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ABSTRACT 

A biometric system provides automatic identification of an 

individual based on a unique feature or characteristic 

possessed by the individual. Iris recognition is one of such 

biometric systems and is regarded as the most reliable and 

accurate identification systems available. It is the process of 

recognizing a person by analyzing the random pattern of the 

iris [8]. It combines computer vision, pattern recognition, 

statistical inference, and optics. Its purpose is real-time, high 

confidence recognition of a person's identity by mathematical 

analysis of the random patterns that are visible within the iris 

of an eye[7][8]. The proposed system takes an image of the 

eye, detects the iris and extracts it. Then a binary image of the 

extracted iris is created in order to form an equivalent 

barcode. Similarly a test data is also processed into a barcode 

and is matched with the reference barcodes in the database 

[8]. Representation of iris as a barcode provides an efficient 

and encrypted way for storing the iris data and provides one 

more level of security. 

Thus, the system has its application in various areas like 

national border controls: the iris can be used as a living 

passport, cell phone and other wireless-device-based 

authentication, secure access to bank accounts at cash 

machines, premises access control, credit-card authentication, 

Internet security, Biometric-Key Cryptography, etc[10].  

Following parameters are observed. i.e. AR- Acceptance 

Ratio 58.90%. FRR- False Rejection Ratio 41.10%.FAR-False 

Acceptance Ratio 33.34 %. RR- Rejection Ratio 66.66%.  

General Terms 
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Keywords 
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1. INTRODUCTION 

1.1 Biometric Technology 
A biometric system provides automatic recognition of an 

individual based on some sort of unique feature or 

characteristic possessed by the individual. Biometric systems 

have been developed based on fingerprints, facial features, 

voice, hand geometry, handwriting, the retina, and the one 

presented in this proposed work, the iris. Biometric systems 

work by first capturing a sample of the feature, such as 

recording a digital sound signal for voice recognition, or 

taking a digital color image for face recognition [3][7]. The 

sample is then transformed using some sort of mathematical 

function into a biometric template. The biometric template 

will provide a normalized, efficient and highly discriminating 

representation of the feature, which can then be objectively 

compared with other templates in order to determine identity. 

1.2 The Human Iris 
The iris is a thin circular diaphragm, which lies between the 

cornea and the lens of the human eye. A front-on view of the 

iris is shown in Figure 1. Due to the epigenetic nature of iris 

patterns, the two eyes of an individual contain completely 

independent iris patterns, and identical twins possess 

uncorrelated iris patterns [1]. 

Eyelid

Iris

Pupil

Sclera

 

Figure 1: A front view of the iris 

1.3 Iris Recognition  
Image processing techniques can be employed to extract the 

unique iris pattern from a digitized image of the eye, and 

encode it into a biometric template, which can be stored in a 

database. This biometric template contains an objective 

mathematical representation of the unique information stored 

in the iris, and allows comparisons to be made between 

templates. When a subject wishes to be identified by the iris 

recognition system, their eye is first photographed, and then a 

template created for their iris region. This template is then 

compared with the other templates stored in a database until 

either a matching template is found and the subject is 

identified, or no match is found and the subject remains 

unidentified. 

As compared with other biometric technologies, such as face, 

speech and finger recognition, iris recognition can easily be 

considered as the most reliable form of biometric 

technology[3][7]. 

2. RELATED WORK 

2.1 Segmentation 
The first stage of iris recognition is to isolate the actual iris 

region in a digital eye image. The iris region, shown in Figure 

1, can be approximated by two circles, one for the iris/sclera 

boundary and another, interior to the first, for the iris/pupil 

boundary. The eyelids and eyelashes normally occlude the 

upper and lower parts of the iris region. Also, specular 

reflections can occur within the iris region corrupting the iris 

pattern [4]. A technique is required to isolate and exclude 

these artifacts as well as locating the circular iris region. 
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2.1.1 Daugman’s  Integro-differential Operator  
Daugman makes use of an integro-differential operator for 

locating the circular iris and pupil regions, and also the arcs of 

the upper and lower eyelids. The integro-differential operator 

is defined as[3][7], 

 
            

Where I(x,y) is the eye image, r is the radius to search for, G 

(r) is a Gaussian smoothing function, and s is the contour of 

the circle given by r, xo, yo . The operator searches for the 

circular path where there is maximum change in pixel values, 

by varying the radius and centre x and y position of the 

circular contour. The operator is applied iteratively with the 

amount of smoothing progressively reduced in order to attain 

precise localization. Eyelids are localized in a similar manner, 

with the path of contour integration changed from circular to 

an arc. 

