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Purpose: Gliomas are the most common primary brain malignancies, with varying

degrees of aggressiveness and prognosis. Understanding of tumor biology and

intra-tumor heterogeneity is necessary for planning personalized therapy and predicting

response to therapy. Accurate tumoral and intra-tumoral segmentation on MRI is the

first step toward understanding the tumor biology through computational methods.

The purpose of this study was to design a segmentation algorithm and evaluate its

performance on pre-treatment brain MRIs obtained from patients with gliomas.

Materials andMethods: In this study, we have designed a novel 3D U-Net architecture

that segments various radiologically identifiable sub-regions like edema, enhancing

tumor, and necrosis. Weighted patch extraction scheme from the tumor border regions is

proposed to address the problem of class imbalance between tumor and non-tumorous

patches. The architecture consists of a contracting path to capture context and the

symmetric expanding path that enables precise localization. The Deep Convolutional

Neural Network (DCNN) based architecture is trained on 285 patients, validated on 66

patients and tested on 191 patients with Glioma from Brain Tumor Segmentation (BraTS)

2018 challenge dataset. Three dimensional patches are extracted from multi-channel

BraTS training dataset to train 3D U-Net architecture. The efficacy of the proposed

approach is also tested on an independent dataset of 40 patients with High Grade

Glioma from our tertiary cancer center. Segmentation results are assessed in terms

of Dice Score, Sensitivity, Specificity, and Hausdorff 95 distance (ITCN intra-tumoral

classification network).

Result: Our proposed architecture achieved Dice scores of 0.88, 0.83, and 0.75

for the whole tumor, tumor core and enhancing tumor, respectively, on BraTS

validation dataset and 0.85, 0.77, 0.67 on test dataset. The results were similar on

the independent patients’ dataset from our hospital, achieving Dice scores of 0.92,

0.90, and 0.81 for the whole tumor, tumor core and enhancing tumor, respectively.
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Conclusion: The results of this study show the potential of patch-based 3D U-Net

for the accurate intra-tumor segmentation. From experiments, it is observed that the

weighted patch-based segmentation approach gives comparable performance with the

pixel-based approach when there is a thin boundary between tumor subparts.

Keywords: glioma, intra-tumor segmentation, convolutional neural network, deep learning, 3D U-Net

INTRODUCTION

According to the Central Brain Tumor Registry of the
United States (CBTRUS), 86,970 new cases of primary malignant
and non-malignant brain tumors are expected to be diagnosed in
the United States in 20191. An estimated 16,830 deaths attributed
to primary malignant brain tumors in the US in 2018. Gliomas
are themost frequent primary brain tumors in adults and account
for 70% of adult malignant primary brain tumors. Glioma arises
from glial cells and infiltrates the surrounding tissues such as
white matter fiber tracts with very rapid growth (Menze et al.,
2015). Patients diagnosed with Glioblastoma tumors have an
average survival time of 14 months (Louis et al., 2007).

Accurate segmentation of brain tumor tissues from Brain MR
images is of profound importance in many clinical applications
such as surgical planning and image-guided interventions
(Mahajan et al., 2015). Manual tracing and detection of organs
and tumor structure from medical images is considered as one
of the preliminary steps in disease diagnosis, treatment planning,
andmonitoring tumor growth with follow-up evaluation (Udupa
and Saha, 2003). In a clinical setup, this time-consuming process
is carried out by radiologists, however, this approach becomes
impractical when the number of patients increases. This presents
an unmet need for automated segmentation methods (He et al.,
2019; Vaidya et al., 2019).

