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Scale-invariant feature transform (SIFT) algorithm, one of the most famous and popular interest point detectors, detects extrema
by using di
erence-of-Gaussian (DoG) �lter which is an approximation to the Laplacian-of-Gaussian (LoG) for improving speed.
However, DoG �lter has a strong response along edge, even if the location along the edge is poorly determined and therefore
is unstable to small amounts of noise. In this paper, we propose a novel interest point detection algorithm, which detects scale
space extrema by using a Laplacian-of-Bilateral (LoB) �lter. 	e LoB �lter, which is produced by Bilateral and Laplacian �lter, can
preserve edge characteristic by fully utilizing the information of intensity variety. Comparedwith the SIFT algorithm, our algorithm
substantially improves the repeatability of detected interest points on a very challenging benchmark dataset, in which images were
generated under di
erent imaging conditions. Extensive experimental results show that the proposed approach is more robust to
challenging problems such as illumination and viewpoint changes, especially when encountering large illumination change.

1. Introduction

Interest points (together with the small image patch around
them) are local features for which the signal changes two-
dimensionally. Due to their advantages of robustness, e�-
ciency, and the ability of working without initialization,
interest points have proven to be very successful in many
applications such as image retrieval [1–4], object recognition
[5–8], wide baselinematching [9–11], texture recognition [12],
robot localization [13], and object categorization [14–18].

A desirable property of interest points is their robust
repeatability [5, 18], which means that interest points should
be repeatable and stable under both local and global pertur-
bations. In the case of signi�cant transformations, interest
points have to be adapted to the transformations, as at least
a subset of local features must be present in both images
for the purpose of allowing for correspondence. Research
e
orts concerned in interest points can be divided into two
categories, namely, detector and descriptor. Detector locates
an interest point in the image, and descriptor designs features

to characterize the detected interest point. 	e most valuable
property of an interest point detector is its repeatability,
which expresses the reliability of a detector for �nding the
same physical interest points under di
erent viewing con-
ditions. 	en, the neighborhood of every interest point is
represented by a feature vector. 	is descriptor should be
distinctive and at the same time robust to noise and a class
of image transformations. Recently, a wide variety of interest
point detectors have been proposed. Widely used interest
point detectors include Harris-a�ne detector and its a�ne
normalization [19, 20], maximally stable extremal regions
(MSER) [21], features from accelerated segment test (FAST)
[22], and the Hessian-a�ne detector [19]. All of these state-
of-the-art interest point detectors have di
erent strengths and
weaknesses and yield di
erent number of points depending
on the image. 	ey can be divided into three families: single-
scale, direct-intensity, and multiscale [23]. 	e single-scale
interest point detectors �lter the image with a single-scale
�lter.	e direct-intensity based methods compute a measure
that indicates the presence of an interest point directly
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from the gray values. 	e multiscale interest point detection
algorithms detect the scale of the image features and they are
strongly invariant to scale changes and other image artifacts
such as illumination variation, noise, blur, rotation, and a�ne
transformation.