2.1.2 Eyelash and Noise detection  
Eyelashes are treated as belonging to two types, separable 

eyelashes, which are isolated in the image, and multiple 

eyelashes, which are bunched together and overlap in the eye 

image. Separable eyelashes are detected using 1D Gabor 

filters, since the convolution of a separable eyelash with the 

Gaussian smoothing function results in a low output value. 

Thus, if a resultant point is smaller than a threshold, it is noted 

that this point belongs to an eyelash. Multiple eyelashes are 

detected using the variance of intensity. If the variance of 

intensity values in a small window is lower than a threshold, 

the centre of the window is considered as a point in an 

eyelash. Specular reflections along the eye image are detected 

using threshold, since the intensity values at these regions will 

be higher than at any other regions in the image [7]. 

2.2 Normalization 
Once the iris region is successfully segmented from an eye 

image, the next stage is to transform the iris region so that it 

has fixed dimensions in order to allow comparisons [7]. 

2.2.1 Image Registration 
The Wildes et al. system employs an image registration 

technique, which geometrically warps a newly acquired image 

Ia (x,y), into alignment with a selected database image Id (x,y). 

When choosing a mapping function (u(x, y), v(x, y)) to 

transform the original coordinates, the image intensity values 

of the new image are made to be close to those of 

corresponding points in the reference image. The mapping 

function must be chosen so as to minimize 

 
while being constrained to capture a similarity transformation 

of image coordinates (x, y) to (x’, y’), that is 

 
with s a scaling factor and R()  a matrix representing rotation 

by . In implementation, given a pair of iris images Ia and Id 

the wrapping parameters s and  are recovered via an iterative 

minimization procedure. 

2.3 Feature Encoding and Matching 
In order to provide accurate recognition of individuals, the 

most discriminating information present in an iris pattern must 

be extracted. Only the significant features of the iris must be 

encoded so that comparisons between templates can be made. 

The template that is generated in the feature encoding process 

will also need a corresponding matching metric, which gives a 

measure of similarity between two iris templates[7]. 

2.3.1 Wavelet Encoding  
Wavelets can be used to decompose the data in the iris region 

into components that appear at different resolutions. Wavelets 

have the advantage over traditional Fourier transform in that 

the frequency data is localized, allowing features which occur 

at the same position and resolution to be matched up. A 

number of wavelet filters, also called a bank of wavelets, is 

applied to the 2D iris region, one for each resolution with each 

wavelet a scaled version of some basis function [7]. The 

output of applying the wavelets is then encoded in order to 

provide a compact and discriminating representation of the 

iris pattern. 

3. PROPOSED SYSTEM 
The current system which we have proposed will include all 

the steps or conventional processes explained in Literature 

survey, but employs different techniques for each step. The 

major difference is the formation of barcodes, which is the 

main emphasis of this proposed work. Therefore, the various 

steps carried out are namely: 

1. Architecture 

2. Segmentation 

3. Normalization 

4. Feature Encoding 

5. Barcode Generation 

6. Matching 

3.1 Architecture 

10101100000100

01010001010100

10010100001010

10101100000100

01010001010100

10010100001010

Match 

Database

 

Figure 2: Architecture of Proposed System 

3.2 Segmentation 

3.2.1 Hough Transform 
The Hough transform is a standard computer vision algorithm 

that can be used to determine the parameters of simple 

geometric objects, such as lines and circles, present in an 

image. The circular Hough transform can be employed to 
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deduce the radius and centre coordinates of the pupil and iris 

regions. Firstly, an edge map is generated by calculating the 

first derivatives of intensity values in an eye image and then 

thresholding the result. From the edge map, votes are cast in 

Hough space for the parameters of circles passing through 

each edge point [7]. These parameters are the centre 

coordinates xc and yc, and the radius r, which are able to 

define any circle according to the equation. 

 

A maximum point in the Hough space will correspond to the 

radius and centre coordinates of the circle best defined by the 

edge points. Wildes et al. and Kong and Zhang also make use 

of the parabolic Hough transform to detect the eyelids, 

approximating the upper and lower eyelids with parabolic arcs 

[9], which are represented as; 

 

where aj controls the curvature, (hj, kj)  is the peak of the 

parabola and θj is the angle of rotation relative to the x-axis. 

