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ABSTRACT 

In recent years, large amount of data modeled by graphs, namely 
graph data, have been collected in various domains. Efficiently 
processing queries on graph databases has attracted a lot of re-
search attentions. Supergraph query is a kind of new and impor-
tant queries in practice. A supergraph query, q , on a graph data-
base D  is to retrieve all graphs in D  such that q  is a supergraph 
of them. Because the number of graphs in databases is large and 
subgraph isomorphism testing is NP-complete, efficiently proc-
essing such queries is a big challenge. This paper first proposes an 
optimal compact method for organizing graph databases. Com-
mon subgraphs of the graphs in a database are stored only once in 
the compact organization of the database, in order to reduce the 
overall cost of subgraph isomorphism testings from stored graphs 
to queries during query processing. Then, an exact algorithm and 
an approximate algorithm for generating significant feature set 
with optimal order are proposed to construct indices on graph 
databases. The optimal order on the feature set is to reduce the 
number of subgraph isomorphism testings during query process-
ing. Based on the compact organization of graph databases, a 
novel algorithm of testing subgraph isomorphisms from multiple 
graphs to one graph is presented. Finally, based on all these tech-
niques, a query processing method is proposed. Analytical and 
experimental results show that the proposed algorithms outper-
form the existing similar algorithms by one to two orders of mag-
nitude. 

1. INTRODUCTION 
Recently, large amount of data modeled by graphs, such as the 

molecular structures of compounds in chemistry, the organiza-
tions of entities in images, the topologies of sensor networks, the 
objects in technical drawings in mechanical engineering field and 
the social networks, have been collected in various domains. One 
of the most essential problems for managing large amount of 
graphs or graph databases is how to efficiently process graph 
queries. 

There are two kinds of queries on graph databases, which are 
often used in applications. One kind of queries is the subgraph 

query. Given a graph database D  and a subgraph query Q  with 
query graph q , the answer to Q  is the set of {g | g D∈  and q  
is a subgraph of }g . The crucial part of the algorithms for proc-
essing subgraph queries is the subgraph isomorphism testing that 
is NP-complete. Thus, it is intractable to process the subgraph 
queries. Subgraph query processing has attracted much research 
attention in last several years, and many algorithms have been 
proposed [5, 11, 12, 17, 18, 21, 25-28]. To accelerate the process-
ing of subgraph queries, most of the existing algorithms adopt a 
filtering-and-verification methodology, which first obtains a can-
didate answer set by pre-generated features from the given graph 
database and then verifies each candidate by subgraph isomor-
phism testing. 

The other kind of queries on graph databases is the supergraph 

query. Given a graph database D  and a supergraph query Q  
with query graph q , the answer to Q  is the set of {g | g D∈  
and q  is a supergraph of }g . This kind of queries is important in 
many applications. For example, a chemical descriptor has spe-
cific properties in chemical reactions. It involves a substructure of 
many molecular structures and could be modeled by a graph with 
vertices representing atoms and edges representing the bonds 
between atoms. Chemists often want to find descriptors in a new 
molecule graph to predict possible properties of the new molecule. 
In this case, the chemists can issue a supergraph query with a new 
molecule as the query graph on the graph database of descriptors 
to solve their problem. 

Though the supergraph query is important in practice, and the 
filtering-and-verification methodology [18] has shown to be effi-
cient for subgraph query processing on large graph databases, 
adopting this methodology to process supergraph queries has not 
been extensively considered yet. To our knowledge, there is only 
one algorithm, named cIndex [4], to date in the literature for proc-
essing the supergraph query by adopting this methodology. cIn-
dex first constructs an index on the features that are subgraphs 
extracted from graph databases and occurring rarely in historical 
query graphs. During query processing, cIndex avoids a large 
number of subgraph isomorphism testings by using the filtering-
and-verification methodology. In addition, the size of the feature 
index constructed by cIndex is very small since the features in the 
index are filtered by the historical queries in the query logs while 
they are extracted from graph databases. 

cIndex has a following disadvantage. The effectiveness and the 
efficiency of the feature index depend on the historical queries in 
the query logs. However, the query logs may frequently change 
over time so that the feature index may be outdated quite often. 
The mechanism for monitoring and updating feature index in-
volves a large amount of subgraph isomorphism testings. Thus, 
the overall performance of cIndex is degraded greatly. 
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To efficiently process supergraph queries, this paper investi-

gates supergraph query processing from a new angle of view. The 

proposed new approach in this paper involves the compact storing 

of graph databases, the constructing of feature indices, and query 

processing technique rather than only the feature index is consid-

ered. In the proposed new approach, graph databases are stored 

compactly beyond the flat manner, i.e. graphs in graph databases 

are arranged one by one, to improve the efficiency of query proc-

essing (verification). To accelerate the construction of feature 

indices, a fast algorithm for extracting features from graph data-

bases is proposed without taking the query logs into consideration. 

In order to further improve the efficiency of query processing 

(filtering), an optimal order on the feature set is added to the fea-

ture indices. To improve the performance of the crucial part of 

supergraph query processing greatly, a new algorithm of subgraph 

isomorphism testing from multiple graphs to one graph is pro-

posed. 

To examine the performance of the proposed approach, 

mathematical analysis and extensive experiments were carried out 

in the paper. The analytical and experimental results show that the 

proposed approach outperforms cIndex by one to two orders of 

magnitude. 

The main contributions of this paper are as follows. 

(1). An optimal compact method for storing graph databases, 

named GPTree, is proposed. Common subgraphs of the graphs in 

a database are stored only once in the compact organization of the 

database, to reduce the overall cost of subgraph isomorphism 

testings from stored graphs to queries during query processing. It 

is proved that the problem of optimally constructing GPTree is 

NP-complete, and an approximation algorithm with ratio bound 2 

is proposed to construct GPTree from a graph database. 

(2). An exact algorithm and an approximate algorithm for ex-

tracting significant features from graph databases are proposed. 

The extracted features are used to construct the feature indices on 

graph databases. To reduce the number of subgraph isomorphism 

testings during query processing, an optimal order on the feature 

set is determined by mathematics and added to the feature indices. 

(3). To improve the performance of the crucial part of super-

graph query processing greatly, a new algorithm of subgraph iso-

morphism testing from multiple graphs to one graph is proposed, 

named GPTreeTest, based on GPTree. 

The rest of the paper is organized as follows. Section 2 presents 

the preliminary concepts. Section 3 presents the proposed query 

processing approach including the compact method for storing 

graph databases, the feature extracting and ordering algorithms, 

the subgraph isomorphism testing algorithm from multiple graphs 

to one graph, and the query processing method. Experimental 

evaluation is given in Section 4. The related work is surveyed in 

Section 5. Section 6 concludes the paper. 

2. PRELIMINARIES 
This paper focuses on the undirected, labeled and connected 

simple graphs, simply called graph in the rest of the paper. The 

algorithms proposed in the paper can be easily extended to other 

kinds of graphs. 

DEFINITION 1. A graph g  is defined as a 4-tuple ( , , , )V E lΣ , 

where V  is the non-empty set of vertices, E ⊆V V×  is the set 

of edges, Σ  is the set of labels and :l V E∪ → Σ  is a labeling 

function assigning a label to a vertex or an edge. The size of a 

graph g  is defined as size( )g = | |gE , where gE  denotes E  of 

g  and | |gE  is the size of the set gE . 

DEFINITION 2. Let g = ( , , , )V E lΣ  and 'g = ( ', ',V E ', ')lΣ  be 

two graphs. A subgraph isomorphism from g  to 'g  is an injec-

tive function f :V → 'V  such that (1) u V∀ ∈ , ( )l u = '( ( ))l f u , 

and (2) ( , )u v∀ E∈ , ( ( ), ( ))f u f v 'E∈  and (( , ))l u v = '(( ( ),l f u  

( )))f v . 

DEFINITION 3. Let g = ( , , , )V E lΣ  and 'g = ( ', ',V E ', ')lΣ  be 

two graphs. An induced subgraph isomorphism from g  to 'g  is 

an injective function :If V → 'V  such that (1) u V∀ ∈ , ( )l u  

= '( ( ))Il f u , (2) ( , )u v∀ ∈ E , ( ( ), ( ))I If u f v ∈ 'E  and (( , ))l u v  

= '(( ( ),Il f u ( )))If v , and (3) ,u v V∀ ∈ , if ( , )u v E∈/  then 

( ( ), ( ))I If u f v 'E∈/ . 

If there exists a subgraph isomorphism from g  to 'g , g  is 

called a subgraph of 'g , denoted by 'g g , 'g  is called a su-

pergraph of g , and 'g  contains g . If g g  and size( ) 1g +  

= size( )g , g  is called a direct supergraph of g . If 'g g  and 

'g g≠ , 'g  is called a proper supergraph of g . Similarly, if 

there exists an induced subgraph isomorphism from g  to 'g , g  

is called an induced subgraph of 'g , denoted by 'Ig g , 'g  is 

called an induced supergraph of g , and 'g  induced-contains g . 

Hereafter, we use the term ‘sub-iso’ to express ‘subgraph isomor-

phism’. 