Scale-invariant feature transform (SIFT) algorithm pro-
posed by Lowe [5] is one of the most famous and popular
interest point detectors and has been proven to be robust in
many applications [24].	e SIFT interest points have a robust
repeatability property against image translation, rotation, and
scaling. Generally speaking, there are three major stages in
a typical SIFT algorithm. 	e �rst stage is to detect extrema
in DoG scale space. Secondly, interest points are �ltered and
located. 	e �nal stage is to assign orientation and generate
descriptor for interest points. Even though a large number
of works have been devoted to improving SIFT, much e
ort
of most existing works in the literature has been spent in
focusing on the second and third stage, that is, improving the
description power of the descriptor for an interest point. Ke
and Sukthankar [25] applied principal component analysis
(PCA) to gradient patch of an interest point and reduced
descriptor from 128D to 36D to formPCA-SIFT.	e gradient
location and orientation histogram (GLOH), proposed by
Mikolajczyk and Schmid [24], replaced theCartesian location
grid used by the SIFT with a log-polar one and also applied
PCA to reduce the dimension of the descriptor. Winder and
Brown [26] made use of discriminative learning method to
optimize local descriptors under matching constraints from
a 3D construction. Abdel-Hakim and Farag [27] extended
the SIFT algorithm to extract colored local invariant feature
descriptor, named as Color-SIFT. Verma et al. [28] proposed
new color-SIFT descriptors by extending the SIFT descriptor
to di
erent color space. Li et al. [29] proposed a new learning-
to-rank framework to reject unstable extrema such as low
contrast points and edge response points derived from the
�rst stage of SIFT in order to improve interest point detection.
Liao et al. [30] presented a modi�cation to the SIFT in which
the normalized elliptical neighboring region was instead of
a rectangular region and a histogram was computed in a
polar space. By contrast, only limited work has been devoted
to solving problems in the �rst stage, that is, identifying
locations and scales of potential interest points that can be
repeatably assigned under di
ering views of the same object.

In this paper, we apply Bilateral �lter and Laplacian �lter
on SIFT algorithm and present a novel method to detect
repeatable interest point with Laplacian-of-Bilateral (LoB)
�lter. We �rst smooth images by successively larger Bilateral
�lter and a series of smoothed images are called scale space
or image pyramid. Compared with conventional Gaussian
�lter, the Bilateral �lter can remove noise from images while
preserving edges. A�erwards, we apply �xed window Lapla-
cian �lter on smoothed images in order to produce di
erence
images called Laplacian-of-Bilateral (LoB) scale space. As a
consequence, scale space extrema detection can be imple-
mented e�ciently in a series of LoB images by convoluting an
imagewith LoB�lter (with di
erent scales).	enext steps are
similar to standard SIFT algorithm for location, orientation
assignment, and descriptor generation.

	e rest of the paper is organized as follows. In Section 2,
we give a brief overview of the SIFT algorithm and explain
its drawbacks. 	en, our proposed interest point detection
algorithm is presented in Section 3. Experiment results are
discussed in Section 4. Finally, we conclude this paper in
Section 5.

2. SIFT Algorithm Review

Before presenting in detail our approach, we brie�y review
the SIFT that forms the basis for our work. 	e SIFT
algorithm proposed in [5] usually consists of three steps.
First, a Gaussian scale space is constructed and candidate
points are extracted by searching local extrema in a series
of DoG images. 	en all candidate points are localized to
pixel-accuracy and unstable points of low contrast or strong
edge response are eliminated. Finally, dominant orientation is
identi�ed for each survived point, and its descriptor is gener-
ated based on the image gradients in its local neighborhood.

In order to provide a clear background for further
discussion, we give more insight into the details of the �rst
step in SIFT. In the �rst step, the scale space or image pyramid
is constructed by a variable-scale Gaussian, which is

� (�, �, �) = 12��2 exp(
− (�2 + �2)

2�2 ) , (1)

where (�, �) denotes the coordinate of a point and the scale
factor is �.

Mikolajczyk found that the extrema of scale-normalized

Laplacian-of-Gaussian (LoG), �2∇2�, are the most stable
local points on an image compared to a range of other image
functions such as gradient, Hessian, and Harris. Moreover,
the di
erence-of-Gaussian �lter provides a close approxima-
tion to the scale-normalized LoG, which is

� (�, �, ��) − � (�, �, �) = (� − 1) �2∇2�, (2)

where � is a constant factor. So scale space extrema extracted
in theDoG function convolvedwith the image,�(�, �, �), are
regarded as candidate points, and

�(�, �, �) = (� (�, �, ��) − � (�, �, �)) ∗ � (�, �) , (3)

where �(�, �) is an input image.