In performing the preceding edge detection step, bias the 

derivatives in the horizontal direction for detecting the 

eyelids, and in the vertical direction for detecting the outer 

circular boundary of the iris, this is illustrated in Figure 3. The 

motivation for this is that the eyelids are usually horizontally 

aligned, and also the eyelid edge map will corrupt the circular 

iris boundary edge map if using all gradient data. Taking only 

the vertical gradients for locating the iris boundary will reduce 

influence of the eyelids when performing circular Hough 

transform, and not all of the edge pixels defining the circle are 

required for successful localization. Not only does this make 

circle localization more accurate, it also makes it more 

efficient, since there are less edge points to cast votes in the 

Hough space.  

 

Figure 3: Eye image and its edge map after segmentation 

3.3 Normalization 

3.3.1 Daugman’s Rubber Sheet Model 
The homogenous rubber sheet model devised by Daugman 

remaps each point within the iris region to a pair of polar 

coordinates (r,θ) where r is on the interval [0,1] and θ is angle 

[0,2π]. 

 



0
r

Iris

Iris as rubber sheet



0
r

l r

Iris



Iris as rubber sheet

 

Figure 4: Daugman’s rubber Sheet Model 

 

The remapping of the iris region from (x,y) Cartesian 

coordinates to the normalized non-concentric polar 

representation is modeled as  

 
              

 

With 

         and        

 

where I(x,y) is the iris region image, (x,y) are the original 

Cartesian coordinates, (r,θ) are the corresponding normalized 

polar coordinates, xp , yp and xi , yi are the coordinates of the 

pupil and iris boundaries along the θ direction. The rubber 

sheet model takes into account pupil dilation and size 

inconsistencies in order to produce a normalized 

representation with constant dimensions. In this way the iris 

region is modeled as a flexible rubber sheet anchored at the 

iris boundary with the pupil centre as the reference point. The 

centre of the pupil is considered as the reference point, and 

radial vectors pass through the iris region, as shown in Figure 

4. A number of data points are selected along each radial line 

and this is defined as the radial resolution. The number of 

radial lines going around the iris region is defined as the 

angular resolution.  

The normalized pattern was created by backtracking to find 

the Cartesian coordinates of data points from the radial and 

angular position in the normalized pattern. From the 

‘doughnut’ iris region, normalization produces a 2D array 

with horizontal dimensions of angular resolution and vertical 

dimensions of radial resolution. Another 2D array was created 

for marking reflections, eyelashes, and eyelids detected in the 

segmentation stage. In order to prevent non-iris region data 

from corrupting the normalized representation, data points 

which occur along the pupil border or the iris border are 

discarded. 

3.4 Feature Encoding 

3.4.1 Gabor Filters 
The 2D normalized pattern is broken up into a number of 1D 

signals, and then these 1D signals are convolved with 1D 

Gabor wavelets. The rows of the 2D normalized pattern are 

taken as the 1D signal, each row corresponds to a circular ring 

on the iris region. The angular direction is taken rather than 

the radial one, which corresponds to columns of the 

normalized pattern, since maximum independence occurs in 

the angular direction.  As shown in Figure 5. 
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Figure 5: Feature Encoding process using Gabor Filters 

 

The intensity values at known noise areas in the normalized 

pattern are set to the average intensity of surrounding pixels to 

prevent influence of noise in the output of the filtering. The 

output of filtering is then phase quantized to four levels using 

the Daugman method, with each filter producing two bits of 

data for each phase. The output of phase quantization is 

chosen to be a grey code, so that when going from one 

quadrant to another, only 1 bit changes. This will minimize 

the number of bits disagreeing, if say two intra-class patterns 

are slightly misaligned and thus will provide more accurate 

recognition. The feature encoding process is illustrated in 

Figure 5. The encoding process produces a bitwise template 

containing a number of bits of information, and a 

corresponding noise mask which corresponds to corrupt areas 

within the iris pattern, and marks bits in the template as 

corrupt. The total number of bits in the template will be the 

angular resolution times the radial resolution, times 2, times 

the number of filters used. 

3.5 Barcode Generation 
Bar codes are like a printed version of the Morse code. 

Different bar and space patterns are used to represent different 

characters. Sets of these patterns are grouped together to form 

a "symbology". There are many types of bar code 

symbologies each having their own special characteristics and 

features [1]. Most symbologies were designed to meet the 

needs of a specific application or industry. We take the binary 

template of the iris and form an equivalent barcode of it. The 

Aztec symbology is been used in the proposed system.  