Given a graph database D = 1 2{ , ,..., }ng g g  and a graph g , the 

support set of g  in D , denoted by ( )Dsup g , is the set of all the 

graphs in D  that are supergraphs of g , i.e. ( )Dsup g = { ig |  

ig g , }ig D∈ . ( )D gσ = | ( ) | / | |Dsup g D  is called the support 

of g  in D . Similarly, the induced-support set of g  in D , de-

noted by ( )I
Dsup g ,is the set of all the graphs inD that are induced 

supergraphs of g . ( )I
D gσ = | ( ) | / | |I

Dsup g D  is called the in-

duced-support of g  in D . For a user-specified minimum support 

(or induced-support) σ , 0≤ σ ≤ 1 , a graph g  is called frequent 

(or induced frequent) in D  if ( )D gσ ≥ σ  (or ( )I
D gσ ≥ σ ). 

The supergraph query processing problem can be defined as 

follows. 

Input: a graph database 1 2{ , ,..., }nD g g g= and a query graphq . 

Output: ( )answer q = { |ig ig q , }ig D∈ . 

3. SUPERGRAPH QUERY PROCESSING 
3.1 Overview of the Query Processing Method 

The method of processing supergraph queries consists of the 

following three parts. 

Part 1. Graph database organizing. Organize the given graph 

database compactly, i.e. construct the GPTree. 

Part 2. Index creating. First, features are extracted from the 

graph database. Then, an order on the feature set is determined 

based on the containment relationship between the support sets of 

the extracted features. Finally, two feature indices on the given 

graph databases, named FGPTree and CRGraph, are created 

based on the algorithm for GPTree construction. 

Part 3. Query processing. First, the candidate answer set for a 

given query with query graph q  is generated using the FGPTree 

and the CRGraph. Then, all candidates (or graphs) in the candi-

date answer set are verified by testing the subgraph isomorphisms 

from all the candidates to q  using the GPTree and the GPTreeT-

est algorithm, i.e. the algorithm of testing subgraph isomorphisms 

from multiple graphs to one graph, and finally the query answer is 

obtained. 

The time cost of Part 3, i.e. query processing is queryT = filteringT  

+ ( | |qC × isoCandT ), where filteringT  is the time cost of computing 

the candidate set qC  by testing sub-iso from features to q , and 

isoCandT  is the average time cost of testing sub-iso from each can-

didate to q . The preprocessing of the given graph databases, i.e. 
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Part 1 and Part 2, is to minimize the query processing cost queryT . 

Part 1 aims at reducing both filteringT  and | |qC × isoCandT  during 

query processing. Part 2 is to further reduce filteringT . 

The details of Part 1, Part 2, and Part 3 are presented in Subsec-

tion 3.2, Subsection 3.3 and Subsection 3.4 respectively. 

3.2 GPTree of a Graph Database 
The idea of the proposed compact organization of a graph data-

base is to store all the graphs in the database into one graph with 

the common subgraphs of the graphs in the database being stored 

only once. Figure 1 shows a sample graph database containing 

graphs 1g , 2g , 3g  and 4g , where A , B , C  represent three 

distinct labels of vertices and the labels of edges are ignored for 

simplicity. Figure 2 illustrates the compact organization of the 

graph database in Figure 1. In the organization, the triangle in 

bold solid lines is a common subgraph of 1g  and 2g  and the five-

edge subgraph in solid lines is a common subgraph of 3g  and 4g .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 and Figure 2 only show the intuitive idea of the com-

pact organization of a graph database. Actually, we propose a data 

structure, named GPTree, to implement the idea. In the following, 

the structure of the GPTree and the algorithm for constructing the 

GPTree are presented. 

3.2.1 The Structure of GPTree 
To construct a GPTree of a graph database, all the graphs in the 

database need be encoded by an encoding method. This subsec-

tion presents a new graph encoding, named GVCode.  

DEFINITION 4. Given a graph g = ( , , , )V E lΣ , a total order V≺  

on V  and a total order Σ≺  on Σ , a GVCode of g , denoted as 

( )GVCode g , is a sequence of 1 2 | |, , ..., Vα α α〈 〉  defined as follows. 

For 1 ≤ j ≤ | |V , 

(1). jα  is a variable-length subsequence, named the code of jv , 

whose length is | |jα = | {( , )i jv v | i j<  and ( , ) } |i jv v E∈ 1+ , 

(2). the first element in jα  is a two-tuple ( , ( ))jj l v , and the 

other elements are distinct triplets ( , ( ), (( , )))i i ji l v l v v , where 

i j<  and ( , )i jv v E∈ , and 

(3). ∀ τ = ( , ( ), (( , )))i i ji l v l v v  and ∀ 'τ = ' '( ', ( ), (( , )))i i ji l v l v v  

in jα , τ  is prior to 'τ  if one of the following conditions holds: 

(a) '( ) ( )i il v l vΣ≺ , 

(b) '( ) ( )i il v l v=  ∧  (( , ))i jl v v Σ≺ '(( , ))i jl v v , and 

(c) '( ) ( )i il v l v=  ∧  (( , ))i jl v v = '(( , ))i jl v v  ∧  ( 'i i< ). 

EXAMPLE 1. Figure 3 shows the GVCodes of the four graphs in 

Figure 1 respectively. Assuming A BΣ≺  and taking the third 

code 3α = (3, ),(1, , ),(2, , )A A A〈 − − 〉  in the GVCode of 1g  as 

example, the first element (3, )A  in 3α  represents the vertex 3v  

labeled with A  in 1g . The elements (1, , )A −  and (2, , )A −  repre-

sent edges 1 3( , )v v  and 2 3( , )v v , and both the labels of 1v  and 2v  

are A . The ignoring of the labels on 1 3( , )v v  and 2 3( , )v v  is de-

noted by ‘− ’. (1, , )A −  is prior to (2, , )A −  because condition (c) 

of (3) in Definition 4 holds. 

Please note that a graph may have multiple GVCodes due to the 

variety of total orders on the vertex set of a graph. 

It follows that a prefix of a GVCode of a graph corresponds to 

an induced subgraph of the graph, and a common prefix of 

GVCodes of two graphs corresponds to a common induced sub-

graph of the graphs. 

 

 

 

 

 

 

 

 

 

 

GPTree. A GPTree of a graph database is a trie constructed by 

the GVCodes of all the graphs in the database, by taking a code in 

a GVCode as a basic unit of the sequence. For example, Figure 4 

shows a sample GPTree constructed by the graph database in 

Figure 1, where in  for 1 11i≤ ≤  is defined in (b) of Figure 4. 

In the GPTree, the path of 1 2 3 4 5, , , ,n n n n n〈 〉  corresponds to 1g  or 

the GVCode of 1g  in Figure 3, denoted by the set of graph-IDs 

attached to 5n . The path of 1 2 3 6, , ,n n n n〈 〉  corresponds to 2g  or 

the GVCode of 2g , denoted by the set of graph-IDs attached to 6n . 

The path of 1 2 3, ,n n n〈 〉  represents a common prefix of the 

GVCodes of 1g and 2g or a common induced subgraph of 1g and 2g . 

Please note that a path from the root of a GPTree to any node 

of the GPTree may express multiple isomorphic graphs. 

 

 

 

 

 

 

 

 

 

 

3.2.2 The Algorithm for Constructing GPTree 
To construct a GPTree of a graph database, each graph in the 

database is encoded into a GVCode. Because multiple GVCodes 

may be generated from a graph as mentioned in Section 3.2.1, 

there may be multiple GPTrees that can be constructed from a 

database. The cost of sub-iso testing from multiple graphs in a 

given GPTree to one graph is first analyzed as follows. 

Let us first consider the supergraph query with query graph 1q  

in Figure 5 on the graph database in Figure 1. To process the 

query 1q  using naïve method, sub-iso testings are performed one 

by one, i.e. test sub-iso from 1g  to 1q , 2g  to 1q , …, and 4g  to 1q  

Figure 3: Four GVCodes 

Figure 2: Intuitive Idea of a Compact Organization

Figure 1: Running Example: a Graph Database

Figure 4: A GPTree 
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one by one. It need perform 4 sub-iso testings. To process 1q  

using the GPTree in Figure 4, the sub-iso testing from 1g  to 1q  is 

performed first. It will be found that the triangle in bold in Figure 

2 is not a subgraph of 1q , and thus 2g  is not a subgraph of 1q  

because the triangle is a subgraph of 2g . Therefore, the sub-iso 

testing from 2g  to 1q  is avoided. Similarly, after the sub-iso test-

ing from 3g  to 1q , it is known that the five-edge subgraph in 

solid lines in Figure 2 is not a subgraph of 1q , and thus 4g  is not 

a subgraph of 1q  without sub-iso testing from 4g  to 1q . Thus, 2 

sub-iso testings are saved compared to the naïve method. 

 

 

 

 

 

 

 

 

 

Now let us consider the supergraph query with query graph 2q  

in Figure 5 on the graph database in Figure 1. Similar to the re-

sults of 1q , it need perform 4 sub-iso testings to process 2q  using 

naïve method. To process 2q  using the GPTree in Figure 4, a 

subgraph isomorphism from the triangle in bold in Figure 2 to 2q  

will be found. The sub-iso from 1g  and 2g  to 2q  can be found by 

extending the sub-iso from the triangle to 2q , respectively. In this 

way, the sub-iso testing from the triangle to 2q  is just performed 

once rather than twice by using naïve method. Similarly, the sub-

iso testing from the five-edge subgraph in solid lines in Figure 2 

to 2q  is just performed once. Thus, 2 sub-iso testings are saved 

compared to the naïve method. 

