic appliances.

Furthermore, in order to detect abnormalities related

to the presence/absence of the end-users in buildings,

the occupancy rules for each appliance need to be set

to map the data recordings into their corresponding

“consumption while outside the room” micro-moment.

Hence, the occupancy flag 0/1 (outside/inside the room)

could be set depending on the room of interest and time of

the day.

Micro-Moment Feature Extraction

The micro-moment features are extracted from a dataset

using a rule-based model. Each database contains multiple

information, including dates, time intervals, device ID,

power consumption, and occupancy patterns. This work

focuses on detecting two main anomalous classes. Firstly,

normal consumption contains three subclasses, including
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Table 2 Power consumption
specifications for different
home appliances

Appliance Maximum operation Maximum power Maximum standby

time consumption (W) power consumption (W)

Microwave 1 h 1200 7

Dishwasher 1 h 45 min 1800 3

Oven 3 h 2400 6

Washing machine 1 h 500 6

Tumble dryer 1 h 45 min 3000 6

Refrigerator 17 h 30 min 180 0

Light 8 h 60 0

Television 12 h 42 min 65 6

Water-heater 5 h 30 min 4000 N/A

Air conditioner 15 h 30 min 1000 4

Laptop 12 h 42 min 100 20

Desktop 12 h 42 min 250 12

“good usage,” “turn on device,” and “turn off device.”

Anomalous consumption encompasses two sub-groups,

which are “excessive consumption” and “consumption

while outside.” Consequently, a total of five classes is

finally considered; they are extracted based on analyzing

the occupancy profile (O) and power consumption (P )

of each device in reference to its active consumption

rate (A), maximum operation time (TM), and standby

consumption level (S). The rule-based model used to extract

micro-moment features (MF ) over time is summarized in

Algorithm 1:

Table 3 recapitulates the list of micro-moments feature

classes extracted using the proposed rule-based algorithm

with their corresponding label descriptions.

Handling Imbalanced Data

Most of the energy consumption databases for anomaly

detection collected through experimental campaigns express

the problem of the enormous imbalance of real anomaly

patterns, since anomalous footprints usually pertain to

the minority classes. To this end, we have introduced

an interesting feature that should be considered to fix

this issue, which is the normalized power consumption.

It represents the difference of power consumption rates

of each current time sample and the previous one. The

consumption, in theory, varies through the time intervals;

therefore, collecting normalized consumption can provide

us information how fast the consumption reacts to the time

evolution. If P stands for the power consumption vector of

N observations gleaned for a time interval τ , PN represents

the normalized power consumption data. For every power

consumption observation at time t , PN (t) is calculated as

follows:

PN (t) =
P(t) − mean(P )

max(P ) − min(P )
(1)

In addition, power consumption quantification PQ(t)

is another parameter that could be investigated when

managing an imbalanced energy consumption database.

This information is of paramount importance to capture the

“Turn on” and “Turn off” categories, and thereby it mainly

1388 Cogn Comput (2020) 12:1381–1401



Table 3 Micro-moments assumption and labeling

Micro-moment Label Description

Good usage 0 Non-excessive usage

Turn on 1 Switching on a device

Turn off 2 Switching off a device

Excessive consumption 3 Consumption > 95% of a device’s maximum active power consumption level

Consumption while outside 4 Device consumption without presence of the end-user

helps improving the efficiency of the deep micro-moment

classifier. It can be estimated as follows:

PQ(t) =

{

1 if P(t) − P(t + 1) ≥ 0

−1 if P(t) − P(t + 1) < 0
(2)

Classification

Generally speaking, deep learning is a subdiscipline of

machine learning built on an idea of learning various

grades of representations through developing a hierarchy of

characteristics. With this in mind, the DNN arrangement

is based on expanding the conventional artificial neural

networks (ANN) that encompasses only three layers (i.e.,

an input layer, a hidden layer, and an output layer) through

inserting multiple hidden layers to the network structure

between the input and output layers (i.e., DNN includes

more than three layers) [59, 60]. This is done for the purpose

of making a good ability to deal with complex and nonlinear

classification problems. In consequence, DNN attracted

scientists’ attention during the last years on the ground

that it can provide better performance than many other

existing solutions, particularly for regression, classification,

modeling, forecasting, and prediction objectives.