Aztec Code is a high density 2-dimensional matrix style bar 

code symbology that can encode up to 3750 characters from 

the entire 256 byte ASCII character set. The symbol is built 

on a square grid with a bull’s-eye pattern at its centre. Data is 

encoded in a series of "layers" that circle around the bull’s-

eye pattern. Each additional layer completely surrounds the 

previous layer thus causing the symbol to grow in size as 

more data is encoded yet the symbol remains square. Aztec's 

primary features include: a wide range of sizes allowing both 

small and large messages to be encoded, orientation 

independent scanning and a user selectable error correction 

mechanism [1][7][10]. 

The smallest element in an Aztec symbol is called a "module" 

(i.e. a square dot). The module size and the amount of error 

correction are the only "dimensions" that can be specified for 

an Aztec symbol and both are user selectable. It is 

recommended that the module size should range between 15 

to 30 mils in order to be readable by most of the scanners that 

are currently available. 

The overall size of an Aztec symbol is dependent on the 

module size, the total amount of encoded data and also on the 

level of error correction capacity chosen by the user. The 

smallest Aztec symbol is 15 modules square and can encode 

up to 14 digits with 40% error correction. The largest symbol 

is 151 modules square and can encode 3000 characters or 

3750 numeric digits with 25% error correction. 

Once the barcode is formed, it is stored in the database. For 

the test data, once again the barcode is generated using above 

described symbology and this test data is matched with the 

reference data from the database. 

An example for barcode of the bull’s-eye pattern is shown in 

the following Figure 6. 

 

Figure 6 : 2D Barcode  

3.5.1 Barcode Generation Algorithm 
The sequence of steps used to convert the 9600-bit binary 

template, which is the Iris code, into a 2D barcode is: 

1. Generate a 13*13 finder structure that includes a center 

square and a plurality of nested squares having centers 

that approximately coincide with the center square. This 

constitutes the center part of the proposed barcode 

symbol. Then, generate a symbol descriptor layer 

surrounding finder structure that encodes data indicating 

size of the symbol and length of the message encoded 

therein. 

 

2. Convert the binary template into Ascii values template: 

Make the total number of  bits to 9604 by appending four 

0’s(in order to be divisible by 7). Then, to convert into 

ascii, read 7bits at a time , and convert into an ascii 
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character, and write them to an output file. This way we 

get 1372 ascii characters[1]. 

 

3. Convert the Ascii values into values specified by AZTEC 

symbology [1]. First store the table. Then take ascii 

values from the previously stored file and match them 

with values from table and store into another file. Again 

we get 1372 values. 

 

4. Convert the values again to binary form for second level 

Encoding: Then convert these values again to binary bits, 

with 5 bits maximum and store into another file. Here, we 

get varying number of bits. 

 

5. Convert the binary data into 10-bit codeword in order to 

encode them into the 2D Barcode: First, append extra bits 

if required, to make the total no of bits a multiple of 10. 

Then, check whether total no of bits/10 (ex: 

6180/10=618) is an even number, if not append 10 more 

bits, to make it even. Then, read each 10-bit codeword 

and convert it to a decimal number and write it to a file. 

We get varying number of decimal numbers (need to 

convert to decimal for RS encoding). 

 

6. Apply Reed-Solomon encoding to the decimal values to 

add error checking and generate a template of 7200 bits 

totally: Read the decimal numbers and apply RS 

encoding, then convert the decimal numbers to binary 

bits and store separately. we get 7200 bits constant for 

any iris.( we chose 7200 as it is closest to 6860, 

maximum of 1372*5) This gives us an error correction up 

to 14% [6]. 

 

7. Encode the 7200 bits into the 2D barcode after forming 

the 15X15 finder structure and the Symbol descriptor: 

We get a 2D barcode in the form of 91X91 matrix. 

3.5.2 Reed-Solomon Error Checking 
Reed–Solomon (RS) codes : These codes are non-

binary cyclic error-correcting codes invented by Irving S. 

Reed and Gustave Solomon [6]. They described a systematic 

way of building codes that could detect and correct 

multiple random symbol errors. By adding t check symbols to 

the data, an RS code can detect any combination of up 

to t erroneous symbols, and correct up to ⌊t/2⌋ symbols. As 

an erasure code, it can correct up to t known erasures, or it can 

detect and correct combinations of errors and erasures. 

