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Abstract: The purpose of this research is to investigate a novel three-stage flow shop scheduling
problem with an ambiguous processing time. The uncertain information is characterized by Pen-
tagonal fuzzy numbers. To solve the problem, in this paper, two different strategies are proposed;
one relies on the idea of a ranking function, and the other on the close interval approximation of
the pentagonal fuzzy number. For persons that need to be more specific in their requirements, the
close interval approximation of the Pentagonal fuzzy number is judged to be the best appropriate
approximation interval. Regarding the rental cost specification, these methods are used to reduce
the rental cost for the concerned devices. In addition, a comparison of our suggested approach’s
computed total processing time, total machine rental cost, and machine idle time to the existing
approach is introduced. A numerical example is shown to clarify the benefits of the two strategies
and to help the readers understand it better.

Keywords: flow shop scheduling problem; processing time; rental policy; utilization time;
pentagonal fuzzy number; ranking function; close-interval approximation

1. Introduction

A scheduling problem is one that involves locating an ideal, or nearly ideal, timetable
while taking into account various constraints. Different techniques to solving the scheduling
problem, which aims to establish the order of processing work on a given set of machines,
were explored. It is important and relevant to what the industry has marketed. Scheduling
calls for a range of actions in order to complete a specific task within the allotted time and
budget. The flow shop is the most traditional settings for manufacturing and study in the
scheduling literature. One of the early results in flow shop scheduling theory was presented
by Johnson [1], who presented an algorithm for scheduling jobs in a two- or three-machine
flow shop to minimize the time at which all jobs are completed. The process of planning,
organizing jobs and their flow through the production method plays a crucial role in every
contemporary manufacturing system. The n-job on m-machine scheduling problem is
known as the flow shop scheduling problem (FSSP). Each machine can only handle one
job at a time, and each job can only be completed on one machine at a time. All jobs enter
through all machines in the same order. Numerous scholars have conducted research in this
area [2–7]. Ueno et al. [8] investigated FSSP with multi-stages in relation to the steel works.
Yuan et al. [9] developed a mathematical theory and technique to address the specific
blocking constraint in the two-stage flow shop group scheduling problem. Vahedi-Nouri
et al. [10] proposed a fresh flow shop method to reduce the mean flow rate. Ren et al. [11]
conducted research on the flow shop process to reduce publication time.
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Two flow shop machines were represented by a model by Laribi et al. in [12].
Yazdani and Naderi [13] used mixed integer linear programming to formulate a schedul-
ing problem. Qu et al. [14] used a hormone modulation approach for no wait flow shop
scheduling. The fuzzy number is said to indicate a range of potential values rather than just
one particular value [15]. The membership function, which has weights ranging from zero
to one for each potential value, is used in membership functions. Numerous types of fuzzy
numbers have been studied in the previous literature, including the triangular fuzzy num-
ber [16], the trapezoidal fuzzy number [17], the pentagonal fuzzy number (PFN) [18,19],
etc. based on data from several observations and flaws in measuring processes, equipment
faultiness, etc. Assume we are taking temperature and humidity readings. The tempera-
ture is approximately 30 ◦C when the humidity in the air is typical, meaning that neither
a temperature less than 30 ◦C nor a temperature greater than 30 ◦C is ideal. As a result,
temperature variation will also be influenced by the amount of humidity. It is a widespread
phenomenon. The PFN results from this idea of variation. A PFN is often a five-tuple
subset of a real number R with five parameters. Pathinathan and Ponnivalavan introduced
PFNs for the first time in [20]. The fundamental ideas of PFN were created by Rajkumar
and Pathinathan in [21]. Prameela and Kumar [22] looked at a PFN application to ascertain
a queuing model’s performance metrics. Although the processing time knowledge is not
deterministic, we frequently utilize fuzzy numbers to describe it. Numerous researchers
have researched fuzzy FSSP.