Deep Learning Classifier

Under this framework, since non-linear separable data are

handled, deep learning is highly recommended for such

problem. Furthermore, the performance of a deep learning

algorithm is usually enhanced by increasing the amount of

data used for training. That is why the DNN architecture is

selected among other solutions to deal with abnormal power

consumption detection.

DNN represents a subgroup of machine learning

approaches that has arisen as a flexible classifier and

approximator. It usually establishes a trustworthy map

between inputs and outputs of different problems with high

complexity levels. Usually, a DNN is consisting of various

layers li , which takes as input xli and provides an output

yli = σ(Wli · xli + bli ) (3)

where σ is the nonlinear activation function, Wli and bli are

the weights and biases, respectively, to make the connection

between input and output neurons. These connections can

be very simple to fit a dense connection between each of

the input and output neurons. Nevertheless, dense liaisons

may miss preserving regional correlations of input data,

generally including valuable information; e.g., this is the

context of signal and image classification. Moreover, the

time computation can be increased in order to learn dense

connectivities between neurons and all connections may not

be quite meaningful. In contrast, a convolutional liaison of a

dense connection facilitates alleviating these problems. The

convolution function (⊗) can be expressed as:

W [m, n]⊗x[m, n] =

i=h
∑

i=−h

j=l
∑

j=−1

W [i, j ]x[m− i, n− j ] (4)

The proposed DNN architecture entails 12 layers

including 10 hidden layers. The input layer has 10 neurons

while the output layer includes 5 neurons. For the hidden

layers, each one encompasses 20 neurons. Furthermore,

the proposed architecture is implemented in Python, using

Keras and TensorFlow deep learning libraries. A typical

representation of the proposed architecture based on deep

micro-moment classification is outlined in Fig. 2.

Training/Learning Procedure

After applying the rule-based algorithm to annotate the data,

we obtained a dataset that contains both normal and anoma-

lous data. Specifically, five feature classes are obtained as

discussed in “Micro-Moment Feature Extraction.” Since we

are interested in classifying normal vs. anomalous patterns,

we use the training data that contain both kinds of obser-

vations (i.e., the five micro-moment classes) to train the

DNN model. In this direction, a K-fold cross-validation

arrangement is deployed to train and test the deep micro-

moments solution. This procedure is a statistical analysis

method that implies splitting input data and their labels into

K subgroups, then applying a supervised training on K-1

subgroups and using the remaining subgroup to assess the

model’s performance in terms of the accuracy and F1 score.

We repeat this process K times, in which every subgroup is

utilized K-1 times to train the DNN and once to test it.
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Fig. 2 Typical representation of the DNN architecture used for micro-moment classification

Therefore, for the training phase, input data vectors

including the timestamps, appliance ID, P , O, PN , and PQ

along with their corresponding micro-moments classes MF

are fed to the DNN. The latter encompasses multiple hidden

layers in order to learn the relation behavior of normal and

abnormal observations. At the output end, a rectified linear

unit (ReLU) activation function is used.

Other Classifiers

Furthermore, deeply in this framework, several machine

learning algorithms are also examined for the classification

purpose, including logistic regression (LR), linear discrim-

inant analysis (LDA), naive-Bayes (NB), support vector

machine (SVM), random forest (RF), K-nearest neighbors

(KNN), decision trees, ensemble classifier, and multi-layer

perceptron (MLP). These classification models have been

operated using various parameter configurations with the

aim of classifying the micro-moment classes.

The main aim here is to find out the best algorithm

to identify anomalous consumption. Multiple kinds of

data, including timestamps, power consumption records,

and occupancy patterns, are utilized to train supervised

learning classifiers to forecast the micro-moments labels.

Then, relying on these labels, anomalous consumption is

identified; and hence, this can help on later notifying the

end-users to reduce their wasted energy.

Experimental Results

Aiming to evaluate the performance of our system dedicated

for the detection of anomalous consumption based on

the deep micro-moment feature extraction, we experiment

with various machine learning classifiers, using various

parameter settings for each classifier. This section details

the characteristics of the different datasets used in the

validation process and emphasizes the performance of the

proposed system in terms of various measurement metrics.