An e
ective way to construct �(�, �, �) and detect local
extrema is shown in Figure 1. 	e initial image is incre-
mentally blurred with successively larger Gaussian �lters to
produce images which are separated by a constantmultiplica-
tive factor in scale space, shown stacked in the le� column.
A�erwards, di
erence-of-Gaussian images are produced by
subtracting each blurred image from the adjacent (more
blurred) image, shown on the right. For detecting the local
extrema (maxima or minima) of �(�, �, �), each sample
point is compared to its eight neighbors in the current image
and nine neighbors in the scale above and below. 	e sample
point is selected as a candidate point if its value is larger or
smaller than all of its neighbors.
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Figure 1: 	e process of local extrema detection based on Differ-
ence-of-Gaussian (DoG).

Discussions. Based upon our observations, the SIFT algo-
rithm has two inevitable drawbacks.

	e di
erence-of-Gaussian �lter has a strong response
along edge, even if the location along the edge is poorly
determined and therefore is unstable to small amounts of
noise. As a result, some interest points on the edge or in low
contrast regions tend to be removed a�er detection, because
two handcra�ed rules: discarding low contrast points and
eliminating edge response are used in the SIFT algorithm.

Moreover, in the SIFT algorithm, candidate points are
extracted by searching local extremum in a series of DoG
images. It has been shown by Lowe [5] that the more
expensive operations in extracting features are applied only at
locations that pass an initial test, which means that the major
computational complexity occurs in �ltering the image.
Unfortunately, in order to detect extrema at scales of each
octave, intervals images should be included in di
erence-of-
Gaussian (DoG) scale space and intervals images are required
for Gaussian scale space. It is completely disadvantageous to
the cost of �ltering the image with the increase of Gaussian
scale space images. In the next section, we propose designing
interest point detector based on both Bilateral �lter and
Laplacian �lter.

3. An Overview of the Proposed Approach

3.1.�e Bilateral Filter. Tomasi andManduchi [31] combined
range �ltering with domain �ltering to produce bilateral
�lters. 	e Bilateral �ltering can be de�ned as follows:

ℎ (�, �) = 1�� ∑�,�∈Ω�� (�, �) �� (�, �) � (�, �) , (4)

where (�, �) denotes the pixels of an image, Ω is the
neighborhood of a center point (�, �), �(�, �) is de�ned as
an input image, ℎ(�, �) is an output image, ��(�, �) denotes
the weight of the domain �ltering, ��(�, �) is the weight of
the range �ltering, and �� is the normalization parameter:�� = ∑�,�∈Ω ��(�, �)��(�, �).	e size ofΩ is (2�+1)×(2�+1)
and � corresponds to the half-width of the Bilateral �lter.
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Figure 2: Two commonly used 3 × 3 sized discrete approximations
to the Laplacian �lter.

Because the Bilateral �lter includes both a geometric distance
in the domain component and a photometric distance in the
range component, it can remove noise and preserve edges
from images during smoothing.

3.2. �e Laplacian Filter. A Laplacian �lter is a derivative �l-
ter used to �nd areas of rapid change (edges) in images. As
such, this �lter type is commonly used in edge-detection
applications. Since derivative �lters are very sensitive to noise,
it is common to smooth the image (e.g., using a Gaussian
�lter) before applying the Laplacian.	e Laplacian �(�, �) of
an image with pixel intensity values �(�, �) is given by

� (�, �) = ∇2� (�, �) = �2� (�, �)��2 + �2� (�, �)��2 . (5)

Since the input image is represented as a set of discrete
pixels, we have to �nd a discrete convolution kernel that can
approximate the second derivatives in the de�nition of the
Laplacian. Two commonly used small kernels are shown in
Figure 2.

3.3. �e Bilateral Scale Space Construction. Considering the
drawbacks of the SIFT algorithm, some interest points on the
edge easily removed a�er detection, we proposed the use of
Bilateral �ltering instead of Gaussian �ltering in scale space
construction.