In order to diagnose abnormality in brain tissues, various
radio imaging techniques like Magnetic Resonance Imaging
(MRI), Computed Tomography (CT), and Positron Emission
Tomography (PET) are used. Over the last few decades, because
of the better soft-tissue contrast, MRI is widely used to assess
the brain tissues in clinical practices. Unlike X-rays or CT
scans the intensity signature is variable in MRI due to various
acquisition protocols. The same tumor cells follow different
intensity distribution when acquired with different scanners with
varying field strength, voxel resolution, and field of view. More
accurate compositemarking of the tumor regions can be achieved
with four distinct MR sequences like T1, T2, T1 post-contrast
(T1ce), and Fluid Attenuated Inversion Recovery (FLAIR). Intra-
tumor parts for these four MR sequences with varying intensity
can be visualized in Figure 1.

Different heterogeneous intra-tumor regions like edema,
active tumor, and necrotic regions are present in Glial brain
tumors. Intra-tumor segmentation in the brain has been
challenging task because of its several characteristics such as non-
rigid and complex appearance, variation in size, and position
of tumor from patient to patient. Poor delineation of the

1Available: http://www.cbtrus.org/www.cbtrus.org/factsheet/factsheet.html

intra-tumor parts in multi-modal MRI data as well as similar
textural properties of the pathology with healthy tissues make
the segmentation task more prone to error. It has been observed
that even expert raters show significant variations in case of poor
intensity gradients between tumor and rest of the healthy brain
tissues. Though several algorithms have been proposed over the
decades to address this task, most have shortcomings limiting
their utility in routine clinical practice.

The aim of this study is to design a fully automated brain
tumor segmentation algorithm which will accurately segment
the tumors and act as an assistive tool for radiologists for
exact tumor quantification. We have proposed a fully automatic
brain tumor segmentation with 3D U-Net architecture based
on Deep Convolutional Neural Networks. An efficient weighted
patch extraction method along with a unique number of feature
maps at each level of 3D U-Net is proposed for accurate intra-
tumor segmentation.

We briefly review conventional and recent methods for
brain tumor segmentation algorithms available in the literature.
Further, BraTS challenge database along with local dataset from
our hospital and proposed methodology for tumor segmentation
is described. This is followed by experimental results, quantitative
as well as a qualitative evaluation of the results and comparison
with other methods. Finally, we conclude the manuscript with
future directions.

LITERATURE REVIEW

As mentioned by Menze et al. there is a linear increase in the
tumor imaging literature over the past 30 years and over 25%
of the publications aimed at “automated” tumor segmentation.
Segmentation of the glial tumors is the primary focus in most
of the existing methods and very few methods targeted for
specific glioma subtype or meningioma (Bauer et al., 2013).
The brain tumor segmentation methods are broadly classified
into two categories based on generative probabilistic based
models and discriminative approaches. Generative probabilistic
based approaches detect abnormal regions by comparing it with
explicit models of anatomy and outlier detection. On the other
hand, discriminative models learn from feature-based differences
between normal tissues and tumor tissues.

Generative models aim at finding the outliers between a-
priori model of a healthy brain (atlas) and the abnormal regions.
This uses the prior information of tumor appearance and spatial
distribution of the brain tissues and these methods exhibit
good generalization to an unseen database (Prastawa et al.,
2004). Cordier et al. (2016) proposed a fully automatic patch-
based approach for Glioma segmentation with the multi-atlas
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voting technique with less prior learning to avoid overfitting.
The major drawback of these approaches is that it relies
heavily on domain-specific prior knowledge and accurate multi-
modal image registration. Because of the presence of large
abnormalities and resection cavities in the brain, the multimodal
registrationmiserably fails which lead to inaccurate segmentation
in generative models.

Discriminative models directly learn from hand-designed
features calculated on lesions and other brain tissues. This is
carried out on large datasets to avoid the effect of imaging
artifacts, intensity, and shape variations. In these approaches,
various dense, and voxelwise features are extracted from MR
images and fed into the classification algorithms like decision
trees and support vectormachines (Criminisi and Shotton, 2013).
Demirhan et al. (2015) employed amethod based on wavelets and
Self-OrganizingMaps (SOM) to segment intra-tumor parts along
with healthy brain tissues. The drawback of these approaches is
that, since the segmentation highly relies on the intensity, texture
features etc. of the training data, segmentation is specific to the
MRI images acquired with the same imaging protocol as of the
training dataset.