QUDDescription

To compensate the undersupply of appliance-level datasets,

a real-time micro-moment laboratory has been built to

collect accurate energy consumption data. In this context,

QUD is launched (http://em3.i-know.org/datasets/), which

is an ensemble of reading from various installed appliances

(e.g., light lamp, air conditioner, desktop, heating system)

as well as contextual information such as temperature,

humidity, ambient light intensity, and room occupancy. To

the best of the authors’ knowledge, QUD is the first dataset

in the Middle East, where ordinarily 240-V voltage is

used with varying recording frequency ranging from 3 s

to 3 h. As a real data source, the database is employed

in the classification and generation of recommendations.

Figure 3 illustrates a demonstration setup including all the

implemented sensing units.

The consumption profiles of QUD are recorded for a

period of 12 weeks until now; however, the collection

process is still ongoing in order to cover a period of

1 year. In this direction, time-series data representing power

consumption footprints for two appliances are registered

along with the corresponding cubicle occupancy, indoor

temperature, indoor humidity, and luminosity.

An evaluation of the respective accuracy of each module

was conducted with reference to a measurement tool.

Test beds for temperature, humidity, electric current, and

occupancy are elaborated. Figure 4 illustrates developed

1390 Cogn Comput (2020) 12:1381–1401

http://em3.i-know.org/datasets/


Fig. 3 The sensor configuration implemented to collect different kinds of data on the QUD

test beds to collect the electrical current of the power

consumption unit. In general, the temperature sensor

achieves the best accuracy with 98.3% compared with

73.3%, 85.9%, and 93.5% for the occupancy, electrical

current, and humidity, respectively.

Table 4 describes the essential attributes of QUD and

other state-of-the-art datasets described in “Related Works.”

This brief comparison outlines the characteristics of each

database in terms of the location and period of data

collection, number of observed houses, number of deployed

Fig. 4 QUD validation test beds for a power consumption, b humidity, and c temperature
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Table 4 Features comparison of the QUD dataset with other of existing real power consumption datasets

Acronym Country Period NO. of homes No. of sub-meters Features Sampling rate

REDD [40] USA 119 days 6 24 I, V, P 3 s

AMPds1 [41] Canada 1 year 1 21 I, V, P, Q, S, pf 1 min

AMPds2 [42] Canada 730 days 1 21 I, V, P, S, F, pf 1 min

UK-DALE [45] UK 655 days 4 5 (H4), 53 (H1) P, agg P 6 s/6 KHz (agg)

DRED [38] Netherland 6 months 1 13, agg P, T, H, Ws, Pr 1 min/1 Hz (agg)

REFIT [44] UK 213 days 20 9, agg P, pf, T, L, $ 8 s

RAE [43] Canada 72 days 1 24 V, P, Q, S, f, E 1 Hz

QUD Qatar 1 year 3 4 P, H, T, O 3 s–30 min

sub-meters, collected features, sampling rates, and release

dates. In addition, collected features in each database are

also specified in terms of the current (I), voltage (V),

active power (P), reactive power (Q), apparent power (S),

energy (E), frequency (f), power factor (pf), energy cost ($),

weather (Wt), temperature (T), humidity (H), occupancy

(O), and light level (L).

Moreover, it is clearly shown that most of the mentioned

databases are collected in totally different regions in terms

of climate conditions. QUD is gathered in an arid zone

where high temperatures are usually recorded, while DRED

belongs to a region with an oceanic climate that is specified

with moderate temperatures in the warm months, and

low temperatures in the cold periods. The other ones

cover humid regions (REDD) and the marine west coast

atmosphere (UK-DALE, AMPds1, AMPds2, and REFIT).

Additionally, the QUD has the particularity of supplying

occupancy patterns for each time sample in each cubicle.

This is very helpful when detecting consumption anomalies

related to the presence/absence of end-users; therefore, it

can be very convenient for applications dealing with power

consumption abnormality detection.

PerformanceMeasure

Alongside two kinds of datasets used in the evaluation

process are the realistic datasets including QUD and

DRED datasets, which are produced through measurement

campaigns and the PCSiD repository already described

in [39], which is a simulated dataset. In the empirical

evaluation, the accuracy of each classifier is investigated

using a 10-fold cross-validation arrangement. The latter is

a statistical analysis approach used to avoid the overfitting

of the classifiers. The accuracy metric represents the

percentage of the correctly classified micro-moments in

the test bed. Often, however, due to the fact that the

accuracy is not considered as a robust metric when

evaluating imbalanced data (i.e., typically the case of

anomaly detection in energy consumption), the F1 score,

which is a more reliable metric, is assessed as well.