According to MacCahone and Lee [23], the job sequencing affecting the fuzzy pro-
cessing time (FPT) was handled. An algorithm for calculating the minimization of the
payment cost of machines with triangular FPT was processed by Sathish and Ganesan [24].
For a machine scheduling problem, Khalifa [25] considered the different due dates with
a fuzzy sense. The FSSP was solved by Khalifa et al. [26] assuming that the due dates were
ambiguous. Alharbi and Khalifa created an FSSP in [27] by employing processing time as
PFNs. The bi-objective joint optimization of both preventative and corrective maintenance
costs in assembly permutation flow shop scheduling was given by Zhang et al. [28]. Using
effective scheduling, Jabbari et al. [29] established a mathematical approach to reduce
the time needed to complete all goods (makespan). Flexible job shop scheduling with
type-2 fuzzy processing time was presented by Li et al. [30]. Zhou et al. [31] looked at
the structure of n-job flow shop scheduling with fuzzy piecewise quadratic processing
times and three machines. Some of the advanced methods to examine the FSP are listed
in Ren et al. [32]; Wang et al. [33,34]; Jemmai and Hidri [35]; Wang Gai- Ge et al. [36], and
Kou-lamas and Kyparisis [37].

In this study, a novel three-stage flow shop scheduling problem with an uncertain
processing time was investigated. Pentagonal fuzzy numbers were used to describe the
uncertain information. In this study, two different approaches to solving the problem were
put forth; one was based on the concept of a ranking function, while the other was based
on the near interval approximation of the pentagonal fuzzy number. The study’s primary
contributions and novelties were as follows:

(1) Introducing suitable terminologies and measures that consider the properties of
a possible optimal scheduling;

(2) Defining two methods for determining the best schedule, one based on the ordering
of pentagonal fuzzy numbers and the other on PFN interval confidence;

(3) Interacting the analyst with the DM to arrive to the optimal sequence.

The main objectives of the proposed study were:

(1) To minimize the fuzzy professing time of the machines subject to the rental policy;
(2) To study the inclusive study of pentagonal fuzzy numbers in the scheduling problem;
(3) To specific the concept of the optimal scheduling for the scenario;
(4) To validate the proposed study with the support of illustrative example.

The remainder of this study is structured as follows: Section 2 has discussed several
fundamental ideas. Some of the necessary presumptions and concepts are explored in
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Section 3 in relation to the topic being studied. In Section 5, a solution method is presented.
A numerical example is provided as an illustration in Section 6. A brief comparison with
a few current approaches is offered in Section 7. Conclusions and upcoming research are
reported in Section 8.

2. Preliminaries

Some fundamental definitions of PFNs, their arithmetic operations, ranking function,
and interval confidence are recalled in this section.

Definition 1. (Zadeh [15]). A fuzzy set Ã defined on the set of R is said to be fuzzy membership
function µÃ(x) : R→ [0, 1] , have the following properties:

(1) µ ~
A
(x) is an upper semi—continuous membership function;

(2)
~
A is convex fuzzy set, i.e., µ ~

A
(w x + (1−w) y) ≥ min

{
µ ~

A
(x), µ ~

A
(y)

}
for all

x, y ∈ R; 0 ≤ w ≤ 1;
~
A is normal, i.e., ∃ x0 ∈ R for which µ ~

A
(x0) = 1;

(3) Supp (Ã) =
{

x ∈ R : µÃ(x) > 0
}

is the support of Ã, and the closurecl(Supp(Ã)) is
compact set.

Definition 2. (Panda and Pal [18,19]). A fuzzy number ÃP is a pentagonal fuzzy number (PFN),
represented by ÃP = (a1, a2, a3, a4, a5) where a1, a2, a3, a4, a5 are reals. The middle point a3
possesses the degree of membership 1 and w, v are the respective membership values of points a2, a4.
The membership function µÃP

(x) for PFN is written as follows (Figure 1):
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µÃP
(x, w, v) =



0, x < a1

w x−a1
a2−a1

, a1 ≤ x ≤ a2

1− (1−w) x−a2
a3−a2

, a2 ≤ x ≤ a3

1, x = a3

1− (1− v) x−a3
a4−a3

, a3 ≤ x ≤ a4

v x−a5
a4−a5

, a4 ≤ x ≤ a5

0, x ≥ a5

(1)
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Remark 1. The other fuzzy numbers, specifically the triangular and trapezoidal fuzzy numbers, are
regarded as a special issue for a given PFN and are listed as follows:
Case I (Panda and Pal [18]).