Lowe [5] de�ned the scale space of an image as a func-
tion, �(�, �, �), that is produced from the convolution of a
variable-scale Gaussian, �(�, �, �), described in (1), with an
input image, �(�, �):

� (�, �, �) = � (�, �, �) ∗ � (�, �) , (6)

where ∗ is the convolution operation in � and �.
Similar to the Gaussian convolution operation, Bilateral

�ltering is also de�ned as a weighted average of the pixel
values. Also, in contrast with traditional �lter such as Gaus-
sian �lter, Bilateral �ltering, which employs both geometric
closeness and photometric similarity of neighboring pixel,
can preserve edge characteristic by fully utilizing the infor-
mation of intensity variety. As a consequence, we proposed
constructing the scale space by the Bilateral �lter named as
Bilateral scale space. We de�ne the scale space of an image as
a function �(u, ��) as follows:

� (u, ��) = 1�u

∑
v∈Ω
�v�	��	� , (7)
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where u = (�, �) denotes the pixels of an image, v = (�, V)
is a nearby point of the neighborhood center u = (�, �), �v is
de�ned as an input image, and

�u = ∑
v∈Ω
�	��	� , (8)

where

�	� = exp(−12 (" (u, v)�� )2) ,
�	� = exp(−12 (% (� (u) , � (v))�� )2) ,

(9)

where "(u, v) is the Euclidean distance between u and v,%(u, v) is a measure of distance between the two intensity
values �(u) and �(v), �� denotes the domain parameter to
control Gaussian shape in space, and �� is a range parameter
to control in�uence of intensity change (�� = 0.04 in this
paper).

3.4. �e Laplacian-of-Bilateral Scale Space Construction.
Standard SIFT algorithm detects candidate points using scale
space extrema in the di
erence-of-Gaussian �lter convolved
with the image, �(�, �, �), described in (3). However, as
discussed in Section 2, the major computational complexity
occurs in �ltering the image in extracting features. In order
to detect extrema at & scales of each octave, there must be& + 3 Bilateral �lter responses in Bilateral scale space. More
speci�cally, it has been shown by Tomasi that the Bilateral
�lter is twice as expensive as a nonseparable domain �lter
such as Gaussian �lter of the same size in terms of com-
putational cost. If we adopt the method analogous to SIFT
algorithm, shown in (3), to produce di
erence-of-Bilateral
�lter, the time cost will increase highly.

To considerably reduce the computation complexity and
e�ciently detect candidate locations in scale space, we
proposed producing di
erence-of-Bilateral �lter, LoB(u, ��),
de�ned as follows:

LoB (u, ��) = � (u) ( 1�u

∑
v∈Ω
�	��	�) , (10)

where�(u) is a �xedwindowLaplacian �lter and�u,�	� , and�	� are the same as parameters described in Section 3.3. And�(u) adopted in this paper is the one shown in Figure 2(a). So
we can use scale space extrema in the Laplacian-of-Bilateral
(LoB) �lter convolved with the image, LB(u, ��), which can
be computed from the convolution of the �xed window
Laplacian �lter, �(u), with each Bilateral image, �(u, ��):

LB (u, ��) = � (u) ∗ � (u, ��) . (11)

Figure 3 shows the construction of Laplacian-of-Bilateral
(LoB) scale space, LB(u, ��), to detect local extrema in our
proposed approach.

Apparently for the sake of detecting extrema at ' scales
of each octave, the Bilateral scale space consists of just ' + 2
intervals images shown in Figure 3 in our proposed method.

Scale

Bilateral Laplacian-of-Bilateral

4
0

0 −1

−1

−1

0

0
−1

4
0

0 −1

−1

−1

0

0
−1

4
0

0 −1

−1

−1

0

0
−1

4
0

0 −1

−1

−1

0

0
−1

Figure 3: 	e process of local extrema detection based on Lapla-
cian-of-Bilateral (LoB).

Table 1: Time cost comparison of LoB and DoB scale space con-
struction.