Balafar et al. reviewed brain tumor segmentation methods
and further classified them into four categories as Threshold-
based, Region-based, Pixel classification based, and Model-based
techniques with pros and cons over each other (Balafar et al.,
2010). Many approaches to brain tumor segmentation have been
implemented over decades but there is no winning theory.

Recent methods based on Deep Convolutional Neural

Networks have outperformed all traditional machine learning

methods in various domains like medical image segmentation,

image classification, object detection, and tracking etc. (Smistad
et al., 2015) and are currently considered to be art in biomedical

image segmentation (Moeskops et al., 2016; Pereira et al., 2016;
Havaei et al., 2017). The computational power of GPUs has
enabled researchers to design deep neural network models
with convolutional layers which are computationally expensive
(Eklund et al., 2013; Eminaga et al., 2018; Lee et al., 2018;
Leyh-Bannurah et al., 2018).

Pereira et al. (2016) proposed an automatic segmentation

method using Convolutional Neural Networks by exploring
smal 3 × 3 kernels. 2D patches were extracted from four MR

channels of size 33×33 for training the network. Ronneberger

et al. (2015) segmented the neuronal structures in electron
microscopic stacks with 2D U-Net architecture trained on

transmitted light microscopy images with augmentation of the
training data by geometrical image transformations. Kamnitsas
et al. (2017) proposed dual pathway architecture with dense
training scheme to incorporate both local and larger contextual
information. The architecture processed the input images
at multiple scales simultaneously. False positives in the
segmentation maps were minimized using Conditional Random
Forests (CRF).

Inspired from the above literature, we developed
a novel Deep Convolutional Neural Network-based
3D U-Net model with a unique number of feature
maps. Various heterogeneous histologic sub-regions
like peritumoral edema, enhancing tumor, and necrosis
were accurately segmented in spite of thin and/or
fuzzy boundaries between intra-tumor parts with this
proposed architecture.

PATIENTS AND METHOD

We focused our experimental analysis on MICCAI (Medical
Image Computing and Computer-Assisted Intervention) Brain
Tumor Segmentation (BraTS) 2018 challenge (Bakas et al.,
2019). BraTS dataset consisted of multi-institutional routine
clinically acquired pre-operative multimodal MRI scans of High
Grade Glioma i.e., Glioblastoma (GBM/HGG) and Lower Grade
Glioma (LGG), with a pathologically confirmed diagnosis. In the
challenge, MR data of 285 patients for training, 66 for validation
and 191 patients were provided in the test dataset. The MR
data was acquired with different imaging clinical protocols and
various MR scanners with 19 distinct institutions (Bakas et al.,
2017a,b). Each patient data was provided with FLAIR, T1, T2,
T1 post-contrast MR volume of size 240×240×155 which were
resampled to 1mm × 1mm × 1mm resolution. Segmentation
labels as edema, enhancing tumor, and necrosis were annotated
for all patients by one to four radiologists as shown in Figure 1.
These segmented labels were also verified by expert neuro-
radiologists. The main task of BraTS 2018 challenge was to
auto-segment the tumor into its three constituent regions viz.

1. Enhancing tumor region (ET)
2. Tumor Core (TC) which entails the ET, necrotic (fluid-filled)

and the non-enhancing (solid) parts
3. Whole tumor (WT) which includes all intra-tumor parts along

with Edema.

FIGURE 1 | Multi-modal data with four channels provided in BraTS 2018 challenge dataset along with Ground Truth (GT). Sub tumor parts are represented

as—Edema: Green, Enhancing tumor: Blue, Necrosis: Red.
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Apart from BraTS 2018 dataset, the proposed method was
also tested on 40 pre-treatment multimodal MRI patient
datasets of Glioblastoma (GBM) from our hospital. MR data
of four channels as FLAIR, T1, T2, and T1 post contrast was
collected for the study. The acquisition protocol is provided in
Supplementary Material. The local dataset was explicitly used
for the purpose of testing only. This dataset was also skull-
stripped and resampled to 1mm × 1mm × 1mm resolution.
This dataset was annotated by the expert radiologists from our
hospital with the same protocol which was defined to annotate
BraTS challenge dataset (Menze et al., 2015).