In general, let the GVCodes of all the graphs in a graph set GS  

share a common prefix,cp , in a GPTree of GS . Then, the cost of 

sub-iso testings saved by the common prefixcp  in the GPTree is  

      (len( )) (| | 1)c cp GS× − ,       (1) 

where len( )cp  is the number of the codes in cp , and ( )c x  is the 

average cost taken by a sub-iso testing from a subgraph with x  

vertices to a query graph. Please note that the number of vertices 

has crucial impact on the cost of sub-iso testing. 

In the following discussion, D = 1 2{ , ,..., }ng g g  is a graph da-

tabase, and Q  is a supergraph query with query graph q . 

Given a GPTree of D , let us consider the cost of sub-iso 

testings saved by a set of common prefixes in the GPTree during 

the processing of Q . Let the GVCodes of the distinct graphs 11g , 

12g ,…, and
11ng in D share the common prefix 1cp in the GPTree, 

the GVCodes of the distinct graphs 21g , 22g ,…, and
22ng in D share 

the common prefix 2cp ,…, and the GVCodes of the distinct graphs 

1kg , 2kg ,…, and 
kkng  in D  share the common prefix kcp  in the 

GPTree. Here 1,2,...,j k jn=∑ = | |D . Based on Eq. (1), the cost sav-

ing by the common prefix jcp is (len( )) ( 1)j jc cp n× − . Therefore, 

the overall cost saving, denoted by savC , of sub-iso testings during 

the processing of Q  using the GPTree, by jcp for 1 j k≤ ≤ , is 

no less than 1,2,..., (len( )) ( 1)j k j jc cp n= × −∑ . 

As mentioned in Section 3.2.1, a graph g  may have multiple 

GVCodes due to the variety of total orders on the vertex set of g . 

Since a GPTree of D  is constructed by the GVCodes of all the 

graphs in D , an optimal GPTree should be constructed by select-

ing a best GVCode for each graph in D  such that the overall cost 

saving savC  is maximized. 

A prefix of a GVCode of a graph corresponds to an induced 

subgraph of the graph as mentioned in Section 3.2.1. Conversely, 

given an induced subgraph of a graph, it can generate a prefix of a 

GVCode of the graph. Thus, to get a GVCode of a graph g  

= 1(V , 1E , 1Σ , 1)l , we can first select an induced subgraph ig  

= 2(V , 2E , 2Σ , 2)l  of g , then generate the GVCode of ig , and 

finally extend the GVCode of ig  based on an induced subgraph 

isomorphism from ig  to g , to obtain the GVCode of g  by add-

ing the codes of the vertices in 1V − 2V . 

To solve the problem of constructing GPTree, the following 

steps are performed. 

Step 1. Select optimal induced subgraph for each graph in D . 

Step 2. Generate GVcodes for all the graphs in D  using the in-

duced subgraphs obtained in Step 1. 

Step 3. Construct the GPTree of D  using the GVcodes gener-

ated in Step 2. 

Despite the lack of information about induced-containment re-

lationship among all induced subgraphs of the graphs in a data-

base, which is too expensive to be obtained, we focus our atten-

tion on selecting the best induced subgraph for each graph in the 

database such that 1,2,..., (| |) ( 1)
jj k cig jc V n= × −∑  is maximized, 

where for 1 j k≤ ≤ , jcig  is the common induced subgraph se-

lected for the distinct graphs 1jg , 2jg , …, and 
jjng  in D , and 

1,2,...,j k jn=∑ = | |D . This problem is called induced subgraph 

selecting problem in the paper, defined as follows. 

Input: Graph database D . 

Output: a sequence 1 2 | |, ,..., Dig ig ig〈 〉 , where iig  is the induced 

subgraph selected for the graph ig  in D  for 1≤ i ≤ | |D . 

Objective: Maximize 
| |

1

(| |)
i

D

ig

i

c V
=
∑ −

1 | |
{ }

(| |)
i

i D

ig

ig ig

c V
≤ ≤

∈
∑

∪
. 

Please note that  

1,2,..., (| |) ( 1)
jj k cig jc V n= × −∑ =

| |

1

(| |)
i

D

ig

i

c V
=
∑ −

1 | |
{ }

(| |)
i

i D

ig

ig ig

c V
≤ ≤

∈
∑

∪
. 

In the following discussion, IG  is the set of all the induced 

subgraphs of all the graphs in D . 

Let S  be a finite set, :f S +→  be a positive function, and 

C  be a collection of subsets of S . We can create a bijection 

between S and IG , a bijection between C  and D , and a bijec-

tion between ( )f e  and the cost function (| |)igc V  in Eq. (1), 

where ig ∈ IG and igV is the vertex set of ig . If e corresponds to 

ig  under the bijection between S and IG , then ( )f e = (| |)igc V . 

If a subset iS = 1 2{ , ,..., }le e e  in C  corresponds to a graph ig  in 

D , then ig  is an induced supergraph of 1ig , 2ig ,…, lig  but none 

of other graphs in IG , where 1ig , 2ig ,…, and lig  are the induced 

subgraphs corresponding to 1e , 2e ,…, and le , respectively. Under 

these bijections, finding a sequence 1 2 | |, ,..., Dig ig ig〈 〉  is to find a 

sequence 1 2 | |, ,...,e e e〈 〉C , where for 1≤ i ≤ | |C , ie  is a element 

of the subset iS  in C , ie  corresponds to iig , and  
| |

1

(| |)
i

D

ig

i

c V
=
∑ −

1 | |
{ }

(| |)
i

i D

ig

ig ig

c V
≤ ≤

∈
∑

∪
=

| |

1

( )i
i

f e
=
∑
C

−
1 | |

{ }

( )
i

i
e e

f e
≤ ≤

∈
∑

C∪
. 

Thus, the induced subgraph selecting problem can be defined 

as follows. 

Input: a finite set S , a positive cost function :f S +→  and 

a collection C  of subsets of S . 

Output: a sequence 1 2 | |, ,...,e e e〈 〉C , where ie  is a element of the 

subset iS  in C  for 1≤ i ≤ | |C . 

Objective: Maximize 
| |

1

( )i
i

f e
=
∑
C

−
1 | |

{ }

( )
i

i
e e

f e
≤ ≤

∈
∑

C∪
. 

To prove that the induced subgraph selecting problem is NP-

hard, we first define the uniquely hitting set problem as follows. 

Figure 5: Running Example: Two Queries
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Input: a collection C  of subsets of a finite set S  and a posi-

tive integer K ≤ | |S . 

Output: If there is a sequence 1 2 | |, ,...,e e e〈 〉C  such that 

1,2,...,| || { } |i ie= C∪ K≤  then output ‘ture’, otherwise output ‘false’, 

where ie  is a element of the subset iS  in C  for 1≤ i ≤ | |C . 

LEMMA 1. The uniquely hitting set problem is NP-complete. 

PROOF (sketch). It is easy to prove that the problem belongs to 

NP. The hitting set problem is NP-complete [9]. The hitting set 

problem can reduce to the uniquely hitting set problem in poly-

nomial time. ■ 

THEOREM 1. The induced subgraph selecting problem is NP-

hard. 

PROOF (sketch). The uniquely hitting set problem is a special 

case of the induced subgraph selecting problem (the value of the 

function f  is equivalent to 1). Thus, the induced subgraph select-

ing problem is NP-hard. ■ 

Since the induced subgraph selecting problem is NP-hard, we 

develop an approximation algorithm with ratio bound 2 to solve 

the problem. 

In the following algorithm, the element selected from a subset 

iS  in C  is called the uniquely hitting element of iS , denoted as 

( )iuhe S . The data structure A  is used to store the subsets that 

have already been selected and need not be considered subse-

quently. Let ( , )eH Z = { | ,i iS e S∈ }iS ∈ Z , where e S∈  and 

⊆Z C . The proposed algorithm is as follows. 

 

Input: a finite set S , a positive cost function :f S +→   

      and a collection C of subsets of S . 
Output: the sequence 1 1 | |( ), ( ),..., ( )uhe S uhe S uhe S〈 〉C   

   where iS ∈C  for 1≤ i ≤ | |C . 
1: A ← ∅ ; 

2: while e S∃ ∈  such that | ( , ) |e −H C A 1>  do 

3:    select 'e S∈  with largest ( ')f e  such that  

   | ( , ) |e′ −H C A 1> ; 

4:    foreach iS ∈ ( , )e′ −H C A  do 

5:     ( )iuhe S ← e′ ; 

6:    A ← ∪A ( , )e′ −H C A ; 

7: while e S∃ ∈  such that | ( , ) |e −H C A 1=  do 

8:    select e′′ S∈  with largest ( )f e′′  such that  
   | ( , ) |e′′ −H C A 1= ; 

9:    foreach iS ∈ ( , )e′′ −H C A  do 

10:     ( )iuhe S ← e′′ ; 

11:    A ← ∪A ( , )e′′ −H C A ; 

 

THEOREM 2. The above algorithm can approximate the optimal 

selecting with ratio bound 2.  

PROOF. (sketch) The objective 
| |

1

( )i
i

f e
=
∑
C

−
1 | |

{ }

( )
i

i
e e

f e
≤ ≤

∈
∑

C∪
 can be 

regarded as the sum of the contribution value from each subset iS  

in C  for 1≤ i ≤ | |C , and the contribution value from iS  is 

equal to either ( ( ))if uhe S  or 0 , which depends on the distribu-

tion of ( )iuhe S among all iS in C . 