Scale space LoB DoB

Times (ms) 3630 4385

However, if we construct Di
erence-of-Bilateral (DoB) scale
space by simple image subtraction a�er forming Bilateral
scale space rather than using the �xed window Laplacian
�lter, ' + 3 intervals images have to be included in Bilateral
scale space causing a heave computation burden. In order
to compare the time cost of LoB and DoB scale space
construction, we conducted experiments on the “Gra�ti” and
“Leuven” sequences of Mikolajczyk dataset as described in
Section 4.1. Table 1 shows the comparison of execution time
in terms of LoB and DoB scale space construction. In this
experiment, there are �ve parameters, including the octave
(*), the scale per octave (-), the half-width of Bilateral �lter
(�), the domain parameter (��), and the range parameter
(��). 	e related parameters, *, -, �, and ��, are �xed as
4, 3, 2, and 0.04, respectively. In addition, we select the
value of domain parameter �� similar to the smoothing
parameter (e.g., sigma of the Gaussian kernel) in SIFT
algorithm proposed by Lowe because it controls Gaussian
shape in space.

	e di
erent stages of the proposed interest point detec-
tion algorithm are graphically summarized in Algorithm 1.

4. Experiments and Results

We evaluate the results of our approach on the stand dataset
commonly used to evaluate the detectors by most vision
researchers.

4.1. Dataset. We evaluate the results of our approach on the
stand dataset commonly used by most vision researchers.
Figure 4 shows example images of Mikolajczyk dataset [24]
used for the evaluation obtainable from Visual Geometry
Group of Oxford University. 	is dataset contains 8 image
sequences and 48 images in total. It also covers six di
er-
ent geometric and photometric transformations for di
er-
ent scene types, including viewpoint change, scale change,
image rotation, image blur, illumination change, and JPEG
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(1) To detect extrema at ' scales of each octave, compute Bilateral response �(u, ��) for all scales ��0 , . . . , ���+1 ,
using (7) with �� = 0.04.

(2) Compute the Laplacian-of-Bilateral response LB(u, ��) by using (11).
(3) Extract the maximal/minimal point in scale-space of the LB(u, ��) response in a 3 × 3 × 3 window as shown in Figure 3.
(4) Remove edge responses and low contrast points using Hessian matrix similar to SIFT algorithm.
(5) Assign orientation and compute the histogram of magnitude of �rst order gradients over

di
erent orientations resulting in a feature descriptor vector of dimension 128 analogous to SIFT algorithm.
(6) Store the feature location, scale, orientation, and feature descriptor.

Algorithm 1: Proposed interest point detection algorithm.

(a) Bikes (b) Trees

(c) Gra�ti (d) Wall

(e) Boat (f) Bark

(g) Ubc (h) Leuven

Figure 4: Dataset. Examples of images used for the evaluation: (a) and (b) image blur, (c) and (d) viewpoint change, (e) and (f) zoom +
rotation changes, (g) JPEG compression, and (h) illumination change.
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Figure 5: Parameters evaluation of the proposed detection algo-
rithm.

compression. Meanwhile, this dataset has the ground-truth
matches through estimated homography.

4.2. Repeatability. 	e repeatability criterion described in
[32, 33] is calculated as the ratio between the corresponding
interest points and the minimum total number of interest
points detected in both images. By the repeatability, we
evaluate whether the same physical location in the image
(i.e., localization in space) under di
erent viewing condi-
tions is detected with the interest point detection algorithm
and whether the detected scale in each view overlaps over
identical image surfaces around the feature regions (i.e.,
localization in scale) in both images, making use of ground-
truth data. 	e features are considered repeated if they are
detected within /loc = ‖x1 − Hx2‖ < 1.5 pixels and the scale
overlap error /
 < 40% in our experiments, where x1 and
x2 are feature points andH is the ground-truth homography.
	e number of correspondences is de�ned as the number of
pairs of regions if the distance between their descriptors is
below an overlap error [24, 34], where we use /
 = 40% in
our experiments.