For w = v = 0, the PFN converts to triangular fuzzy number i.e., (a1, a2, a3, a4, a5) ∼=
(a2, a3, a4) and the membership function becomes:

µÃ(x) =



0, x < a2

1− a2−x
a2−a3

, a2 ≤ x ≤ a3

1, x = a3

1− a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x ≥ a4

(2)

Case II (Panda and Pal [18]).
For w = v = 1, the PFN converts to trapezoidal fuzzy number i.e., (a1, a2, a3, a4, a5) ∼=

(a1, a2, a4, a5) and the membership function becomes:

µÃ(x) =



0, x < a1

x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a4

a4−x
a5−a4

, a4 ≤ x ≤ a5

0, x ≥ a5

(3)

Definition 3. (Panda and Pal [18]). Let A = (a1, a2, a3, a4, a5) and B = (b1, b2, b3, b4, b5) be
two PFNs. All PFN is connected with two weights w, v. To avoid misunderstanding, we will use

the notations w1 , v1 to represent the weights of
~
AP, and w2 , v2 to represent the weights of

~
BP.

The arithmetic operations of PFN can be defined as follows:
Addition: A⊕B = (a1 + b1, a2 + b2, a3 + b3, a4 + b4, a5 + b5) with w3 ≥ max( w1, w2)

and v3 ≥ max( v1, v2)
Subtraction: A	B = (a1 − b5, a2 − b4, a3 − b3, a4 − b2, a5 − b1) with w3 ≥ max( w1, w2)

and v3 ≥ max( v1, v2)
Scalar Multiplication: let h be a real number.
If h ≥ 0, hA = (ha1, ha2, ha3, ha4, ha5), if h ≤ 0, h�A = (ha5, ha4, ha3, ha2, ha1).
Multiplication: A ⊗ B = (a1b1, a2b2, a3b3, a4b4, a5b5) with w3 ≥ max( w1, w2)

and v3 ≥ max( v1, v2).
Inverse: A−1 =

(
1

a5
, 1

a4
, 1

a3
, 1

a2
, 1

a1

)
, ai 6= 0, 1 ≤ i ≤ 5.

Division: A
B = AB−1 =

(
a1
b5

, a2
b4

, a3
b3

, a4
b2

, a5
b1

)
with w3 ≥ max( w1, w2)

and v3 ≥ max( v1, v2).
Exponent: An = (a1

n, a2
n, a3

n, a4
n, a5

n) with n being a real number.

3. Notations and Assumptions

In this part, we present the notations, presumptions, and rental policy required to
construct the problem for a three-stage fuzzy FSSP.

3.1. Notations

Sk : Job sequencing order, k = 1, 2, 3, . . . , m.

Ãij: PFPT of the ith job on machine Mj, i = 1, 2, 3, . . . , n; j = 1, 2, 3.

T̃ ij : Completion time of the ith job on machine Mj of sequence Sk
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T̃ ij = max
(
T̃ i−1,j ⊕ T̃ i,j−1

)
⊕Ãij; ∀j > 2.

Ĩij : Idle time of machine Mj for the ith job in sequence Sk

Ũ j : Utilization for machine Mj

R̃ : Total rental cost of machine of all machines of sequence Sk

C̃j : Rental cost of machine Mj

CT : Total time required for completing all jobs of sequence S i

3.2. Assumptions

i. Preemption was prohibited in all jobs. The machine only handled one work at a time.
ii. All jobs were open at the beginning of schedule time. The duration of the production

was independent of the schedule.
iii. Each machine’s initial setup time was disregarded. Any machine could be unoccupied.
iv. The deterministic phase was used to process each job. A task must be completed after

it had been started.
v. Before the second machine could handle the second work, the first job must have been

completed in the first machine.
vi. PFNs were used to represent the due dates.

For every task, m operations were required.

4. Statement of the Problem

We first defined the meaning of the rental policy before introducing the mathematical
model of the issue: the first machine was rented when processing the first work, the second
machine was rented when processing the first job on the second machine, and the third
machine was rented when processing the second job on the second machine. Now, some
job i

(
i = 1, n

)
could be processed on three machines Mj(j = 1, 2, 3) constrained by the

specific rental policy P . Let Ãij be the pentagonal fuzzy processing time (PFPT) of the
ith job on the jth machines. Our aim was to find the sequence {Sk} of the jobs which
minimized the rental cost of the machines. We present the matrix-form description of the
model in Table 1 as follow.