Pre-processing
The input data for the segmentation algorithm were skull
stripped, normalized, and co-registered to an anatomical
template (Smith, 2002). In order to normalize the signal
intensities between the BraTS and our hospital datasets, bias
field correction was performed with N4ITK tool (Tustison et al.,
2010). Further, MR data of each channel was normalized by
subtracting the channel mean and dividing by the variance i.e.,
zero mean and unit variance.

Patch Extraction
Tumor sub-region distribution in BraTS training data was highly
imbalanced. Further, 98% pixels of the dataset belonged to either
healthy brain tissues or background and hence the model was
prone to overfit on non-tumor tissues only. The problem was
exaggerated when the prediction was made based on center
pixel class of the patch. Hence, precise patch selection from the
input data for training is of extreme importance. To overcome
this problem, we adopted a novel 3D patch-based approach for
training with weighted sampling. Zhou et al. (2019) reviewed 2D
and 3D patch extraction methods along with several types of loss

FIGURE 2 | Patch center localization by randomly selecting x, y, z coordinates

in brain volume.

functions. The main approaches included resampling the data
space as: under-sampling the negative class or up-sampling the
negative class and SMOTE (Synthetic Minority Over-sampling
Technique) generating synthetic samples. Themethods discussed
includes patch extraction 50% probability being cantered either
on the lesion or healthy voxel. Also, all training patches centered
on a lesion voxel. AlBadawy et al. (2018) discussed impact of
cross institutional training and testing for segmentation of brain
tumors. In this study patches of 33∗33were extracted on T1, T1ce,
and FLAIR modality. Our proposed approach differs with this
approach in terms of dimension of patch size as 64∗64∗64. It is
well-known fact that T2 modality is widely used to distinguish
tumor core boundary with rest of the tumor and hence we
included T2 channel as well along with the other three MR
channels to incorporate more information during training.

In our proposed approach, 3D patches were extracted from
all the four modalities so that the network can be trained on
a distinct intensity signature of intra-tumor tissues in each
modality. For this, we considered the equidistant seed points in
X, Y, and Z directions of the MR data as shown in Figure 2. A
3D patch of size 64 × 64 × 64 voxels was considered around
each seed point. In the next step, potential patches which had
brain area more than 60% of the total patch were only considered
for the training to minimize the chances of overfitting of the
model to the background pixels. It was observed that the model
was misclassifying the pixels on tumor boundary to healthy
brain tissues. A similar problem occurred when tumors were
present on the boundary of the brain, with pixels being classified
to background. To address this, some patches were explicitly
extracted on the boundary of the tumor with weighted sampling
as shown in Figure 3. The boundary locations of the WT is
considered as the tumor boundary to extract the additional
patches. This is done with find_boundaries() function available in
segmentation module in popular skimage library. Randomly 30%
boundary locations are selected for these extra patch extractions.
Since, there is high class imbalance in tumor tissues and healthy
tissues, this additional patch extraction does not impact on the
performance of model like biased training or overfitting. These
additional patches were added to the training patch dataset so
that model could be trained in a better way to distinguish thin

FIGURE 3 | Uniform sampling and weighted sampling for patch extraction.
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boundaries of the tumor with the rest of the brain or background.
This weighted patch extraction pipeline is fully automatic i.e.,
without any manual intervention. These 3D patches from all the
four channels were concatenated together and given as input to
the first layer of the model along with corresponding ground
truth during training. During testing as well the non-overlapping
patches of size 64 × 64 × 64 were extracted and final output
volume is generated by concatenating all these predicted patches
to get single 240× 240× 155 volume.