Furthermore, RS codes are suitable as multiple-burst bit-error 

correcting codes, since a sequence of b+1 consecutive bit 

errors can affect at most two symbols of size b. The choice 

of t is up to the designer of the code, and may be selected 

within wide limits. 

They use polynomials derived using finite field mathematics 

known as Galois Fields. Galois Fields comprise of a finite 

number of elements with special properties. Either 

multiplication or addition can be used to combine elements in 

the field. Such fields generally only exist when the number of 

elements is a prime number or a power of a prime number. 

There exists at least one element called a primitive such that 

every other element can be expressed as a power of this 

element. Data are formed into symbols that are members of 

the Galois Field used by the code. The size of the Galois Field 

determines the number of symbols in the code, is based on the 

number of bits comprising a symbol. 

Aztec Codes use Reed–Solomon error correction to allow 

correct reading even if a portion of the bar code is damaged. 

When the bar code scanner cannot recognize a bar code 

symbol, it will treat it as an erasure [6]. 

3.6 Formation of the Barcode 
The barcode symbology presented here embeds data in a two 

dimensional grid pattern or matrix, and is directed more 

particularly to a 2D matrix symbology in which data blocks 

are concatenated in a sequentially readable spiral-like pattern 

having a beginning and end which can be identified quickly 

and uniquely with respect to a centrally located finder pattern. 

In the preferred embodiment the symbology includes a finder 

structure and a symbol descriptor structure which together lie 

at and form the core of the bar code symbol. By virtue of its 

simple geometry and easy recognizability the finder structure 

allows the read circuitry to determine both the center of the 

barcode symbol and the axes of orientation thereof with 

respect to the reader. By virtue of its encoded data content the 

symbol descriptor structure allows the reader to determine the 

size of the symbol and the length of the message encoded 

therein. Also included within the core of the symbology is an 

orientation structure including a set of orientation blocks that 

contain codes which indicate, with respect to the structure, 

where should the data encoded in the symbol has to begin. 

Thus the finder structure comprises of a framework which 

contains within itself all of the data   necessary to characterize 

the beginning point and length of the message encoded within 

the barcode symbol. 

The symbology also includes a reference structure which 

comprises of easily recognizable grids that includes a plurality 

of linear arrays of reference elements having longitudinal axes 

that are oriented in parallel with one or more segments of the 

finder structure. The parts of this reference grid extends from 

within the finder structure to the outermost boundaries of the 

barcode and provide a Cartesian frame of reference that 

allows the location of any part of the symbol to be accurately 

read.  

The symbology also includes a data structure that includes a 

plurality of data blocks which are organized into string having 

one end that is located in a predetermined position with 

respect to the core structure. All message data, and all check 

or error correction data is encoded as combinations of black 

and white squares (1’s and 0’s respectively) that are 

positioned within these data blocks. Each of these data blocks, 

in turn, includes a plurality of component blocks, hereinafter 

referred to as ‘dominoes’, which allow the spatial or 

directional continuity of the data blocks to be interrupted 

without disrupting the ability of a barcode reader to accurately 

read all of the data encoded therein. It is the elimination of the 

need for such continuity that allows the data blocks to be 

formed into layers which wrap around and enclose the core 

structure and yet which may be read sequentially with each 

layer and it also allows reader to move easily from one layer 

to next to continue reading a message. 
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Figure 7: Structure of layers within which data is entered 

into the Barcode symbol. 

 
Figure 8: An enlarged fragmentary view of a Barcode 

which shows how data blocks are packed in. 

3.7 Matching 

3.7.1 Hamming Distance 
For matching, the Hamming distance seems to be a good 

metric for recognition, since bit-wise comparisons are 

necessary. The Hamming distance algorithm employed also 

incorporates noise masking, so that only significant bits are 

used in calculating the Hamming distance between two iris 

templates. Now when taking the Hamming distance, only 

those bits in the iris pattern that corresponds to ‘0’ bits in 

noise masks of both iris patterns will be used in the 

calculation [7]. The Hamming distance will be calculated 

using only the bits generated from the true iris region, and this 

modified Hamming distance formula is given as  

 
 
where Xj and Yj are the two bit-wise templates to compare, Xn

j 

and Yn
j 
are the corresponding noise masks for Xj and Yj, and N 

is the number of bits represented by each template. 

3.8 Interface  

 

Figure 9: Generation of barcode and matching. 