Accuracy =
T P + T N

T P + FP + T N + FN
(5)

where T P , T N , FP , and FN depict the number of true

positives, true negatives, false positives, and false negatives,

respectively.

F1 score = 2 ×
precision × recall

precision + recall
(6)

where precision = T P
T P+FP

and recall = T P
T P+FN

.

Micro-Moments Visualization

To help consumers in promoting their energy consump-

tion behavior, it is useful to use smart visualization tools,

allowing then individuals understanding their power con-

sumption patterns and improving their usage behavior. In

this respect, this section describes a new way to visu-

alize electrical consumption profiles through plotting the

extracted micro-moments using the proposed algorithm. In

this line, the micro-moment samples are drawn using a scat-

ter plot through the time index. Table 5 summarizes the

number of micro-moment features in each database.

Figure 5 epitomizes the minutely power consumption

of an LCD TV in watts with different visualization plots.

Figure 5 (top) outlines the power consumption over the

time index. Figure 5 (middle and down) portrays scatter

plots of the micro-moment features with sampling intervals

of 3 min and 15 min, respectively. As a matter of

fact, they summarize in a good way how micro-moments

are distributed through the time axis. Correspondingly,

we can easily localize abnormal consumption, especially

for the micro-moment classes 3 and 4 that represent

“excessive consumption” and “consumption while outside”,

respectively.
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Table 5 Distribution of the
micro-moment patterns through
the classes in each dataset

Micro-moment description Label No. of micro-moment patterns

QUD DRED PCSiD

Good usage 0 12,114 45,482 59,425

Turn on device 1 1568 3315 7780

Turn off device 2 1569 3316 7779

Excessive consumption 3 3954 35,044 6343

Consumption while outside 4 27,725 79,196 23,793

Total 46,930 166,353 105,120

Classification Results

For each dataset considered in this investigation, the

performance of our anomaly detection system is assessed.

To evaluate the classification accuracy and F1 score,

collected data along with their related labels are split into 10

independent, complementary subsets, in which 9 subsets are

reserved for training (i.e., deployed for training the classifier

and defining all parameters) and the remaining subset is

reserved for testing (i.e., utilized for validating the results).

The process of splitting the data into 10 subset is repeated

randomly several times and hence obtained accuracy and

F1 score outputs from all partitions are averaged. Table 6

illustrates the comparison of the accuracy results of various

machine learning classifiers. Proceeding with the QUD and

DRED datasets, DNN outperforms the other classifiers,

where an accuracy of 99.58% with an F1 score of 97.85%

is obtained under the QUD and 99.29% accuracy with

99.6% F1 score is achieved under DRED. Additionally,

considering the PCSiD dataset, DNN offers the best results

since it can achieve an accuracy of 93.91% and an F1

score of 89.1. The difference between the results obtained

from simulated and real databases is justified by the fact

that simulated data are generated randomly, which reduces

the realism of the data and thereby they can not match

perfectly the electrical consumption performed in real

environment. In consequence, this makes the classification

process difficult.

Effect of the Number of Hidden Layers

In order to find the optimized configuration of the deep

micro-moments solution, the effect of the number of hidden

layers used in DNN on the accuracy and F1 score is

assessed. Figure 6 a and b illustrate the accuracy and F1

score results achieved when the number of hidden layers

is varied from 3 to 50 for the QUD, DRED, and PCSiD

datasets. It is clearly seen that the proposed deep classifier

attains the best results with 10 hidden layers, and thereafter

by increasing the number of hidden layers the results have

remained almost the same. In contrast, the computation

time has been increased while the number of hidden

layers has risen, as indicated in Fig. 6c. Consequently,

selecting a number of hidden layers equals to 10 is the

optimal configuration that guarantees the best compromise

between the classification performance and computation

time.

Permutation Test

In machine learning, it is of utmost importance to assess

the proficiency of a classifier using permutation-based p

value test. Specifically, the latter estimates to which extent

the ascertained accuracy could be achieved by chance. A

p value stands for the fraction of random datasets under

a certain null hypothesis, in which the classifier acts more

effectively than in the original set.