First, we consider all iterations involving Lines 2-6 in the 

above algorithm. Let the first element we selected be 
1ie . By ana-

lyzing and verifying two complementary cases that whether all 

the subsets containing 
1ie , i.e. 

1
( , )ieH C , have an element with 

larger cost function value than 
1

( )if e , we claim that, for the opti-

mal solution the sum of the contribution values from all subsets in 

1
( , )ieH C  must be no more than 

1
( )if e ×

1
| ( , ) |ieH C .  

During the iterating within Lines 2-6, let the next element to be 

selected be 
xie . We claim that, for the optimal solution the sum of 

the contribution values from all subsets in ( , )
xie −H C A  is no 

more than ( )
xif e × | ( , ) |

xie −H C A  on the basis of the bound for 

the union of subsets of previously selected elements. 

Therefore, after performing all the iterations involving Lines 2-

6, we obtain the partial solution produced by the greedy strategy, 

whose objective is equal to 
11,2,..., 1( ) (| | 1)

ll p i l lf e= −× − −∑ A A , 

and an upper bound for the sum of the contribution values from 

all the subsets in A  for any instances (or the optimal solution), 

which is 
11,2,..., 1( ) (| |)

ll p i l lf e= −× −∑ A A , where 1p  is the number 

of elements selected, kA = 1,2,..., ( , )
ll k ie= H C∪  and 0 = ∅A . 

Second, considering all iterations involving Lines 7-11 in the 

above algorithm, we have that, on the basis of the bound for sub-

sets in 
1pA  given above, i.e. 

11,2,..., 1( ) (| |)
ll p i l lf e= −× −∑ A A , for 

the optimal solution the sum of the contribution values from all 

subsets 
2pB  (or 

1p−C A ), is equivalent to 0 , where 2p  is the 

number of elements selected in the iterations involving Lines 7-11 

and 1,2,..., ( , )
ll kk je==B H C∪ . Obviously, the objective of the par-

tial solution produced in the second part is equal to 0 . 

In summary, after all iterations involving Lines 2-11 in the al-

gorithm are conducted, we obtain a solution with the objective 

11,2,..., 1( ) (| | 1)
ll p i l lf e= −× − −∑ A A  and an upper bound for the 

sum of contribution values from all subsets in C for any instances 

(or the optimal solution), which is
11,2,..., 1( ) (| |)

ll p i l lf e= −× −∑ A A . 

So the approximation ratio is 

  R = opt

solution

11,2,..., 1

11,2,..., 1

( ) (| |)

( ) (| | 1)

i l lll p

i l lll p

f e

f e

−=

−=

× −

× − −

∑
∑≤

A A

A A
  

   = 1+ 1,2,..., 1

11,2,..., 1

( )

( ) (| | 1)

ill p

i l lll p

f e

f e

=

−= × − −

∑
∑ A A

.  

It is clear that for 1,1l l p∀ ≤ ≤ , 1| |l l−−A A 2≥  due to the 

greedy selection strategy in Lines 2-6 in the above algorithm. So  

  R 1≤ + 1,2,..., 1

1,2,..., 1

( )

( ) (2 1)

ill p

ill p

f e

f e

=

= × −

∑
∑ 2≤ . ■ 

The algorithm for GPTree construction, called BuildGPTree, is 

shown in Algorithm 1. After Lines 1-13 are carried out, Step 1 for 

the construction finishes; after Line 14 ends, Step 2 and 3 finishes. 

 

Algorithm 1 BuildGPTree (D , I
Tσ )  

Input:   a graph database D  and a minimum threshold I
Tσ   

Output: the GPTree  

1: obtain the set FIG  of frequent induced subgraphs of the graphs 

in D , where the minimum induced-support is I
Tσ ; 

2: CP ← ∅ , S ← ∅ ;  

3: while ig∃ ∈ FIG , s.t., | ( ) |I
Dsup ig S− 1>  do 

4:  select ig ′ ∈ FIG  with largest | |igV ′  such that  

  | ( ) |I
Dsup ig S′ − 1> ; 

5:  cp ← ig ′ ; 

6:  .cpGRP ← { , | , . }Ig vseq g vseq ig SUP g S′〈 〉 〈 〉 ∈ ∧ ∈/ ; 

7:  CP ← CP ∪ { }cp , S ← S ∪ ( )I
Dsup ig ′ ; 

8: while ig∃ ∈ FIG , s.t., | ( ) |I
Dsup ig S− 1=  do 

9:  select ig ′′ ∈ FIG  with largest | |igV ′′  such that  

  | ( ) |I
Dsup ig S′′ − 1= ; 

10:  cp ← ig ′′ ; 
11:  .cpGRP ← { , | , . }Ig vseq g vseq ig SUP g S′′〈 〉 〈 〉 ∈ ∧ ∈/ ; 

12:  CP ← CP ∪ { }cp , S ← S ∪ ( )I
Dsup ig ′′ ; 

13: complete the sequence of all vertices of each graph in D ; 

14: according to the sequence of all vertices of each graph in 

.cpGRP , where cp ∈ CP , obtain the corresponding 

GVCode, and then construct the trie of GPTree; 

 

BuildGPTree first obtains the set FIG  of frequent induced 

subgraphs in D  (Line 1). Please note that due to the exponential 
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amount of all induced subgraphs of the graphs in a database gen-

erally, we set a minimum induced-support threshold and obtain 

frequent induced subgraphs instead. For each ig  in FIG , during 

the mining, an induced sub-iso, denoted by ( , )jig gϕ , from ig to 

each graph jg ∈ ( )I
Dsup ig is detected; and for each such jg ,a se-

quence,denoted by jvseq ,of the vertices of jg involving ( , )jig gϕ is 

retrieved. . { , | ( )}I I
j j j Dig SUP g vseq g sup ig= 〈 〉 ∈ is retrieved for 

each ig  in FIG . Then, BuildGPTree conducts induced subgraph 

selecting from FIG  following the above greedy algorithm (Lines 

2-12). After that, a pair , .
cp CP

g vseq cpGRP∈〈 〉 ∈ ∪ represents that 

g takes vseq as the prefix of the sequence of all the vertices of g . 

Then, BuildGPTree generates a sequence of the remaining verti-

ces of each graph inD and completes the sequence of all vertices 

of the graph (Line 13). After the order on the vertex set of each 

graph has been found, GVCode of each graph is obtained accord-

ing to the order. The last step is to construct the trie of GPTree. 

Complexity Analysis of GPTree Construction. Let ig-mT and 

ig-mS be the time and space usage by frequent induced subgraph 

mining.The time usage of BuildGPTree apart from ig-mT is O( | |D  

( )| | | | | | )g D g gFIG V E∈× + +∑ . The memory usage apart from 

ig-mS is ( ) (O( | ( ) | | | | | | | | |ig FIG g D
I
D ig gsup ig V D FIG V∈ ∈× ×+ +∑ ∑  

)| | )gE+ . Also, vseqs could be stored in disk for limited memory. 

3.3 Indices on Graph Databases 

3.3.1 Feature Generation 
Two methods are proposed for feature generation. One is an 

exact method for selecting all significant frequent subgraphs, and 

the other is an approximate method for faster selecting a subset of 

significant frequent subgraphs, which has comparable filtering 

power to that of all significant frequent subgraphs in practice. 

Given a database D , a feature set F of D , and a query graph 

q , the candidate answer set is , ( )f q f Fq DC D sup f⊆/ ∈= −∪ . All 

graphs in D  that contain a feature, which is not contained in q , 

cannot be in results. Therefore, we prefer to select such subgraphs 

of the graphs in D  that are less likely to be contained in query 

graphs, as features. Thus, relatively large subgraphs are preferred. 

Frequent subgraphs expose the intrinsic characteristics of a 

graph database and have been verified to be good choices as fea-

tures for subgraph queries. For supergraph queries, the filtering 

power of each frequent subgraph is analyzed in the following. It 

will be seen that a subset of all frequent subgraphs selected as 

features are able to achieve the same filtering power compared to 

all of them. Given two distinct frequent subgraphs g  and 'g  such 

that g 'g , if | ( ) |sup g = | ( ') |sup g , it is advisable to select 'g  

as a feature rather than both of them or only g , since the larger 

subgraph 'g  is less likely to be contained in query graphs. In this 

way, 'g  is more helpful than g  for filtering during query proc-

essing, and g  is not helpful w.r.t. 'g . Thus, if 'g  is a feature, 

then g  need not be a feature. In the case of multiple subgraphs, 

for a subgraph g  and a set of subgraphs SG = 1 2{ , ,..., }kg g g  

such that for 1 i k≤ ≤ , ig g  and ig g≠ , if ( )sup g  

= 1,2,..., ( )i k isup g=∪ , then g  is not helpful w.r.t.SG . The reason is 

that if all subgraphs in SG  are features, then selecting g  as a 

feature is not able to improve the overall filtering power any more, 

i.e. identifying less candidates. The significance metric δ w.r.t. g  

is defined as  δ =
1,2,...,

| ( )|

| ( )|ii m

sup g

sup f=∪
1, where g  is a subgraph, and 1f , 

                                                                 

1 If the denominator is zero, we define that the left fraction is 

equal to a very large number that is always larger than any minδ . 