4.3. Experiment Setup

4.3.1. Parameter Selection. In this section, we performed
simulations to select the appropriate parameter demonstrated
in Section 3. 	ere are three parameters in the proposed
LoB algorithm: the domain parameter ��, the range �lter
parameter ��, and the half-width of Bilateral �lter �. 	e
domain parameter �� is to control Gaussian shape in space,
so we select its value similar to the smoothing parameter
(e.g., sigma of the Gaussian kernel) in SIFT algorithm
proposed by Lowe. In order to evaluate the in�uence of
various values of the range �lter parameter on the proposed
interest point detection algorithm, we have conducted exper-
iments on 48 images of benchmark dataset as described in
Section 4.1. And the half-width of Bilateral �lter, �, is �xed
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Figure 7: Average repeatability score of our proposed approach
compared with the SIFT.

as 2 in this experiment.	e performance evaluations varying�� (0.02, 0.04, 0.06, 0.08, 0.1, and 0.2) are shown in Figure 5.
It is clear that the number of edge points eliminated is not
sensitive to changes of the value of ��. And the number of
feature points and low contrast points eliminated gradually
decreased with the increase of the value of ��. Table 2 shows
the comparison of execution time in terms of LoB scale space
construction (for LoB scale space * = 4 octaves, - = 3 scales
per octave, and� = 2). From the experimental results given
in Figure 5 and Table 2, setting the value of �� to 0.04, the
construction of Laplacian-of-Bilateral (LoB) scale space is at
a dramatically lower computational cost when relatively high
numbers of feature points are detected.

Furthermore, we conducted experiments on the “Gra�ti”
sequences of Mikolajczyk dataset for evaluating the e
ects of
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Table 2: Time cost comparison of LoB scale space construction for
di
erent values of �� 2.40GHz, 12GB RAM CPU.

�� 0.02 0.04 0.06 0.08 0.1 0.2

Times (ms) 3906 3750 3838 3755 3744 3500

the Bilateral �lter half-width, �, on our proposed detection
algorithm. We tried three sizes: 1, 2, and 3. And the corre-
sponding Bilateral �lter window sizes are 3 × 3, 5 × 5, and
7 × 7. 	e results are shown in Figure 6. From Figure 6, we
can see that the performance of our proposed algorithm is
gradually getting better with the increase of the value of �.
However, more �lter time will be consumed when the value
of� increases. In terms of performance and �lter time cost,
we use the parameter setting of� = 2.
4.3.2. Repeatability Evaluation. In this section, we evaluated
the repeatability and the number of correspondences to

measure the quality of our proposed interest point detection
algorithmand SIFT. For each image sequence, its �rst image is
deemed as a reference image, and other images conjuncted as
the reference image construct some image pairs. Repeatability
score is computed based on these image pairs.

For the sake of comparing the overall performance, we
computed an average repeatability score over image pairs of
this sequence. Figure 7 illustrates average repeatability score
of our proposed approach and SIFT.	e experimental results
illustrate that our proposed interest point detection algorithm
performs better than SIFTwith respect to all types of imaging
conditions. In the �gure, the repeatability increases from le�
to right, which indicates the di�culties of di
erent geometry
and photometric changes. Zoom and rotation changes are
apparently the most di�cult ones for our work.

In Figure 7, we tend to conclude that when images exhibit
illumination or viewpoint change, our proposed approach
is better, especially when encountering large illumination
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change. 	e repeatability and the number of feature corre-
spondences evaluations on the images exhibiting illumina-
tion and viewpoint changes can be seen from Figures 8 and
9.

5. Conclusions

In this paper, a new Laplacian-of-Bilateral (LoB) �lter is
proposed to improve interest point detection. We provided
the theoretical background and experimental results showing
that the proposed interest point detection algorithm achieves
better performance. In terms of interest point detection
algorithm quality, our approach substantially improves the
repeatability of detected interest point and the number of
correspondences. Additionally, our proposed approach is
found to be more robust to images exhibiting illumination
and viewpoint changes, especially when encountering large
illumination change. 	e proposed LoB �lter is general and
can be �exibly extended to other based on DoG �lter interest
point detection algorithms. 	is is one of our future work
directions.

Conflict of Interests

	e authors declare that there is no con�ict of interests
regarding the publication of this paper.