To test the performance of the deep micro-moments

classifier, we conducted two permutation tests that rely

on 999 permutations plus the original accuracy, as it is

discussed in [61]. Test 1 is mainly related to randomly

exchange the label and classify the data with a 10 cross-

validation procedure, while test 2 is principally dealing

with the permutation of data columns per class and hence

calculating the accuracy of each new classification [61]. The

p value is then measured to be the summation of all the

cases when the accuracies of the permutation distributions

are equal or higher than the accuracy of the original case

divided by the number of permutations.

Table 7 depicts the average errors and p values of

permutation test 1 and test 2 when the deep micro-moments

classifier is applied on the QUD, DRED, and PCSiD

datasets. It is worth noting that the deep micro-moments

classifier is efficient when the null assumption is that

data and labels are independent (i.e., test 1) for the three

datasets. On the other side, for test 2, the deep micro-

moments classifier is efficient for both QUD and DRED

datasets but not for the PCSid dataset. Consequently, for

both QUD and DRED datasets, the dependence between the

columns inside the micro-moments categories is important

for achieving excellent classification results, and the deep

classifier has been efficient in exploiting that information.
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Fig. 5 Time series and scatter
plots of power consumption
extracted from the DRED: (top)
power consumption through
time series; (middle) scatter plot
of the micro-moments for
sampling intervals of 3 min;
(down) scatter plot of the
micro-moments for sampling
intervals of 15 min
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Table 6 Performance comparison of different machine learning algorithms

ML algorithms Classifier parameters QUD DRED PCSiD

Accuracy F1 score Accuracy F1 score Accuracy F1 score

LR One-vs-rest (OVR) 92.95 57.6 95.56 69.2 75.24 37.6

LDA N/A 84.87 36.99 89.85 53.89 75.420 4.3

SVM Linear kernel 94.98 76.23 91.10 64.66 82.29 65.63

SVM Quadratic kernel 95.08 77.08 95.92 74.07 84.08 73.85

SVM Gaussian kernel 96.18 76.75 97.09 75.03 86.65 75.16

NB Gaussian naive Bayes 95.17 70.82 96.45 74.6 50.61 39.1

KNN K=1, Euclidean dist 95.93 72.51 93.62 74.50 83.15 71.37

KNN K=10, Weighted Euclidean dist 96.28 77.90 96.91 76.99 83.69 71.38

KNN K=10, Cosine dist 96.32 78.08 96.53 70.79 82.15 65.53

RF Gaussian classifier 95.89 76.08 96.76 76.8 86.67 76.3

MLP 1 hidden layer 95.80 73.95 95.83 74.78 83.3 72.11

Trees Fine, 100 splits 96.06 74.73 96.96 75.22 86.42 71.91

Trees Medium, 20 splits 96.17 75.69 96.97 75.03 84.32 54.43

Trees Coarse, 4 splits 95.40 70.23 96.96 74.86 82.83 51.47

Ensemble Bagged, 30 learners, 42 k splits 96.10 74.92 96.88 76.66 87.85 77.24

DNN 10 hidden layers 99.58 97.85 99.29 99.60 93.91 89.1

In contrast, for the PCSiD datset, it has some issues to

effectively utilizing the dependence between the columns

inside the micro-moment groups and this has been shown

in Table 7, in which a p value = 0.27 has been achieved.

Furthermore, this has also been observed in Table 6, where

an accuracy and F1 score of 93.91% and 89.1% have been

attained, respectively, which are lower than those obtained

for QUD and DRED datasets. This can be justified by the

fact that the simulated data in PCSiD does not reflect the

real dependency between columns in the micro-moment

classes. In addition, PCSiD dataset includes more columns

than QUD and DRED datasets, and this may hinder the deep

classifier in better exploiting the dependency between those

columns.