2f ,…, and mf  are all the features that contain g . In order to gen-

erate features, i.e., to obtain significant frequent subgraphs, we set 

a minimum significance threshold minδ  and select all the frequent 

subgraphs with significance no less than minδ  as features. 

In the space of frequent subgraph patterns in a graph database 

D , the process of selecting significant frequent subgraphs as 

features is discussed as follows. For two frequent subgraphs g  

and 'g , such that 'g g , 'g g≠  and ( )Dsup g = ( ')Dsup g , let 

the data structure F  store all the features selected till now, and 

let all the selected features in F  that contain 'g  be 1f , 2f ,…, and  

mf . Given minδ , minδ >1, Case 1, if 
1,2,...,

| ( ')|

| ( )|ii m

sup g

sup f=∪ ≥ minδ , then 'g  

should be added into F before g being added, because 'g is more 

helpful than g for filtering; and then g should not be added into F , 

because after 'g  is added into F , 'g  is a feature in F  that con-

tains g , and
1,2,...,

| ( )|

|( ( )) ( ')|ii m

sup g

sup f sup g=∪ ∪ = 1< minδ . Case 2, otherwise, 

i.e.
1,2,...,

| ( ')|

| ( )|ii m

sup g

sup f=∪ < minδ , then
1,2,...,

| ( )|

| ( )|ii m

sup g

sup f=∪ < minδ , thus both 'g and 

g  are not significant and are not added into F . So in any case g  

should be discarded. In the existing works, the set CSG  of closed 

frequent subgraphs [24] is defined as CSG = { |g g FSG∈  and 

'g FSG/∃ ∈  s.t. 'g g ∧ 'g g≠ ∧ ( ) ( ')}sup g sup g= , where 

FSG  is the set of all frequent subgraphs. Therefore, any signifi-

cant frequent subgraph selected here must be a closed frequent 

subgraph. Please note that closed frequent subgraphs may be or-

ders of magnitude less than all frequent subgraphs in practice [24]. 

The Exact algorithm for generating feature set from a database 

consists of the following two steps. Step 1, mine closed frequent 

subgraphs. Step 2, refine subgraphs obtained in Step 1, i.e. elimi-

nate insignificant frequent subgraphs according to a user-specified 

minδ , which proceeds in a level-wise manner from large size to 

small size. It follows that all maximal frequent subgraphs are 

selected as features. According to depth-first search order in the 

mining algorithm, the containment relationship among some 

closed frequent subgraphs in Step 1 can be obtained, which need 

not be examined again in Step 2; thus, the number of sub-iso 

testings is reduced in the exact algorithm for feature generation. 

The approximate algorithm for generating feature set directly 

mines features instead of refining after mining. During mining of 

closed frequent subgraphs, for a closed frequent subgraph g  in the 

space of closed frequent subgraph patterns inD ,if
| ( )|

| ( )|

D

Dg

sup g

sup g∪
minδ≥ , 

where g  denotes all the direct supergraphs of g  that are frequent, 

i.e., the denominator is the cardinality of union over all support 

sets of such g , then g  is selected as a feature; otherwise, it is 

discarded. This condition can be directly embedded in closed 

frequent subgraph mining algorithms without extra subgraph iso-

morphism testings, i.e. only the union of support sets is addition-

ally computed. Thus, we can fast generate a feature set without 

costly refining step, i.e. Step 2 of the exact algorithm above. 

For a subgraph g  in the space of closed frequent subgraph pat-

terns in D  and any subgraph set S , we have '| ( ') |g Dsup g∪  

≤ | ( ) |g Dsup g∪ , where g  denotes all frequent direct supergraphs 

of g , and 'g  denotes the frequent proper supergraphs of g  that 

belong to S . Thus, we conclude that each subgraph in the feature 

set obtained by using the approximate algorithm above must be in 

the feature set obtained by the exact algorithm, i.e., the feature set 

generated by the approximate algorithm is a subset of that gener-

ated by the exact algorithm. The approximate algorithm is very 
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suitable for the scenarios where closed frequent subgraphs are of 

large amount, which shows approximate filtering power in ex-

periments during query processing. Please note that in order to 

enable the graphs in D  that do not contain any frequent sub-

graphs to be supported in the filtering step, for both exact and 

approximate feature generation methods, all subgraphs, i.e. both 

frequent and infrequent subgraphs, of the graphs in D  with size 

less than 4 are examined during mining. In other words, the 

minimum support threshold is set to be 1/ | |D  when the size of a 

subgraph pattern is less than 4. 

3.3.2 Feature Ordering and Index Structures 
Although all features extracted are significant, in the filtering 

step of processing queries there probably exist unnecessary sub-

iso testings from features to query graphs. Appropriately ordering 

features could reduce the number of such unnecessary sub-iso 

testings. Considering two features 1f  and 2f , s.t., 1( )Dsup f  

⊇ 2( )Dsup f , for a query graph q , if 1f / q  we can filter out all 

graphs in 1( )Dsup f  immediately, and then, 2f  need not be exam-

ined because no matter it is contained by q  or not we cannot 

filter out any other graphs by 2( )Dsup f . Thus we save one sub-

graph isomorphism testing from a feature to the query graph. 

Conversely, we have to perform two sub-iso testings with no sav-

ing. This example shows that the order on the feature set can in-

fluence the overall cost of query processing. 

Let S  be a finite set, C  be a collection of subsets of S  and 

: [0,1]g →C  be a nonnegative function. We can create a bijec-

tion between S and the graph database D , and a bijection be-

tween C  and the feature set F . For ,k l∀ ,1 ≤ ,k l ≤ | |F , if the 

subset kA ∈C  then kf F∈  (and vice versa), and if k lA A⊇  then 

( ) ( )D k D lsup f sup f⊇  (and vice versa), where kA  corresponds to 

kf  ( lA to lf ) under the bijection between C  and F . 

Let h : 2 [0,1]→C  be a function, where 1 2({ , ,..., })mh A A A  is 

equal to the joint probability that all features in the set of 

1 2{ , ,..., }mf f f  are subgraphs of a given query graph, where kA  

corresponds to kf  for 1 ≤ k ≤ m . Given an order on C , i.e. 

1 2 | |
, ,...,j j jA A A〈 〉

C
, where 

kjA ∈C  for 1 ≤ k ≤ | |C , let 

: [0,1]g →C  be a function, where ( )
tjg A = 1 − h ({ |

kjA  

kjA ∈C ,
k tj jA A⊇ , })k t< . Thus, the problem of determining the 

optimal order on a feature set can be defined as follows. 

Input: a finite set S , a collection C  of the subsets of S , and 

a nonnegative function : [0,1]g →C . 

Output: an order ≺  on C , i.e. 
1 2 | |
, ,...,j j jA A A〈 〉

C
, where 

kjA ∈C  for 1 k≤ ≤ | |C . 

Objective: Maximize 1,...,| | ( )
kk jg A=∑ C . 

Given a query q , the objective 1,...,| | ( )
kk jg A=∑ C  is the expected 

number of subgraph isomorphism testings that can be saved com-

pared to testing one by one. The following theorem is presented to 

expose the case in which the maximum objective can be obtained. 

THEOREM 3. An order *≺  on C  is optimal, if and only if, for 

any two subsets iA  and jA  in C , *
iA ≺ jA  if i jA A⊇  and 

i jA A≠ . ■ 

Also it follows that arranging features in non-ascending order 

in terms of their support could derive an optimal order. 

CRGraph. The CRGraph index structure is a directed acyclic 

graph (DAG). Given D  and the feature set F  of D , for two 

features 1 2,f f F∈ , if 1( )Dsup f ⊇ 2( )Dsup f  and 'f F/∃ ∈  s.t. 

1( )Dsup f ⊇ ( ')Dsup f  ∧  ( ')Dsup f ⊇ 2( )Dsup f , then we say 

1( )Dsup f  direct contains 2( )Dsup f . This direct containment rela-

tionship between support sets of features defines a partial order 

relation. Then, the support sets of features can be conceptually 

organized into a lattice, which is represented by a DAG with ver-

tices representing corresponding features and edges representing 

the direct containment relationship. 

Complexity Analysis of CRGraph Construction. CRGraph 

construction is not explicitly given due to its commonality. The 

time complexity of CRGraph construction is 2O( | | | |)F D× , 

and the space complexity of it is 2O( | | )F . Using CRGraph, an 

optimal order can be yielded by topological ordering on it with 

the time complexity of O( | | | |)CRGraphF E+ , where CRGraphE  is 

the edge set of CRGraph. 

FGPTree. After obtaining an ordered feature set, we organize 

all features using a similar strategy as GPTree to obtain a quasi 

‘GPTree’ structure, called FGPTree. In FGPTree, some but not 

all common prefixes of GVCodes of distinct features are com-

bined, and the order on the feature set is preserved. Based on the 

GPTree construction algorithm and the CRGraph, FGPTree con-

struction is not difficult to conduct, thus it is not explicitly elabo-

rated here. 