Proposed 3D U-Net Architecture
Conventional U-Net architecture consists of a bunch of
basic layers such as convolutional layers, down-sampling and
upsampling layers etc. Several variants of the 2D and 3D U-Net
architectures are available in the recent literature which mainly
differ in respect to the choice of hyperparameters viz. depth of
U-Net, number of feature maps, kernel size etc. Selection of these
hyperparameters along with accurate region input is of utmost
importance for accurate training of the model. The novelty of our
proposed approach lies in the weighted patch extraction scheme
from the edges of the tumor and designing the structure of 3D
U-net with less number of levels and an increased number of
filters at each level. Although several deeper U-Net architectures
are proposed for segmentation task, we restricted our network
to three levels. This reduced the number of trainable parameters
but also avoided the bottleneck problem caused due to smaller
patch size.

In proposed 3D U-Net architecture, from the first level to
third level 48, 96, and 192 feature maps were present at each
subsequent level in down-sampling and up-sampling layers as
shown in Figure 4. The proposed architecture consisted of a
contracting path to capture context and a symmetric expanding
path that enables precise localization. At the first layer four 64
× 64 × 64 multichannel MR volume data was given as input for
training along with the corresponding ground truth. The number
of features maps increased in the subsequent layers to learn the
deep tumor features. These were followed by ReLU activation

function and the features were down-sampled in encoding layer.
Similarly, in decoding layer after convolution layers and ReLU
activation function, features maps were up-sampled by a factor
of 2. Features maps from encoding layers were concatenated
to the corresponding decoding layer in the architecture. In
contrast to conventional U-Net, all the feature maps were zero-
padded to keep the same output dimensions for all convolutional
layers. Finally, four output maps were generated with 1 × 1
convolutional layer corresponding to non-tumor tissue, edema,
necrosis, and enhancing tumor. Each voxel of these four output
maps corresponds to the probability of each voxel belonging
to the particular class. The final prediction was generated by
selecting the label with maximum probability from these four
label maps. At the output layer, the segmentation map predicted
by the model was compared with the corresponding ground
truth and the error was backpropagated in the intermediate 3D
U-Net layers.

In our implementation, the learning rate (α) was initialized
to 0.001 and remained unchanged till 60 epochs. Since, after
60 epochs the Dice loss stopped improving, we decreased it
linearly by a factor of 10−1 which avoided convergence of the
model to local minima. The model is trained for 100 epochs
since beyond that there was no significant improvement in the
Dice loss and hence the training was terminated. Dropout with
ratio 0.25 was added during training to avoid overfitting. The
architecture was trained with a batch size of 8. Further, for
better optimization a momentum strategy was included in the
implementation. This used a temporally averaged gradient to
damp the optimization velocity.

Post-processing
False positives in the segmentation output within the brain
region were minimized with 3D Connected Component Analysis
with the largest connected component being retained in each
predicted volume. Similarly, false positives from the background
were eliminated using a binary brain mask generated from brain
volume and overlaid on the segmentation output with a logical

FIGURE 4 | Proposed 3D U-Net Architecture. Voxels from all four MR channels were given input to the first layer of the model. The predicted labels were compared

with the Ground truth to calculate Dice loss.
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AND operation. This improved the accuracy of the segmentation
significantly for tumors present on the boundaries of the brain.
There are some limitations of 3D connected component analysis
as post-processing method where bifocal tumors are present that
too in distinct brain lobes.

Implementation Details
The proposed architecture was implemented using Tensorflow
library which supported the use of GPUs (Agarwal et al., 2015).
GPU implementation greatly accelerated the implementation of

deep learning algorithms. The approximate time to train the
model was 48 h on 16 GB NVIDIA P100 GPU using cuDNN v5.0
and CUDA 8.0 with 128 GB RAM. The prediction on validation
data took <60 s for a single patient with four MR channels data,
each of dimension 240× 240× 155.