Fig. 6 Effect of the number of
DNN hidden layers on the
performance of the deep
micro-moments classifier in
terms of a accuracy, b F1 score,
and c computation time
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Table 7 Average errors and p

values of permutation tests
when using the deep micro-
moments classifier on QUD,
DRED, and PCSiD datasets

Original Test 1 Test 2

Dataset Error Error (standard deviation) p value Error (standard deviation) p value

QUD 0.00 0.04 (0.03) 0.001 0.02 (0.02) 0.001

DRED 0.00 0.03 (0.02) 0.001 0.01 (0.01) 0.001

PCSiD 0.00 0.07 (0.07) 0.001 0.09 (0.07) 0.27

Effect of Power Normalization/Quantification

In this section, the effect of adding normalized and

quantified power consumption data is illustrated in Table 8

using DNN when QUD dataset is considered. Before adding

power normalization/quantification patterns our algorithm

suffered from a naive behavior, it has some trouble in

detecting class 1 and class 2 even if the accuracy was

very acceptable. However, generating and inserting new

consumption profiles, such as power normalization and

power quantification, have led to better accuracy and much

higher F1 score results. This confirms how trustable our

system is and how robust it is in detecting each micro-

moment class. In addition, not only are the anomalous

classes well detected, but also the others.

AUROC Curves

Another fascinating benchmark used for checking the

performance of multiclass classification architectures is the

AUROC curves. It indicates to what extent a classifier

can distinguish between the different classes. Figure 7

reports the AUROC curves of the proposed deep micro-

moments classification for QUD, DRED, and PCSiD

datasets. Figure 7 (top and bottom) clearly shows that the

proposed deep model has an AUROC close to 1 for the

case of QUD and DRED, denoting that it has a good

aptitude of separability. However, for the case of PCSiD

database, Fig. 7 (down) accounts that the AUROC has

slightly dropped for all the classes involved that the deep

micro-moments model encountered some issues. Anyhow,

the proposed deep micro-moments architecture still exhibits

satisfactory performance. Furthermore, the latter is slightly

dropped due to the fact that the PCSiD repository is

generated with a random manner that cannot fit perfectly

human consumption behavior. Accordingly, in this case, the

proposed solution encounters some difficulties in correctly

extracting the micro-moments; and thus, the classification

performance is affected as well.

Confusion Matrix

The confusion matrix is judged as an excellent yet simple

objective measure that can be useful when managing a

classification framework. This measurement provides a

valuable summary of how well the classifier is acting.

In so doing, it is of utmost importance to trace it when

evaluating any classifier. Thus, this section presents a brief

performance investigation of the proposed DNN classifier

based on the confusion matrix evaluation.

Figure 8 illustrates the confusion matrices extracted

using the proposed approach from QUD, DRED, and PCSiD

datasets. From Fig. 8a and b, it is clear that the proposed

scheme can detect each class with a high accuracy rate

and even the anomalous classes are perfectly detected. For

example, class 3 is detected with 100% for both QUD and

DRED while class 4 is detected with 99.79% and 100%

for QUD and DRED, respectively. Unfortunately, Fig. 8c

reveals that the performance drops when the PCSiD dataset

is considered; this is occurring since the power consumption

and occupancy patterns are generated randomly, and hence

the classifier has some difficulties to cluster the classes

Table 8 Effect of adding power
normalization/quantification on
the accuracy and F1 score
results

Micro-moment class Without power With power

normalization/quantification normalization/quantification

Accuracy F1 score Accuracy F1 score

Class 0: Good usage 98.45 98.86 99.45 98.91

Class 1: Turn on device 88 0 100 100

Class 2: Turn off device 98.45 51.88 99.65 94.34

Class 3: Excessive consumption 98.38 99.38 99.35 96.34

Class 4: Consumption while outside 100 100 99.45 99.53

Mean 95.38 70.03 99.58 97.85
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Fig. 7 AUROC curves of the
different classes obtained using
DNN algorithm for a QUD, b

DRED, and c PCSiD datasets

correctly. Nevertheless, the performance is quite acceptable

given that an accuracy of 93.91% is reached with this

database.

In addition, it is worthy to mention that the QUD dataset

is very reasonable and the performance obtained using the

proposed deep micro-moments anomaly detection under the
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Fig. 8 Confusion matrix
obtained using the a QUD , b

DRED, and c PCSiD datasets

QUD is almost similar to that of the DRED dataset, which

is another real repository collected in the Netherlands. Both

datasets recorded occupancy patterns in addition to energy

consumption footprints. Moreover, QUD has been collected

in an academic building (university campus) while DRED

has been produced in households. This further proves

that the deep micro-moments anomaly detection can be

applied in different kinds of buildings that include electrical

appliances.