3.3.3 Discussions on Graph Database Organizing 

and Index Creating 
The preprocessing in our approach includes organizing graph 

database into the GPTree, and creating indices of the CRGraph 

and the FGPTree. The process of the specified frequent induced 

subgraph mining on database for GPTree construction is merged 

with the specified closed frequent subgraph mining for feature 

generation in the following manner. In the progress of the inte-

grated mining, if a search branch can be pruned by the conditions 

of one mining algorithm, the other mining algorithm is solely 

conducted along the branch; otherwise, the examinations for these 

two mining schemes are both conducted in the original way. 

In summary, the preprocessing in our approach consists of two 

steps. The GPTree of a given graph database is constructed first. 

Simultaneously, the initial feature set is generated. Then, feature 

selection from the initial feature set is carried out if exact algo-

rithm for feature generation is adopted, and the initial feature set 

does not change if approximate method for feature generation is 

used; features are ordered and the CRGraph and the FGPTree are 

created. 

3.4 Query Processing 

3.4.1 Subgraph Isomorphism Testing from Many to 

One 
The process of subgraph isomorphism testing from a small 

graph ( , , , )s s s s sg V E l= Σ  to a large one Lg = ( , , , )L L L LV E lΣ  con-

sists in the search for a subgraph isomorphism, i.e. injective func-

tion, which associates all vertices in sV  to some distinct ones in 

LV . A subgraph isomorphism is represented by a set of ordered 

pairs of matched vertices, and the two matched vertices in each 

pair are from sg  and Lg , respectively. 

The sub-iso testing from sg , encoded into ( )sGVCode g , to Lg  

involves a process of tree search with backtracking. The state 

space is constructed following the way that the vertices of sV  are 

examined in the order consistent with ( )sGVCode g , and Lg  is 

compared in a vertex growth way against sg  one vertex after 

another. Each state t  in search space is associated with a partial 

subgraph isomorphism, ( )psi t , which is a set of ordered pairs of 

matched vertices corresponding to the path from the root state to 

the state t  in the search tree. A transition between two states 

corresponds to the addition of a new pair of matched vertices. 
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Depth-first search on the search space is adopted. For each state 

t , we compute a candidate pair set ( )CPS t  consisting of pairs of 

potential subsequently-matched vertices. For all pairs in ( )CPS t , 

the first components are the same and equal to the next vertex in 

sg  in the order on vertex set in ( )sGVCode g , and the second com-

ponents correspond to each of vertices in Lg that is not involved 

by ( )psi t , respectively. We denote ( )sV t = { | ( , ) ( )}v v psi tμ ∈ , 

s.t., ( )sV t ⊆ sV  and ( )LV t { | ( , ) ( )}v psi tμ μ= ∈ , s.t., ( )L LV t V⊆ . 

The neighbor set of a vertex sv V∈  is represented by ( )sN v , and 

the neighbor set of a vertex LVμ ∈  is denoted as ( )LN μ . 

Example 2. Consider the process of sub-iso testing from 2g  in 

Figure 1 to 2q in Figure 5. For a state t , the partial sub-iso 

( )psi t = 1 1{( , ),v u 2 2 3 3( , ),( , )}v u v u  denotes a sub-iso from the 

bold-line triangle subgraph of 2g  to a triangle subgraph of 2q . 

Here ( )sV t = 1 2 3{ , , }v v v , and ( )LV t = 1 2 3{ , , }u u u . ( )CPS t  

= 4 4{( , ),v u 4 5( , ),v u 4 6( , )}v u . 

At each state during searching, ( )CPS t  is refined by removing 

the vertex pairs that cannot be expanded to a subgraph isomor-

phism subsequently. The conditions used to refine ( )CPS t  are 

called Pruning Conditions. It is apparent that a vertex in sV  can-

not match one in LV  with a different label. For a pair of vertices 

( , )v μ , where v ∈ sV , μ ∈ LV , we have the following pruning 

condition, which is denoted by vPruCond . 

PRUNING CONDITION 1. ( )sl v ≠ ( )Ll μ . 

For a pair of vertices ( , )v μ  in ( )CPS t , where v ∈ sV , μ ∈ LV , 

the pruning condition by relationship between ( , )v μ  and the pairs 

in ( )psi t  is given as follows. Note that let 't  be the state tran-

sited by t  after adding ( , )v μ  into ( )psi t . It is clear that each pair 

in ( )CPS t  does not satisfy Pruning Condition 1.  

PRUNING CONDITION 2. x∃ ∈ ( )sN v ∩ ( )sV t , ξ ∉ ( )LN μ  or 

( , )sl x v ≠ ( , )Ll ξ μ , where ( , )x ξ ∈ ( )psi t . 

The Pruning Condition 2 ensures that the partial subgraph iso-

morphism ( ')psi t  itself is a subgraph isomorphism from the sub-

graph of sg  induced by the vertices in ( ')sV t  to Lg . The Pruning 

Condition 2 is denoted as igPruCond . For example, after refined 

by Pruning Condition 1, the ( )CPS t  in Example 2 is equal to 

4 4 4 5{( , ),( , )}v u v u ; and then, after refined by Pruning Condition 2, 

the ( )CPS t  is equal to 4 4{( , )}v u . 

During searching, the algorithm of sub-iso testing step by step 

picks up vertices of sg and constructs a growing induced subgraph 

of sg  that is subgraph isomorphic to Lg . In particular, during the 

process of sub-iso testing, let g  be a non-induced subgraph of sg , 

where the vertex set of g  is 'V  and ' sV V⊆ , and let Ig  be the 

subgraph of sg  induced by 'V . After verifying that Ig Lg , we 

can continuously examine the next vertex of sg  in the same way 

to proceed. However, even if we have verified g Lg , we cannot 

directly turn to the next vertex of sg  to examine if the growing 

subgraph is a subgraph of Lg , because sg  cannot be finally con-

structed via growing g  by adding the remaining vertices. For 

example, consider 2g  in Figure 1 and 2q  in Figure 5. During the 

process of sub-iso testing, if we find a partial subgraph isomor-

phism 1 1 2 2 3 3{( , ),( , ),( , )}psi v u v u v u= , i.e. Ig 2q , where Ig  is 

the subgraph of 2g  induced by 1 2 3{ , , }v v v , then we could proceed 

to examine the next vertex 4v  of 2g . However, if we find the sub-

iso 1 1 2 6 3 3{( , ),( , ),( , )}v u v u v u  from the subgraph with the vertex 

set being 'V = 1{ ,v 2,v 3}v  and the edge set being 

'E 1 2{( , ),v v= 1 3( , )}v v  of 2g  to 2q , we could not extend this 

sub-iso and proceed to add other matched vertex pairs to obtain a 

sub-iso from 2g  to 2q . 

The above illustration enables a GPTree to be used to reduce 

the number of sub-iso testings. That is, the graph corresponding to 

the path from the root to any node n  in a GPTree is an induced 

subgraph of the graphs that correspond to paths from the root to 

descendant nodes of n . When we perform sub-iso testings from 

multiple graphs in a GPTree, their common induced subgraphs in 

one path are examined together. So each embedding (image of a 

subgraph isomorphism) in q  is compared with the common in-

duced subgraph of multiple graphs at the same time. In this way, a 

number of sub-iso testings are saved.  

 

Algorithm 2 GPTreeTest (T ,q )  
Input:   a GPTree T  and a query q   

Output: the answer set ANS   

1: ANS ← ∅ ;  

2: SubIsoOnGPTree ( rootn ,∅ );  

3: return ANS ;  

Procedure: SubIsoOnGPTree (n , psi )  

4: if .nGID ≠ ∅  and .n alOut false=  then  

5:  ANS ← ANS ∪ .nGID ; .n alOut true← ; 

6: if . 0n ableChildCnt =  then  

7:  .n flag false← ; return;  

8: foreach cn ∈ ( )CHILD n  do  

9:  if .cn flag false=  then continue; 

10:  compute candidate pair set CPS  w.r.t. cn  with vPruCond ; 

11:  refine CPS  w.r.t. cn  with igPruCond ;  

12:  if CPS = ∅  then continue; 

13:  foreach p  in CPS  do  

14:    compute 'psi  by concatenating p  to psi ;  

15:    SubIsoOnGPTree(cn , 'psi );  
16:    if .cn flag false=  then  
17:     . - -n ableChildCnt ; 
18:     if . 0n ableChildCnt =  then  

19:      .n flag false← ; return; 

20:      break;  

 

The algorithm of sub-iso testing from multiple graphs in a 

GPTree to one graph, called GPTreeTest, is presented in 

Algorithm 2. Note that T , q  and ANS  are global variables. For 

a node n  in GPTree, .nGID  is the set of graph-IDs attached to 

n , and .n flag , .n alOut , .n ableChildCnt  are variables, which 

represent whether n  should be examined subsequently, whether 

.nGID  has already outputted, and the number of its children 

whose flag  variable is ‘true’, respectively. Initially, for each n , 

these three variables are assigned by ‘true’, ‘false’, and the num-

ber of its children, respectively. In the algorithm, the procedure 

SubIsoOnGPTree traverses T  in a pre-order manner. For a sub-

graph (or a path in T ), it explores states in search space in depth-

first manner for seeking sub-iso. Once we find a contained graph 

we record it and will not consider it again during subsequent 

searching. In particular, psi  is a partial subgraph isomorphism 

during searching, the last added pair in psi  corresponds to the 

current visited node n  in T . In the beginning, if n  is associated 

with some graph-IDs which are not outputted, they should be 

outputted (Lines 4-5). Then, if all children of n  need not be ex-

amined, the procedure will directly return (Lines 6-7). In next step, 

the procedure pre-order traverses the subtree rooted by each child 

cn  of n  whose flag  is ‘true’ (Lines 8-9). For the current sub-

graph in T , which corresponds to the path from root to n , we 

calculate the candidate pair set CPS  of next matched vertices 

surviving in the pruning conditions of vPruCond  and igPruCond  

w.r.t. cn  (Lines 10-11). If at least one pair in CPS  is survived, 

then for each of the survived pairs in CPS , we construct the next 

partial mapping 'psi  by concatenating the pair to psi  and then 
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perform SubIsoOnGPTree from the child recursively (Lines 12-

15). At last, ANS  is the answer to the query q . 