RESULTS AND DISCUSSION

The quantitative evaluation of the proposed model was done
on BraTS 2018 challenge dataset and also on an independent

FIGURE 5 | Segmentation results on BraTS 2018 challenge dataset on High Grade Glioma (HGG) and Low Grade Glioma (LGG). In each row from left to right—FLAIR,

T1, T2, T1ce, Ground Truth (GT), and predicted output. Segmented Edema, Enhancing Tumor and Necrosis shown with Yellow, Blue, and Red colors, respectively.
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dataset of GBMs from our hospital. The BraTS dataset comprised
of three data sub-sets, viz. training, validation, and test dataset.
No ground truths were provided for validation and test dataset.
The representative results on BraTS challenge dataset are shown
in Figure 5 with High Grade Glioma (HGG) and Low Grade
Glioma (LGG). Edema, Enhancing Tumor, and Tumor Core
segmented by our approach are shown with Yellow, Blue, and
Red colors, respectively.

Quantitative Performance Evaluation
Performance evaluation was done based on Dice Score,
Sensitivity, Specificity, and Hausdorff 95 distance. These
evaluation matrices are measures of voxel-wise overlap of the
segmented regions (CBICA Image Processing Portal2; Taha and
Hanbury, 2015). The Dice score normalizes the number of true
positives to the average size of the two segmented areas. It is
identical to the F score (the harmonic mean of the precision-
recall curve) and can be transformed monotonously to the
Jaccard score. For the tumor regions Dice Score, Sensitivity (True
positive rate), and Specificity (True negative rate) were computed
as shown in Equations (1)–(3).

Dice (P,T) =
2 ∗ |P1 ∩ T1|

(|P1| + |T1|)
(1)

Sensitivity (P,T) =
|P1 ∩ T1|

(|T1|)
(2)

Specificity (P,T) =
|P0 ∩ T0|

(|T0|)
(3)

Where, P represents the model prediction and T represents
the Ground Truth labels. T1 and T0 are the subset of voxels
predicted as positive and negatives for tumor region and similar
for P0 and P1 as shown in Figure 6. The Hausdorff 95 distance
is the 95th quartile of the maximum overall surface distance
between predicted surface and ground truth surface. Hausdorff
95 overcomes the problem of high sensitivity of the Hausdorff
measure to small outlying sub-regions from both P1 and T1 (Taha
andHanbury, 2015). Specificity was also calculated andwas noted
to be>99% in all the cases. Mean, median, standard deviation, 25
quartile, and 75 quartile were also computed for all the patients in
the dataset. The BraTS challenge organizers had provided online
evaluation system for all the training, validation, and test cases
from the BraTS dataset (CBICA Image Processing Portal). The
evaluation metrics were calculated by us for the in-house cases
(Table 1 and Figure 7).

In BraTS 2018 training dataset, the mean Dice score for ET,
WT, and TC was 0.80, 0.93, and 0.91, respectively. The model
predicted ET, WT, and TC with Dice score of 0.75, 0.88, and 0.83
for validation dataset. Comparison of our approach with other
methods participated in the BraTS challenge is given in Table 2.

2CBICA Image Processing Portal. Available: https://ipp.cbica.upenn.edu/

FIGURE 6 | Red contour: ground truth, green contour: predicted

segmentation. Notation T is to denote ground truth and P to the predicted

segmentation output.

From Table 2, it can be observed that our approach achieved
better segmentation accuracy in terms of Dice Score over other
methods available in the literature. We tested the proposed
architecture on 40 patients from our hospital and achieved Dice
Score 0.81, 0.92, and 0.90 for ET, WT, and TC, respectively.

The proposed approach outperformed over other U-net based
deep learning approaches available in the literature as shown in
Table 2 for training and validation dataset. Since the performance
of other methods on test dataset are not available publically
and hence not included in the comparison. As different tumor
parts appear with distinct intensities in FLAIR, T1, T2, and
T1ce modalities, we extracted 3D patches from all the four
modalities which resulted in better training for intra-tumor
segmentation. Also, we resolved the problems resulting due
to focusing on the center pixels of a patch as has been the
norm in previous approaches (Pereira et al., 2016) which results
in high misclassification due to severe class imbalance in the
patches. We instead have merged the four segmentation label
maps corresponding to enhancing tumor, necrosis, edema, and
background predicted at the output layer, to generate a single
segmentation map.