Acknowledgments

	is paper is supported by the National Natural Sci-
ence Foundation of China (Grant nos. 61170116, 61375010,
61300075, and 61472031), Beijing Higher Education Young
Elite Teacher Project (Grant no. YETP0375), and the Fun-
damental Research Funds for the Central Universities under
the Grant no. FRF-TP-14-120A2. 	e authors would like to
express their sincere appreciation to the anonymous review-
ers for their insightful comments, which greatly helped them
to improve the quality of the paper.

References

[1] J. Philbin,O. Chum,M. Isard, J. Sivic, andA. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,”
in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR ’07), pp. 1–8,
IEEE, Minneapolis, Minn, USA, June 2007.

[2] K.Mikolajczyk and C. Schmid, “Indexing based on scale invari-
ant interest points,” in Proceedings of the 8th International Con-
ference on Computer Vision, vol. 1, pp. 525–531, July 2001.

[3] J. Li, N. Allinson, D. Tao, and X. Li, “Multitraining support vec-
tor machine for image retrieval,” IEEE Transactions on Image
Processing, vol. 15, no. 11, pp. 3597–3601, 2006.

[4] D. Tao, X. Tang, X. Li, and X. Wu, “Asymmetric bagging and
random subspace for support vector machines-based relevance
feedback in image retrieval,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 28, no. 7, pp. 1088–1099,
2006.

[5] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60, no.
2, pp. 91–110, 2004.

[6] V. Ferrari, T. Tuytelaars, and L. van Gool, “Simultaneous object
recognition and segmentation by image exploration,” in Com-
puter Vision—ECCV 2004, pp. 40–54, Springer, Berlin, Ger-
many, 2004.

[7] A. C. Berg, T. L. Berg, and J. Malik, “Shape matching and object
recognition using low distortion correspondences,” in Proceed-
ings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), pp. 26–33, June 2005.

[8] D. Tao, X. Li, X. Wu, and S. J. Maybank, “General tensor dis-
criminant analysis and Gabor features for gait recognition,”
IEEE Transactions on Pattern Analysis andMachine Intelligence,
vol. 29, no. 10, pp. 1700–1715, 2007.

[9] T. Tuytelaars and L. vanGool, “Matchingwidely separated views
based on a�ne invariant regions,” International Journal of Com-
puter Vision, vol. 59, no. 1, pp. 61–85, 2004.

[10] F. Scha
alitzky and A. Zisserman, “Multi-view matching for
unordered image sets, or “how do I organize my holiday
snaps?”,” in Computer Vision—ECCV 2002: 7th European Con-
ference on Computer Vision Copenhagen, Denmark, May 28–31,
2002 Proceedings, Part I, vol. 2350 of Lecture Notes in Computer
Science, pp. 414–431, Springer, Berlin, Germany, 2002.

[11] D. Tell and S. Carlsson, “Wide baseline point matching using
a�ne invariants computed from intensity pro�les,” inComputer
Vision—ECCV 2000, vol. 1842 of Lecture Notes in Computer
Science, pp. 814–828, Springer, Berlin, Germany, 2000.

[12] S. Lazebnik, C. Schmid, and J. Ponce, “A sparse texture represen-
tation using local a�ne regions,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1265–1278,
2005.

[13] S. Se,D. Lowe, and J. Little, “Global localization using distinctive
visual features,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 1, pp. 226–231,
IEEE, 2002.

[14] J. Zhang, M.Marszałek, S. Lazebnik, and C. Schmid, “Local fea-
tures and kernels for classi�cation of texture and object cate-
gories: a comprehensive study,” International Journal of Com-
puter Vision, vol. 73, no. 2, pp. 213–238, 2007.

[15] R. Fergus, P. Perona, and A. Zisserman, “Object class recogni-
tion by unsupervised scale-invariant learning,” in Proceedings of
the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 2, pp. II/264–II/271, IEEE, June 2003.