Table 1. Mathematical model representation in matrix form.

T i 1 2 . . . n

MachineM1 Ãi1 Ã11 Ã12 . . . Ã1n
MachineM2 Ãi2 Ã21 Ã22 . . . Ã2n
MachineM3 Ãi3 Ã31 Ã32 . . . Ã3n

The mathematical model of this problem is given as follows:

Minimize R̃ = ∑n
i=1 Ãi1C̃1 + Ũ2(Sk)C̃2 + Ũ3(Sk)C̃3 (4)

Subject to: the specified rental policy P .

5. Solution Procedure

This section introduces an approach for minimizing utilization time of machines,
which leads to the minimization of rental cost for the machines following the PFPT. Let
Ãi1, Ãi2, Ãi3, . . . , Ãim be the PFPT of machinesM1,M2,M3, . . . ,Mm, respectively.

Step 1: Estimate the associated ordinary number for the pentagonal fuzzy using
ranking function.

Step 2: Check the condition either

min
i
Ãi1 ≥ max

i
Ãij, j =, 2, 3, . . . , m− 1 or (5)
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min
i
Ãim ≥ max

i
Ãij, j = 2, 3, . . . , m− 1 (6)

Step 3: Organize two machines X and Y such that

X̃i = ∑m−1
j=1 Ãij, i = 1, 2, 3, . . . ., n. (7)

Ỹi = ∑m
j=2 Ãij, i = 1, 2, 3, . . . ., n, (8)

where, X̃i, Ỹiare the PFPTs for job i on machines X and Y; respectively.
Step 4: Find the sequence {Sk} of jobs on machines X and Y using a suitable

ranking method.
A flow chart of the proposed method is shown in the Figure 2.
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𝑋𝑋�𝑖𝑖 = ∑ �̃�𝒜𝑖𝑖𝑖𝑖
𝑖𝑖−1
𝑖𝑖=1 , 𝑖𝑖 = 1, 2, 3, … . ,𝑛𝑛.  (7) 

𝑌𝑌�𝑖𝑖 = ∑ �̃�𝒜𝑖𝑖𝑖𝑖
𝑖𝑖
𝑖𝑖=2 , 𝑖𝑖 = 1, 2, 3, … . ,𝑛𝑛,  (8) 

where, 𝑋𝑋�𝑖𝑖 ,𝑌𝑌�𝑖𝑖are the PFPTs for job 𝑖𝑖 on machines 𝑋𝑋 and 𝑌𝑌; respectively. 
Step 4: Find the sequence {𝒮𝒮𝑘𝑘} of jobs on machines 𝑋𝑋 and 𝑌𝑌 using a suitable ranking 

method. 
A flow chart of the proposed method is shown in the Figure 2.  

 
Figure 2. Flow chart of the proposed method. Figure 2. Flow chart of the proposed method.

6. Numerical Example

In Table 2, Consider five jobs and three-machines FSSP with PFPT. The rental cost
of machinesM1,M2, andM3 per unit time was four units, two units, and three units
respectively, subject to the rental policy P . The main goal was to find an optimal schedule.
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Table 2. PFPT data for representation.

Job M1 M2 M3

1 (7, 7.5, 8, 8.5, 9) (6, 6.5, 7, 7.5, 8) (3, 3.5, 4, 4.5, 5)
2 (12, 12.5,13, 13.5, 14) (5, 5.5, 6, 6.5, 7) (4, 4.5, 5, 5.5, 6)
3 (8, 9, 10, 11, 12) (4, 4.5, 5, 5.5, 6) (6, 6.5, 7, 7.5, 8)
4 (10, 10.5, 11, 11.5, 12) (5, 5.5, 6, 6.5, 7) (11, 11.5, 12, 12.5, 13)
5 (9, 9.5, 10, 10.5, 11) (5, 5.5, 6, 6.5, 7) (8, 8.5, 9, 9.5, 10)

1st approach: Ranking method solution
For the first step of the proposed approach

min
i
Ãi1 = (7, 7.5, 8, 8.5, 9), (9)

max
i
Ãi2 = (6, 6.5, 7, 7.5, 8) (10)

min
i
Ãi3 = (3, 3.5, 4, 4.5, 5). (11)

It was observed that min
i
Ãi1 > max

i
Ãi2, then the problem could be converted to

two machines. Assume X and Y were two fictions machines such that

X̃i = ∑2
j=1 Ãij, (12)

Ỹi = ∑3
j=2 Ãij (13)

The PFPTs for job i on machines X and Y are listed in Table 3.