High class imbalance is also intrinsic tomost imaging datasets.
Around 98.88% pixels belonged to background/healthy class
while an average of 0.64, 0.20, and 0.23% pixels belonged to
Edema, enhancing tumor and necrosis, respectively. Training of
the model with this class imbalance would result in overfitting to
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TABLE 1 | Experimental results on BraTS 18 challenge training, testing, and validation dataset.

Datasets Evaluation parameters Dice Hausdorff 95

ET WT TC ET WT TC

BraTS18 Training (285 patients) Mean 0.8202 0.9324 0.9198 7.0750 11.0278 11.0985

SD 0.2746 0.1057 0.1327 21.2342 27.9139 29.4150

Median 0.9062 0.9614 0.9565 1.0000 1.4142 1.0000

25 Quartile 0.8422 0.9406 0.9303 1.0000 1.0000 1.0000

75 Quartile 0.9422 0.9728 0.9687 1.4142 1.7320 2.0000

BraTS18 Validation (66 patients) Mean 0.7480 0.8780 0.8267 7.2951 16.8157 11.2021

SD 0.2659 0.1346 0.1828 15.7042 30.2509 20.2365

Median 0.8527 0.9180 0.8985 2.2360 3.3131 4.3589

25 Quartile 0.7325 0.8665 0.7771 1.4142 2.0000 2.0000

75 Quartile 0.8853 0.9420 0.9444 3.9354 8.4183 9.4868

BraTS18 Testing (191 patients) Mean 0.6677 0.8475 0.7688 9.0554 17.2184 14.5728

SD 0.3120 0.1699 0.2786 19.8975 28.9190 26.1504

Median 0.8013 0.9050 0.8946 2.2360 3.4641 3.3166

25 Quartile 0.6557 0.8336 0.7519 1.4142 2.2360 2.0000

75 Quartile 0.8657 0.9404 0.9328 3.6055 9.4604 8.4844

Our patient dataset (40 patients) Mean 0.8134 0.9235 0.9012 6.0863 8.1789 9.8647

ET, enhancing tumor; WT, whole tumor; TC, tumor core; SD, standard deviation.

the healthy class leading to misclassification of necrotic pixels to
healthy pixels. This problemwas overcome by weighted sampling
and augmenting the data for under-represented regions. Patches
from the boundary region of the tumor were added explicitly
for better training of the model with weighted patch extraction.
All these steps increased the segmentation accuracy at the
tumor boundaries.

In patch-based training approaches, larger patches require
more max-pooling layers which minimize the localization
accuracy. Contrarily, training with small patches allows the
network to see only little context. Hence, a classifier output
that takes into account the features from multiple layers is
considered. This leads to better localization with the use of
context. We experimented with various patch extraction size
and schemes along with variations in encoding and decoding
layers in terms of number and dimension of the Conv-filters.
We finalized various hyperparameters like the number of Conv
layers, feature maps, activation function, loss function, patch size,
learning rate, etc. by extensive experimentation on validation
dataset. We evaluated the performance of the model on online
evaluation portal for validation dataset and the hyperparameters
for which best validation Dice score is achieved are finalized.
Three encoding and three decoding layers with 48, 96, and
192 feature maps with ReLU activation function is used in
the model with training on patch size of 64 × 64 × 64. The
weights of the proposed model are updated according to Dice
loss. Some notable variations and performance are provided
in Supplementary Table 2.