[16] K. Mikolajczyk, B. Leibe, and B. Schiele, “Local features for
object class recognition,” in Proceedings of the 10th IEEE Inter-
national Conference on Computer Vision (ICCV ’05), vol. 2, pp.
1792–1799, IEEE, October 2005.

[17] F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce, “3d object
modeling and recognition using a�ne-invariant patches and
multi-view spatial constraints,” in Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recog-
nition, vol. 2, pp. II-272–II-277, June 2003.

[18] T. Lindeberg, “Feature detectionwith automatic scale selection,”
International Journal of Computer Vision, vol. 30, no. 2, pp. 79–
116, 1998.

[19] K. Mikolajczyk and C. Schmid, “An a�ne invariant interest
point detector,” in Computer Vision—ECCV 2002, vol. 2350 of
Lecture Notes in Computer Science, pp. 128–142, Springer, Berlin,
Germany, 2002.

[20] F. Scha
alitzky and A. Zisserman, “Viewpoint invariant texture
matching and wide baseline stereo,” in Proceedings of the 8th
International Conference on Computer Vision, vol. 2, pp. 636–
643, July 2001.



Journal of Sensors 9

[21] J.Matas, O. Chum,M.Urban, and T. Pajdla, “Robust wide-base-
line stereo from maximally stable extremal regions,” Image and
Vision Computing, vol. 22, no. 10, pp. 761–767, 2004.

[22] E. Rosten, R. Porter, and T. Drummond, “Faster and better: a
machine learning approach to corner detection,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 32, no. 1,
pp. 105–119, 2010.

[23] P. Mainali, G. Lafruit, Q. Yang, B. Geelen, L. V. Gool, and R.
Lauwereins, “SIFER: scale-invariant feature detector with error
resilience,” International Journal of Computer Vision, vol. 104,
no. 2, pp. 172–197, 2013.

[24] K. Mikolajczyk and C. Schmid, “A performance evaluation of
local descriptors,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 27, no. 10, pp. 1615–1630, 2005.

[25] Y. Ke and R. Sukthankar, “PCA-SIFT: a more distinctive repre-
sentation for local image descriptors,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’04), pp. II506–II513, IEEE, July 2004.

[26] S. A. J. Winder and M. Brown, “Learning local image descrip-
tors,” in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR ’07), pp. 1–8,
June 2007.

[27] A. E. Abdel-Hakim and A. A. Farag, “CSIFT: a SIFT descriptor
with color invariant characteristics,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’06), vol. 2, pp. 1978–1983, IEEE, June 2006.

[28] A. Verma, C. Liu, and J. Jia, “New colour SIFT descriptors for
image classi�cation with applications to biometrics,” Interna-
tional Journal of Biometrics, vol. 3, no. 1, pp. 56–75, 2011.

[29] B. Li, R. Xiao, Z. Li, R. Cai, B.-L. Lu, and L. Zhang, “Rank-
SIFT: learning to rank repeatable local interest points,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR '11), pp. 1737–1744, Providence, RI, USA,
June 2011.

[30] K. Liao, G. Liu, and Y. Hui, “An improvement to the SIFT
descriptor for image representation and matching,” Pattern
Recognition Letters, vol. 34, no. 11, pp. 1211–1220, 2013.

[31] C. Tomasi and R. Manduchi, “Bilateral �ltering for gray and
color images,” in Proceedings of the IEEE 6th International Con-
ference on Computer Vision, pp. 839–846, IEEE, January 1998.

[32] C. Schmid, R. Mohr, and C. Bauckhage, “Evaluation of interest
point detectors,” International Journal of Computer Vision, vol.
37, no. 2, pp. 151–172, 2000.

[33] K.Mikolajczyk and C. Schmid, “Scale & a�ne invariant interest
point detectors,” International Journal of Computer Vision, vol.
60, no. 1, pp. 63–86, 2004.

[34] F. Tang, S. H. Lim, N. L. Chang, and H. Tao, “A novel feature
descriptor invariant to complex brightness changes,” inProceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR ’09), pp. 2631–2638, IEEE, June 2009.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