Table 3. PFPTs of Machines X and Y.

Job X Y

1 (13,14,15,16,17) (9,10,11,12,13)
2 (17,18,19,20,21) (9,10,11,12,13)
3 (12,13.5, 15,16.5,18) (10,11,12,13,14)
4 (15,16,17,18,19) (16,17,18,19,20)
5 (14,15,16,17,18) (13,14,15,16,17)

Using sub-interval average method [28], the optimal order of sequencing was as
follows: 4→ 5→ 2→ 3→ 1.

From Table 4, the following results were noticed:

Table 4. Machines Time in and Time out.

Machine 1 Machine 2 Machine 3
Job Time in Time out Time in Time out Time in Time out

4 (0, 0, 0, 0, 0) (10, 10.5, 11,
11.5, 12)

(10, 10.5, 11,
11.5, 12)

(10, 10.5, 11,
11.5, 12)

(15, 16, 17,
18, 19)

(26, 27.5, 29,
30.5, 32)

5 (10, 10.5, 11,
11.5, 12)

(19, 20, 21,
22, 23)

(19, 20, 21,
22, 23)

(19, 20, 21,
22, 23)

(26, 27.5, 29,
30.5, 32)

(34, 36, 38,
40, 42)

2 (19, 20, 21,
22, 23)

(31, 32.5, 34,
35.5, 37)

(31, 32.5, 34,
35.5, 37)

(31, 32.5, 34,
35.5, 37)

(36, 38, 40,
42, 44)

(40, 42.5, 45,
47.5, 50)

3 (31, 32.5, 34,
35.5, 37)

(39, 41.5, 44,
46.5, 49)

(39, 41.5, 44,
46.5, 49)

(39, 41.5, 44,
46.5, 49)

(43, 46, 49,
52, 55)

(49, 52.5, 56,
59.5, 63)

1 (39, 41.5, 44,
46.5, 49)

(46, 49, 52,
55, 58)

(46, 49, 52,
55, 58)

(46, 49, 52,
55, 58)

(52, 55.5, 59,
62.5, 66)

(55, 59, 63,
67, 71)
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Total time required for completing all jobs of the obtained sequence,

CT (Si) = (55, 59, 63, 67, 71) (14)

Idle time ofM1 is,

Ĩ1 = (55, 59, 63, 67, 71)− (46, 49, 52, 55, 58) = (−3, 4, 11, 18, 25) hrs.

Idle time ofM2 is,
Ĩ2 = (−13, 2.5, 18, 33.5, 49) hrs.

Idle time ofM3 is,
Ĩ3 = (−24,−7.5, 9, 25.5, 42) hrs.

Utilization time ofM1,

Ũ1 = (46, 49, 52, 55, 58) hrs.

Utilization time ofM2,

Ũ2 = (3, 22, 41, 60, 79) hrs.

Utilization time ofM3,

Ũ3 = (13, 33.5, 54, 74.5, 95) hrs.

Rental cost of machineM1,

C̃1 = 4 ∗ (46, 49, 52, 55, 58) = (184, 196, 208, 220, 232) units.

Rental cost of machineM2,

C̃2 = 2 ∗ (3, 22, 43, 60, 79) = (6, 44, 82, 120, 158) units.

Rental cost of machineM3,

C̃3 = 3 ∗ (13, 33.5, 54, 74.5, 95) = (39, 100.5, 162, 223.5, 285) units.

Thus, the total rental cost,

R̃(Sk)= ∑3
j=1 C̃j = (229, 340.5, 452, 563.5, 675) units. (15)

2nd Approach named as Interval Confidence based method:
For people, it needs to be more precise in their requirements. Let us propose the

following alternative approach:

1. Make the optimization with the associated ordinary;
2. Compute the true optimum for the intervals of confidence at the level α = 0;
3. Compare the results with those obtained using the pentagonal fuzzy numbers. If the

divergence is very small within acceptable limits, keep the results obtained by using
the PFNs.