Example 3. Figure 6 shows the state search space when we 

performing sub-iso testing from all the graphs in the GPTree in 

Figure 4 to 2q in Figure 5 using GPTreeTest. Each state is associ-

ated with a vertex pair (last added pair in psi ). For the state t  

associated with 6 4( , )n u , ( )psi t = 1 1{( , ),n u 2 2( , ),n u 3 3( , ),n u  

6 4( , )}n u . Notice that the first component of each pair in ( )psi t  is 

a node in the GPTree, since a subgraph corresponding to any 

path from the root in a GPTree is isomorphic to any subgraph the 

path represents. The rectangle in a state t  represents that some 

answers to 2q  are found in t . In particular, in the state with 

6 4( , )n u , 2g  is found; in the state with 5 4( , )n u , 1g  is found. Thus, 

when the space is finished being searched, the answer set is ob-

tained, which is 1 2{ , }g g . 

 

 

 

 

 

 

 

 

 

 

 

 

Response Time Analysis of GPTreeTest. One of the determi-

nants of the cost of sub-iso testing from a small graph to a large 

one is the number of vertices of the small graph sg , denoted as 

| |sgV . The reason is that a subgraph isomorphism must involve 

all vertices in sgV . Therefore, here we analyze the response time 

of GPTreeTest in terms of the number of sub-iso testings with 

different values of | |sgV  explicitly. Let n  be the number of 

graphs in a given GPTree. Let in  be the number of the graphs in 

the GPTree that share the same common prefix, and let icplen  be 

the number of codes (or vertices) in the common prefix (or com-

mon induced subgraph), where 1,...,i k in= =∑ n . As analyzed in 

Section 3.2.2, we have that for the in  graphs with the same 

icplen -length common prefix, the testing time saved by the com-

mon prefix is ( )iT cplen × ( 1)in − , where ( )iT cplen  is the aver-

age time taken by sub-iso testing from the graph corresponding to 

the common prefix to a query. Therefore, the searching time in 

GPTreeTest is at most isoEachn T× − 1,..., ( ) ( 1)i k i iT cplen n= × −∑ , 

where isoEachT  is the average time taken by sub-iso testing from 

each of the n  graphs in the GPTree to a query. In addition, by 

utilizing consecutive storage such as arrays, the overall time taken 

by initializing the three variables ( flag ,alOut ,ableChildCnt ) 

for all nodes in a GPTree is ( )nΘ , which is negligibly small com-

pared to the above searching time. 

3.4.2 On-line Redundant Features Shedding 
Based on the index of CRGraph, on-line redundant features 

shedding for q , which is embedded in the filtering phase, works 

as follows. Features are examined in an optimal order *≺ . During 

the process, if a feature f  is not contained in q , we add all de-

scendants of the vertex corresponding to f  in the CRGraph to the 

set SF , named shed feature set. After that, all features in SF  

need not be tested for sub-iso to q . In next iteration, we examine 

the next feature in the order *≺  which is not in SF . This process 

repeats until all features are either examined or shed. Thus, the 

eventual shed feature set SF  records all features which are 

avoided from subgraph isomorphism testing. 

Complexity Analysis. On-line redundant features shedding in-

volves children enumeration from the CRGraph. The time com-

plexity of it is O( | | | |)CRGraphF E+ ,where CRGraphE  is the edge set 

of the CRGraph. Thus, it takes 2(| | )FΘ  time in the worst case, 

but usually close to (| |)FΘ  time in practice. And the space us-

age is O( | |)F  for SF . 

3.4.3 The Integrated Query Processing Method 
Query processing on the FGPTree integrates the on-line redun-

dant features shedding and GPTreeTest on the FGPTree, whereas 

query processing on the GPTree follows GPTreeTest directly 

with reference to the candidate set obtained after the filtering step. 

That is, the overall query processing is an integrated method with 

techniques including on-line redundant features shedding and sub-

iso testing from multiple graphs in the GPTree to the query. It can 

be integrated easily, so we do not explicitly elaborate it. 

In summary, query processing consists of two steps. Given a 

query, FGPTree is examined by using the CRGraph first, i.e. on-

line redundant features shedding, and the candidate set is pro-

duced. Then, GPTreeTest is used against the projection of graphs 

in GPTree onto the candidate set, and the answer set is returned. 

3.4.4 Discussions 
We briefly discuss the support for external storage as follows. 

A disk-based strategy is that the trie of the GPTree of a graph 

database is not physically implemented, but only the order, in the 

GVCode, on the vertex set of each graph is recorded. When proc-

essing queries, only candidate graphs are retrieved and the trie of 

GPTree of these candidates is built on-the-fly. If the GPTree of 

all candidates cannot be accommodated in memory, then one 

portion after another of candidates are loaded, and GPTreeTest is 

invoked multiple times to finish the verification step. In this way, 

the time usage of BuildGPTree apart from ig-mT mentioned in 3.2.2 

is O( | | | | | |)g D gD FIG V∈× +∑ operations in memory and the 

disk-IOs involving storing vertex sequences of all graphs in D ; 

memory usage apart from ig-mS is ( )O( | ( ) | | |ig FIG
I
D igsup ig V∈ ×∑  

| | | |)D FIG×+  if vseqs are stored in memory. Besides, an al-

ternative strategy is storing the GPTree in disk edge by edge in a 

pre-order manner. Actually, we lay the emphasis on in-memory 

aspects of the approach, and the exploration of elaborate strate-

gies for support for external storage is considered as future work. 

Next, the maintenance of the organization and the indices is 

discussed in two cases of insertion and deletion. For insertion, 

when a new graph g  is to be inserted into D , Step 1, for GPTree, 

( )GVCode g  is generated with the codes in it in random order, 

and the generated ( )GVCode g  is inserted into the GPTree subse-

quently; Step 2, GPTreeTest on FGPTree is performed to update 

the support sets of all the features contained by g ; Step 3, for 

CRGraph, each directed edge is removed if its origin endpoint 

corresponds to a feature that is not contained in g  and its destini-

ation endpoint corresponds to a feature that is contained in g . 

Step 2 and Step 3 are conducted together. For Deletion, when a 

graph g  is to be deleted from D  by its graph-ID, the path which 

only relates to g  is directly deleted from the GPTree.  

4. EXPERIMENTAL EVALUATION 
In this section, we present our experimental studies that vali-

date the effectiveness and efficiency of our approach (GPTree for 

short) by comparing it with the state-of-the-art method, cIndex [4]. 

Figure 6: A Search Space 
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Two kinds of datasets are used: the real dataset that is used in the 

evaluation of cIndex and a series of synthetic datasets. All the 

experiments are performed on an Intel PIV3.0GHz PC with 2GB 

RAM, running Redhat Linux 8.0. Both cIndex and GPTree are 

implemented in C and compiled by gcc compiler (-O2). 

4.1 AIDS Antiviral Screen Dataset 
The experiments described in this section use the AIDS antivi-

ral screen dataset (AIDS  for short). It contains more than 40,000 

chemical compounds and is available publicly. The parameters in 

cIndex and GPTree are set as follows. (1) In cIndex, we randomly 

draw 10,000 graphs to form a dataset W , then divide W  to a 

query log set L  (8,000) and a testing query set Q  (2000). Con-

trast subgraphs are mined with the minimum support cσ = 0.05 

(this value relates to the minimum average candidate set size 

compared to cσ = 0.1 and 0.01). The smallest number of queries 

in each leaf for cIndex-TopDown, _min size , is still set 100. (2) 

In GPTree, query logs are not used, and the query set is the same 

as that in cIndex; the minimum significance threshold E
minδ  is 

1/0.8 for the exact method and A
minδ = 1/0.9 for the approximate 

one; and the minimum support threshold I
Tσ  for GPTree and that 

for Index construction Fσ  are both 0.05, and that for FGPTree 
I
FTσ  is 0.1 In order to build a graph database, we apply frequent 

subgraph mining on AIDS  and retain all subgraphs whose sup-

port ranges from 0.5% to 10%, which is denoted by initD . The test 

dataset consists of 10,000 graphs, denoted by 10,000D , which are 

randomly selected from initD . Among all the three particular 

methods of cIndex, we select cIndex-Basic for comparison of 

index construction because it yields the least features, and cIndex-

TopDown for comparison of query processing due to its greatest 

efficiency in query processing rather than cIndex-BottomUp and 

cIndex-Basic. 

We first test the index size and index construction time of cIn-

dex-Basic and GPTree, and organization construction time of 

GPTree. As mentioned in Section 3.3.3, the index and organiza-

tion constructions of GPTree are integrated, so we compare the 

overall preprocessing time of it with index construction of cIndex. 