Box plot for all the patients in BraTS training and validation
dataset are shown in Figure 7. It can be observed that the median
value is much higher than the mean value in terms of Dice Score.
Theoretically, Dice Score ranges from minimum 0 to maximum

1. From the box plots, it can be observed that the Dice scores
of two cases for enhancing tumor and tumor core segmentation
results are very close to 0 and for the whole tumor is below 0.5
in a few cases. These regions failed to segment accurately because
of the high deviation in characteristics in training and validation
dataset. This problem can be overcome by increasing the training
data with inter-patient variations.

Grading of Segmentation by
Neuroradiologist
The segmentation results on the in-house testing dataset were
further evaluated by an in-house expert radiologist (AM) on a
scale of 0–5. Score 0 referred to the poor segmentation and 5
for the most accurate delineating of the tumor parts from the
healthy tissues. The subjective score for almost all segmented
images was found acceptable by the radiologists. However, in
a few cases with large necrotic tumor cavity, the proposed
algorithm failed to accurately segment the tumor parts. We
further investigated the problem and found that such cases were
not present in the BraTS challenge training dataset on which
proposed architecture was trained and this can be addressed
by increasing the training dataset with patients belonging such
type of tumor parts. We achieved average 4.1 and median 4
score by the expert Neuroradiologist. The details are provided
in Supplementary Table 1. Since, BraTS validation and dataset
comprised of the scans from multiple institution with varying
protocols the performance on them is comparatively poor. Also,
it was observed that on online evaluation portal even if you
predict a single pixel for the sub-tumor part which is not present
in the patient scan, the Dice score for the corresponding case is
zero which reduces the mean Dice score on complete dataset. MR
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FIGURE 7 | Box plot of Dice score, Sensitivity and Hausdorff 95 distance on BraTS18 training and validation data. Red line within box plot is the median of the

corresponding data. ET, enhancing tumor; WT, whole tumor; TC, tumor core.

data of all the patients from our in-house dataset was with all the
tumor subparts and hence there were no cases for which the Dice
score as zero.

CONCLUSION

In this paper, we presented fully automatic brain tumor
segmentation with a novel 3D U-Net architecture based on Deep
Convolutional Neural Networks. An efficient weighted patch
extraction method along with a unique number of feature maps

at each level of 3D U-Net is proposed for accurate intra-tumor
segmentation. The performance of the proposed algorithm is
evaluated on BraTS 2018 dataset as well as on the dataset from
the local hospital. We considered different training schemes
with variable patch sizes, data augmentation methods, activation
functions, loss functions, and optimizers. Nowadays, adversarial
networks are outperforming state of the art methods for semantic
segmentation in several Computer Vision tasks. This can be
further inverstigated to improve the segmentation in medical
images. The work can also be extended for prediction of overall
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TABLE 2 | Comparison of proposed architecture with other segmentation methods who participated in BraTS 2018 challenge.

BraTS18 datasets References Dice Hausdorff 95

ET WT TC ET WT TC

Validation Cabezas et al., 2018 0.7403 0.8892 0.7200 5.3035 6.9563 11.9238

Chen et al., 2018 0.7334 0.8878 0.8078 4.6426 5.50541 8.14015

Fang and He, 2018 0.7200 0.8560 0.7260 5.7000 7.5000 9.5000

Gates et al., 2018 0.6783 0.8055 0.6852 14.5229 14.4150 20.0174

Hu et al., 2018 0.6100 0.8300 0.7300 41.4800 47.2300 41.1400

Myronenko, 2019 0.8233 0.9100 0.8668 3.9257 4.5160 6.8545

Isensee et al., 2018 0.8087 0.9126 0.8634 2.41 4.27 6.52

Mehta and Tal, 2019 0.7880 0.9090 0.825 3.520 4.923 8.316

Lefkovits et al., 2018 0.7190 0.8730 0.6890 7.3040 7.0680 12.6630

Proposed 3D U-Net 0.7480 0.8780 0.8267 7.2951 12.9486 11.2021

ET, enhancing tumor; WT, whole tumor; TC, tumor core.

survival prediction of the patient with the radiomic features
computed on the predicted tumor.
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