The previous example was resolved by this approach and the obtained results were
shown in the following Tables 5–7.

For the first step of the approach,

min
i
Ãi1 = [7, 9],

max
i
Ãi2 = [6, 8],

min
i
Ãi3 = [3, 5].
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Table 5. Processing Times at α = 0.

Jobs M1 M2 M3

1 [7, 9] [6, 8] [3, 5]
2 [12, 14] [5, 7] [4, 6]
3 [8, 12] [4, 6] [6, 8]
4 [10, 12] [5, 7] [11, 13]
5 [9, 11] [5, 7] [8, 10]

Table 6. Processing Times of Machines X and Y at α = 0.

Job X Y

1 [13, 17] [9, 13]
2 [17, 21] [9, 13]
3 [12, 18] [10, 14]
4 [15, 19] [16, 20]
5 [14, 18] [13, 17]

Table 7. Machines’ Time in as well as Time out at α = 0.

Job Machine-1 Machine-2 Machine-3
Time in Time out Time in Time out Time in Time out

4 [0, 0] [10, 12] [10, 12] [15, 19] [15, 19] (26,32)
5 [10, 12] [19, 23] [19, 23] [24, 30] [26, 32] (34,42)
2 [19, 23] [31, 37] [31, 37] [36, 44] [36, 44] [40, 50]
3 [31, 37] [39, 49] [39, 49] [43, 55] [43, 55] [49, 63]
1 [39, 49] [46, 58] [46, 58] [52, 66] [52, 66] [55, 71]

It was observed that min
i
Ãi1 > max

i
Ãi2, then the problem could be converted to

two machines. Assume X and Y were two fictions machines such that

X̃i = ∑2
j=1 Ãij, Ỹi = ∑3

j=2 Ãij (16)

Using sub-interval average method [28], the optimal order of sequencing was,
4→ 5→ 2→ 3→ 1.

Total time required for completing all jobs of the obtained sequence,

CT (Si) = [55, 71],

Idle time ofM1 is,

Ĩ1 = [55, 71]− [46, 58] = [−3, 25] hrs.

Idle time ofM2 is,

Ĩ2 = [0, 8] + [1, 13] + [−5, 13] + [−9, 15] = [−13, 49] hrs.

Idle time ofM3 is,

Ĩ3 = [−6, 10] + [−7, 15] + [−11, 17] = [−24, 42] hrs

Utilization time ofM1,
Ũ1 = [46, 58] hrs.

Utilization time ofM2,

Ũ2 = [52, 66]− [−13, 49] = [3, 79] hrs
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Utilization time ofM3,

Ũ3 = [55, 71]− 24, 42 = [13, 95] hrs.

Rental cost of machineM1,

C̃1 = 4 ∗ [46, 58] = [184, 232] units.

Rental cost of machineM2,

C̃2 = 2 ∗ [3, 79] = [6, 258] units.

Rental cost of machineM3,

C̃3 = 3 ∗ [13, 95] = [39, 285] units.

Thus, the total rental cost,

R̃(Sk)= ∑3
j=1 C̃j = [ 229, 675] units. (17)

7. Comparative Study

This Section includes a comparison of the results we obtained with those found in [24].
The PFN was a generalized version of the triangular fuzzy number, as is known from
Section 2. A triangular fuzzy number was transformed into the PFN, and vice versa.
Tables 7–9 show comparisons between our calculated total processing time, total machine
rental cost, and total machine idle time with that reported in [24].

Table 8. Processing Time.

Type of Fuzzy Number Our Proposed Algorithm Algorithm by Sathish and Ganesan [24]

Pentagonal fuzzy number (55, 59, 63, 67, 71) (61, 62, 63, 64, 65)
Triangular fuzzy number (59, 63, 67) (61, 63, 65)

Fuzziness index triangular fuzzy number (63, 4, 4) (63, 2, 2)

Table 9. Total Renal cost.