Table 1 reports the construction time and the number of features 

on varying Fσ (= I
Tσ ) or cσ . 

 

Table 1. Preprocessing performance for AIDS 

GPTree (E:0.8) GPTree (A:0.9) cIndex min-
sup time (s) |F| time (s) |F| time (s) |F|
0.10 26.0 104 25.1 123 465.9 16

0.05 45.8 276 47.3 339 1242.0 15

0.01 611.2 1688 74.9 1981 7095.2 14

 

The time of constructing GPTree and indices in the proposed 

approach for AIDS  is one to two orders of magnitude smaller 

than that of cIndex. It is because cIndex needs to examine the 

containment relationship between the initial feature set 0F  and 

query logs, which is very costly. Although the number of features 

in the proposed method is more than that in cIndex, but hundreds 

of features would not occupy too much space. More importantly, 

we next show that query performance by these features is more 

efficient than cIndex. The reason is that features are significant 

and the on-line redundant features shedding can eliminate redun-

dant features in the filtering step, besides the GPTree. 

To evaluate the query performance of our approach, the 2,000 

queries are divided into eight bins: [0,10) , [10,20) , [20, 30) , 

[30, 40) , [40,100) , [100,200) , [200,500) , [500, )∞ , based on 

the size of the average query answer set, i.e. the number of the 

graphs in the database that are contained in the query. Figure 7 

reports that the average query processing time is about one order 

of magnitude faster than that using cIndex-TopDown. The main 

reason is that the compact organization of databases could save 

more underlying subgraph isomorphism testings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To verify the generated features are significant, we focus the 

candidate answer set size in Figure 8. X axis shows the average 

answer set size while Y axis shows the average candidate set size, 

i.e., | |qC . This figure shows that the candidate set size by the 

features generated in GPTree is several times smaller than that by 

cIndex-TopDown. Since we use A
minδ  (1/0.9)< E

minδ (1/0.8), the 

feature set generated by the approximate method shows a very 

close filtering power to that by the exact one. 

 

 

 

 

 

 

 

 

 

 

 

 

Next, we assess the effect of minδ  in exact and approximate fea-

ture generation methods on the feature set size | |F  and the can-

didate set size | |qC  in Figure 9. In this experiment, the query set 

[20, 30)  is processed on the dataset 10,000D . It shows that the can-

didate set gradually grows when minδ  increases. Simultaneously, 

the feature set size decreases. In practice, we have to make a 

trade-off between the performance and the space cost. Moreover, 

the filtering power of the approximately significant feature set is 

close to that of exact significant feature set for the same minδ , and 

they could be approximately equal to each other by decreasing 

Figure 8: Candidate Answer Set Size

Figure 7: Query Processing Time

Figure 9: Sensitivity of δmin 
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A
minδ  slightly. This experiment validates the effectiveness of the 

approximate method for feature generation, whereas its index 

construction time is much less than the exact method. 

To evaluate scalability, we generate four datasets by randomly 

selecting graphs from initD , whose size range from 10,000 to 

70,000. Query set is Q . Figure 10 and Figure 11 report the query 

processing time and average candidate set size on databases of 

various sizes. It shows the high scalability of GPTree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Synthetic Dataset 
In this section, the performance studies on synthetic datasets 

are conducted. The broadly used graph generator [13] is used to 

generate datasets, which relates to size parameters: D  (number of 

graphs), T  (average size of graphs), L  (number of seed small 

graphs), I  (average size of seed small graphs), V  (number of 

vertex labels) and S  (allowing overlaps of seed small graphs in 

generated graphs). It generates graphs as follows. First a set of 

seed small graphs are generated randomly, whose sizes are deter-

mined by a Poisson distribution with mean I . Then seed graphs 

are randomly selected and inserted into a graph one by one until 

the graph reaches its expected size T . 

 

 

 

 

 

 

 

 

 

 

 

 

 

For conducting experiments on datasets with different charac-

teristics from the real one, we individually generate database and 

queries. The database we generated is 10 15 100 5 5D kT L I V S , and 

query sets are 10 40 100 5 5D kT L I V S , 10 45 100 5 5D kT L I V S ,   

10 50 100 5 5D kT L I V S , 10 55 100 5 5D kT L I V S   and  

10 60 100 5 5D kT L I V S .  10 15 100 5 5D kT L I V S  denotes a set of 

10,000 graphs whose average size is 15 and there are 5 vertex 

labels altogether. We divide each query set into a query log set 

(8,000) and a testing query set (2000). We set cσ = 0.10, 

_min size =100; in the setting of GPTree, the testing query set is 

the same, and E
minδ =1/0.7, A

minδ =1/0.8, I
Tσ = Fσ = I

FTσ =0.10. 

Figure 12 reports that the average query processing time is 

much less than that using cIndex-TopDown. Figure 13 shows that 

the candidate set size by the features generated in GPTree is still 

much smaller than that by cIndex-TopDown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Other synthetic datasets with different parameters were also 

tested. Similar results were observed in these experiments. 

5. RELATED WORK 
There have been a number of studies on subgraph query proc-

essing. To overcome the difficulty answering arbitrary in structure 

graph queries, some filtering-and-verification based approaches 

are proposed to upgrade performance. In these approaches, the 

first kind [5, 17, 25-27] applies data mining techniques as build-

ing blocks for extracting features, and the second kind [11, 12, 18, 

21, 28] uses other strategy to construct feature set. However, these 

methods target subgraph query and are not applicable to the su-

pergraph query. In addition, although closure-tree [11] also ar-

ranges graphs into hierarchical indexing structures, which is used 

to remove false positives and construct a candidate answer set in 

the filtering step, the proposed method GPTree is different from 

closure-tree and applicable to all the cases of subgraph isomor-

phism testing from multiple graphs to one graph, including accel-

erating the computing of candidate set and the verification of each 

candidate for the studied query processing problem. 

As graphs are prevalently used in various domains, a basic 

problem among these applications is comparing graphs including 

determining the subgraph relationship between two graphs. This 

problem may be associated with different names, such as graph 

matching, (sub)graph isomorphism testing, and so on. It recently 

obtains a growing attention [3, 6, 8]. For subgraph relationship 

decision, the Ullmann’s algorithm [19] performs a tree search in 

terms of vertices, and in each substep refines the future vertex 

pairs on the basis of the current partial matching. A recent algo-

rithm VF2 [7], whose refinement heuristic is faster to compute, 

achieves in many cases significant improvement over other algo-

rithms. These algorithms all aim at finding sub-iso from one to 

one, thus they are inefficient for the problem studied in this paper. 

For the detection of subgraph isomorphisms from many graphs 

to one, [15] builds a decision tree in preprocessing phase and 

results in a quadratic time with respect to the input graph size, but 

with exponential space requirement and preprocessing time, 

Figure 13: Candidate Answer Set Size

Figure 12: Query Processing Time 

Figure 11: Query Performance on Varying Database 

Figure 10: Query Performance on Varying Database 
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which leads to its inapplicability to large-size databases. An in-

spiring decomposition-based method [16] results in a time sublin-

ear w.r.t. the number of graphs in a database. However, owing to 

the underlying decomposition strategy, the output of the method 

are all subgraph isomorphisms from each graph in answer set to 

the query graph, which is unnecessary and time consuming for the 

supergraph query. In the XML context, [10] constructs a single 

deterministic pushdown automata to generalize and improve tree 

pattern matching technique (not for arbitrary in structure graphs) 

for the specific task of evaluating XPath queries. [1] lays empha-

sis on finding XML schema embeddings by which an instance-

level mapping can be automatically derived and it guarantees 

information preservation w.r.t. an XML query language. It does 

not focus on finding schema embeddings from large amounts of 

source DTD schemas to a single target DTD in a scalable manner. 

To the best of our knowledge, cIndex [4] is the only method em-

ploying the filtering-and-verification methodology to process 

supergraph queries so far. However, there is no algorithm that 

exploits the efficient methodology and considers organizing 

graphs in databases to upgrade the supergraph query processing 

performance, which is the emphasis of this study. 

An introduction on graph mining is given in [20]. There has 

been many methods proposed [2, 13, 22-24], which can effi-

ciently obtain (closed) frequent (induced) subgraphs from a data-

base. To decrease the number of frequent subgraphs in a param-

eterized way, graph patterns summarization was proposed in [14]. 

They play an important role in preprocessing phase in the paper. 

6. CONCLUSIONS 
In this paper, in order to answer the supergraph query, a novel 

compact organization of a graph database, GPTree, was proposed. 

Adopting the filtering-and-verification methodology, we intro-

duced two methods for feature generation. Besides the exact sig-

nificant feature set generation method, an approximate method for 

generating significant feature set was proposed. The approximate 

method could comparatively fast generate a feature set. Features 

are arranged in an optimal order, and by using the proposed on-

line redundant features shedding method, the number of subgraph 

isomorphism testings from features to query graphs is reduced. 

Based on GPTree, a new algorithm from multiple graphs to one, 

GPTreeTest, was proposed. Benefiting from GPTree and the algo-

rithm of GPTreeTest, much less number of subgraph isomorphism 

testings need be performed in both the filtering and the verifica-

tion steps. Based on all the above techniques, the proposed super-

graph query processing approach outperforms the existing coun-

terpart method by one to two orders of magnitude. 
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