Electricity Saving Rate

The final objective of our micro-moment–based anomaly

detection scheme is to reduce wasted electricity and increase

energy saving in buildings. In this respect, the amount of

saved electricity that can be achieved using our approach

depends mainly on the abnormal behavior of end-users,

i.e., if they have massive bad consumption habits, a large

number of abnormalities will be detected and therefore the
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amount of saved energy will be high, and otherwise if they

have insignificant bad consumption practices. Moreover,

it has been reported in [62] that providing the end-users

with indirect feedback on their electricity consumption

(i.e., historical consumption data) improves the electricity

saving by 12%. On the other hand, the electricity saving

level could reach 20% if the end-users are provided with

direct appliance-consumption feedback. Consequently, in

our case, if we further offer the end-users the anomaly

detection feedback, this will increase significantly the

saving rate to more than 20%.

To that end, using data from Table 5, the percentage of

the anomalous patterns detected in each dataset (excessive

consumption and consumption while outside) to the whole

number of consumption footprints can be estimated.

Explicitly, it can be stated that the anomalous rates represent

67.5%, 68.67%, and 28.66% under QUD, DRED, and

PCSiD datasets, respectively. Thus, it is clear that QUD and

DRED have massive anomalous behaviors and hence the

amount of saved electricity will be very high if the proposed

scheme will be adopted. While in PCSiD, the anomalous

rate is significantly lower, this will result in a lower energy

saving rate. All in all, to measure accurately the amount of

saved electricity in real scenarios, a real-time energy saving

system based on our anomaly detection system should be

implemented. This helps further in transforming end-users’

habits via the adoption of a recommender system to trigger

end-users with tailored recommendations. Moreover, this

will be part of our future work, since the proposed anomaly

detection method has shown promising results in identifying

abnormal consumption.

Limitation

Finally, it can be noted that the limitation of the proposed

work is mainly related to the supervised learning as

this latter requires always annotated datasets to train the

classifiers. Moreover, this is not unique for our solution, but

for all supervised learning models. However, the simplicity

and efficiency of the proposed rule-based algorithm

deployed to label power consumption observations and

design annotated datasets can compensate this disadvantage.

Conclusion

In this paper, a simple yet efficient method for detect-

ing abnormalities in building energy consumption has been

introduced. Our technique depended on exploiting micro-

moments as features to model energy consumption behav-

ior. In this regard, power consumption signals and occu-

pancy patterns were then analyzed to design the micro-

moment classes and identify consumption anomalies. Then,

to carry out the micro-moment classification, we adopted

a DNN architecture and conducted a profound compar-

ison process with several machine learning algorithms.

Furthermore, a measurement campaign was managed at

Qatar University Energy Lab to glean real energy con-

sumption fingerprints and occupancy patterns, which have

been used to validate the proposed deep micro-moments

solution.

In addition, a new visualization technique was proposed

that helps in displaying the energy consumption footprints

and easily identifying anomalies. Moreover, the evaluation

performed on simulated and real databases revealed the

effectiveness of the proposed architecture for detecting

abnormal energy consumption. In fact, using the deep

micro-moments model, accuracies of 99.58% and 99.29%

have been achieved under the QUD and DRED datasets,

while 93.91% accuracy has been reached under the PCSiD

repository.

Nonetheless, this field of research needs more investiga-

tions, especially when considering outdoor environmental

and climate conditions, such as temperature, humidity, lumi-

nosity, wind speed, and CO2 emissions and even consumer’s

preferences including personnel behavior, comfort, and per-

sonality. In this case, the system will become more complex

and more challenging. Accordingly, our next steps in this

work will be twofold. First, the anomaly detection sys-

tem will be updated with other information sources, such

as ambient conditions and outside weather footprints to

detect other forms of anomalies, e.g., keeping the doors

and windows open while an air conditioner or a heating

system is on. Second, it will be also part of our future

work to develop a recommender system that will exploit

the detected anomalies in order to help end-users in reduc-

ing wasted energy and optimizing power usage. In that

respect, tailored recommendations will be triggered and

sent to end-users to notify them real-time through a mobile

application.
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