Type of Fuzzy Number Proposed Algorithm Algorithm by Sathish and Ganesan [24]

Pentagonal fuzzy number (229, 340.5, 452, 563.5, 675) (444, 448, 452, 456, 460)
Triangular fuzzy number (340.5, 452, 563.5) (444, 452, 460)

Fuzziness index triangular fuzzy number (452, 111.5, 111.5) (452, 8, 8)

From the above Tables 8–10, it was observed that:

(a) The intermediate value of the pentagonal and the triangular fuzzy numbers was equal
i.e., when the membership µA(x) = 1, x = 452 for the total rental cost and x = 63 for
the total processing time;

(b) The left and right fuzziness index values, defined in [24] were smaller than the values
we obtained for the idle times of machines, total processing time and the rental cost;

(c) From Table 9, it was observed that the proposed rental cost was nonlinear in nature,
while the Sathish and Ganesan [24] results showed it was linear in nature. Thus,
the presented approach result showed a better representation than the previously
existing ones.
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Table 10. Idle time of machines.

Type of Fuzzy Number Ij Proposed Algorithm Algorithm by Sathish and Ganesan [24]

Pentagonal fuzzy number
I1 (−3, 4, 11, 18, 25) (9, 10, 11, 12, 13)
I2 (−13, 2.5, 18, 33.5, 49), (16, 17, 18, 19, 20)
I3 (−24,−7.5, 9, 25.5, 42) (7, 8, 9, 10, 11)

Triangular fuzzy number
I1 ( 4, 11, 18) (9, 11, 13)
I2 ( 2.5, 18, 33.5), (16, 18, 20)
I3 (−7.5, 9, 25.5) (7, 9, 11)

Fuzziness index triangular fuzzy number
I1 (11, 7, 7) (11, 2, 2)
I2 (18, 15.5, 15.5) (18, 2, 2)
I3 (9, 16.5, 16.5) (9, 2, 2)

Advantages/Limitations of the Proposed Algorithm

The ranking function, interval confidence of the PFN, and DM’s vision formed a novel
combination that is the main benefit of the suggested solution approach. This combination
makes use of the advantages of using uncertainty to efficiently scan the search space, the
advantages of the PFN, which uses the DM’s vision to rate potential solutions, and the
advantages of incorporating the DM’s vision. There may be some restrictions when using
the proposed algorithm to solve real-world issues, such as:

(1) The methodology does not involve a unified method because the DM’s vision, kind of
fuzzy number, and α−level set vary from one another, making it impossible to assign
a united way for allocating the intriguing scenarios for the DM.

(2) Many factors must be considered such as: (i) the possibility of formulating the problem,
(ii) the possibility of formulating the problem and choosing the α− level set, and
(iii) the capability of solving the problem’s selected scenarios and finding their exact
optimal scheduling.

8. Conclusions and Future Work

Two methods for using PFPT to solve the novel structured three-stage FSSP have
been described in this paper. The major goal of this study was to ascertain how to reduce
the overall cost of machine rentals. The membership µA(x) = 1, x = 452 for the total
rental cost, and x = 63 for the total processing time made up the quantitative results. The
operation sequencing produced by the subintervals ranking approach differed from that
acquired by Johanson [22]. Although the jobs were done in a different order, the findings
were comparable to those obtained by Sathish and Ganesan [24]. The values of the left and
right fuzziness indices were higher than those found in [24] for machine idle times, overall
processing time, and rental costs. This indicated that the algorithm was more trustworthy
where it expanded the decision-selecting region, enabling the decision-maker to select
the appropriate values in accordance with their objectives. Additionally, the suggested
methods incorporate the DM’s insight into the process of determining the ideal scheduling,
and a ranking function was utilized to rank the various alternatives so that the appropriate
optimal scheduling may be quickly found. An illustration was given to demonstrate the
effectiveness of the suggested method, and findings from the genetic algorithm (GA), one
of the most well-known evolutionary algorithms, were compared to the simulation results
in order to confirm their accuracy and dependability.

Future work may include the expansion of this research to other fuzzy-like structures,
such as Neutrosophic sets, interval-valued fuzzy sets, spherical fuzzy sets, Pythagorean
fuzzy sets, etc. One can also take into account brand-new fuzzy systems with applications
in decision-making, such as interval type-2, interval type-3, etc. Additionally, in future,
a neural-network and convolution neural network approaches will be implemented to
improve the solutions and the total cost [38,39].
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