4. EXPERIMENTAL DATA AND 

RESULT ANALYSIS 
The key objective of an iris recognition system is to be able to 

achieve a distinct separation of intra-class and inter-class 

Hamming distance distributions. With clear separation, a 

separation Hamming distance value can be chosen which 

allows a decision to be made when comparing two templates. 

If the Hamming distance between two templates is less than 

the separation point, the templates were generated from the 

same iris and a match is found. Otherwise if the Hamming 

distance is greater than the separation point the two templates 

are considered to have been generated from different irises 

[7]. 

We have conducted an experiment and the analysis carried out 

for 10 different images and about 10-13 samples of each 

image.  Total comparison is about more than 100 images. 
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Table 1: Hamming distances between different barcode images. 

Image Hamming Distance (HD) of image I with image j 

i/j 1 2 3 4 5 6 7 8 9 10 

1 0 0.3199 0.3139 0.3257 0.3103 0.3122 0.3187 0.3114 0.321 0.3224 

2 0.3103 0 0.3199 0.3078 0.318 0.3134 0.3177 0.3073 0.3123 0.3188 

3 0.3122 0.3169 0 0.3147 0.3166 0.3134 0.3203 0.3174 0.3196 0.3206 

4 0.3187 0.3258 0.3253 0 0.3177 0.3203 0.314 0.3251 0.3288 0.3308 

5 0.3114 0.3215 0.3113 0.3302 0 0.3073 0.3174 0.314 0.3225 0.3199 

6 0.321 0.3201 0.3225 0.3247 0.3123 0 0.3196 0.3288 0.3225 0.3231 

7 0.3224 0.3286 0.3327 0.3315 0.3188 0.3206 0 0.3308 0.3199 0.3231 

8 0.3199 0.3231 0.3292 0.3199 0.3169 0.3258 0.3215 0 0.3201 0.3286 

9 0.3139 0.3231 0.3347 0.3078 0.3147 0.3253 0.3113 0.3225 0 0.3327 

10 0.3257 0.3292 0.3347 0.318 0.3166 0.3251 0.3302 0.3247 0.3315 0 

 

Table 2 : Hamming distances between barcode image and its own samples 

Image Hamming Distance (HD) of image i with sample j 

i/j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 0 0.3071 0.295 0.312 0.3068 0.2968 0.299 0.3061 0.3035 0.3017 - - - - 

2 0.3113 0 0.3088 0.3125 0.314 0.3044 0.3166 0.3066 0.3212 0.3167 - - - - 

3 0.3106 0.3212 0 0.3076 0.3084 0.321 0.3184 0.3112 0.3103 0.3152 - - - - 

4 0.3186 0.311 0.3166 0 0.3124 0.3161 0.3131 0.317 0.3233 0.3146 0.3234 - - - 

5 0.3211 0.3217 0.3239 0.3145 0 0.3181 0.3178 0.3172 0.323 - - - - - 

6 0.3143 0.2776 0.2841 0.3145 0.2831 0 0.315 - - - - - - - 

7 0.3122 0.3236 0.3113 0.3165 0.3141 0.3129 0 - - - - - - - 

8 0.3131 0.3084 0.3239 - - - - - - - - - - - 

9 0.3205 0.3136 0.324 0.3218 0.3207 0.3102 0.318 0.3192 0 0.3267 0.3299 
0.32

6 

0.331

5 

0.32

7 

10 0.3215 0.3238 0.3289 0.3205 0.3291 - - - - - - - - - 

 Observing both the table’s values, separation point is set 

to ‘0.3180’ 

 Based on this separation point, following parameters are 

been determined. 

1. AR- Acceptance Ratio is the Number of samples of the 

image that are accepted correctly/Total number of 

samples. 

2. FRR- False Rejection Ratio is the Number of samples of 

the image that are rejected falsely/Total number of 

samples. 

3. FAR-False Acceptance Ratio is the Number of different 

images that are accepted falsely/ Total number of images. 

4. RR- Rejection Ratio is the Number of different images 

that are rejected correctly/ Total number of images.  
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Table 3 : Result Analysis  

Sl. No Parameter 
No. of 

Samples 

Total 

Samples 

Percentage 

of Result 

1 AR 46 78 58.90% 

2 FRR 32 78 41.10% 

3 FAR 31 90 33.34% 

4 RR 59 90 66.66% 

5. CONCLUSION 
From the above calculations, we can conclude that the 

proposed system is about 60% efficient in accepting valid 

images and about 67% efficient in rejecting invalid images. 
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