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Abstract 

The representation of general distributions or measured data by phase-type 

distributions is an important and non-trivial task in analytical modeling. Although 

a large number of different methods for fitting parameters of phase-type 

distributions to data traces exist, many approaches lack efficiency and numerical 

stability. In this paper, a novel approach is presented that fits a restricted class of 

phase-type distributions, namely mixtures of Erlang distributions, to trace data. 

For the parameter fitting an algorithm of the expectation maximization type is 

developed. The paper shows that these choices result in a very efficient and 

numerically stable approach which yields phase-type approximations for a wide 

range of data traces that are as good or better than approximations computed with 

other less efficient and less stable fitting methods. To illustrate the effectiveness 

of the proposed fitting algorithm, we present comparative results for our approach 

and two other methods using six benchmark traces and two real traffic traces as 

well as quantitative results from queueing analysis. 
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1 Introduction 

The central idea of traffic modeling lies in constructing analytically tractable models that 

capture the most important statistical properties of an underlying measured data trace. For 

analytical performance and dependability modeling measured data has to be represented or 

approximated by phase-type (PH) distributions in several cases [11], [25]. The procedure of 

estimating the parameters of a phase-type distribution according to some sample data or with 

respect to some other known distribution is commonly denoted as phase-type fitting. 

Among the large number of available fitting methods, expectation-maximization (EM) 

algorithms [19] are general methods of finding the maximum-likelihood estimate of the 

parameters of an underlying distribution from a given data trace when the data is incomplete 

or has missing values. EM algorithms for phase-type fitting have been available for some time 

[1], [4], but the application of the basic approach to general PH distributions turns out to be 

extremely costly and the fitted distribution depends heavily on the initial values [20]. Thus, it 

seems that fitting general PH distributions is not appropriate if the number of phases increases 

above 4, which is often the case for small coefficients of variation or traces that cannot be 

adequately represented by a PH distribution of low order. To overcome these problems the 

class of PH distributions used for fitting has to be restricted which is in principle possible in 

the basic EM algorithm by initializing only some elements in the matrix with non-zero values, 

but it seems to be more appropriate to develop an EM algorithm tailored to specific types of 

PH distributions. Based on earlier work from [10], El Abdouni Khayari et al. developed an 

EM algorithm in [8] to fit the parameters of a hyperexponential distribution to values of a data 

trace. The resulting approach is extremely efficient and yields good fitting results for heavy-

tailed distributions with monotonically decreasing density functions. However, the use of 

hyperexponential distributions restricts the class of distributions, which can be represented. In 

fact, hyperexponential distributions cannot adequately capture general distributions with 

increasing and decreasing densities or with a coefficient of variation less than one. 

Since the fitting of parameters of a PH distribution is in general a non-linear optimization 

problem, apart from the EM algorithm also other optimization algorithms can be applied. 
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However, the optimization problem for general PH distributions is too complex to yield 

satisfactory results if the number of phases is larger than two or three. As shown in several 

papers [2], [3], [13], [14], the fitting problem becomes much easier if acyclic instead of 

general phase-type distributions are used, because for this type of distributions a canonical 

representation exists which reduces the number of free parameters to 2N compared to N2 + N 

for the general case, where N is then number of phases [5]. On the other hand, the restriction 

to acyclic PH distributions does not seem to limit the flexibility of the approach. However, 

even in the acyclic case, the resulting optimization is still complex and contains local optima 

and saddle points. To overcome the problem of convergence to a local optimum, the fitting 

algorithm is usually started with several initial settings and the best fitting is chosen. 

Apart from acyclic phase-type distributions several other restricted classes have been used. 

For our approach the works of Johnson [15] and Schmickler [24] are most important, since 

both use mixtures of Erlang distributions, which are also used in our work and will be denoted 

as hyper-Erlang distributions (HErD) according to [9]. However, in contrast to our approach, 

the mentioned techniques fit some moments and specific properties of the distribution or 

density function using nonlinear optimization. 

In this paper, an EM algorithm for the fitting of hyper-Erlang distributions is presented. 

The approach, which will be denoted as G-FIT, extends the fitting procedure of [8] from 

hyperexponential to hyper-Erlang distributions, which extends the class of representable 

distributions significantly since mixtures of Erlang distributions of unlimited order are 

theoretically as powerful as acyclic or general PH distributions (see Theorem 1). However, 

the class of distributions still allows the realization of a very efficient fitting algorithm. In 

particular the fitting time is independent of the number of states; it depends only on the 

number of Erlang branches, which might be significantly lower than the number of states. In 

fact, for M Erlang branches and a trace with K samples the time complexity of our algorithm 

is in O(M·K). Thus, distributions with a large number of states can be fitted efficiently. 

Furthermore, the fitting algorithm is rather stable due to the specific structure of the density 

function, which yields a fast and reliable convergence of the EM method. Additionally, the 
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fitting of the first three moments using a polynomial of degree 5 is introduced and it is shown 

how moment fitting can be integrated in the proposed EM algorithm that fits the empirical 

distribution function. 

Apart from the efficiency of the approach, the quality of the approximation for a given 

number of phases is important. We tested the approach on a set of six benchmark traces [3] 

and compared it with general PH-fitting [1] and fitting of acyclic PH distributions [14]. As 

expected, G-FIT is significantly faster than the other two approaches. Additionally, we were 

able to reach with an identical number of states a similar or better fitting quality than with the 

other two approaches on almost all examples. This result was not expected, because hyper-

Erlang distributions of a given order are in general less flexible than acyclic or general PH 

distributions of the same order. The practical applicability of G-FIT is demonstrated by fitting 

a call center trace [21] and a large traffic trace, which was recorded at the Web proxy server at 

the University of Dortmund in March 2005. The presented EM algorithm is implemented in 

the software package G-FIT, which is available for download on the Web [12]. 

The paper is organized as follows. Section 2 introduces the considered class of hyper-

Erlang distributions, it studies its relationship to general phase-type distributions, and it 

introduces the fitting of the first three moments of a hyper-Erlang distribution. Section 3 

develops a specialized EM algorithm for fitting the continuous parameters of a hyper-Erlang 

distribution and Section 4 presents an approach for finding optimal settings of the discrete 

parameters of the distribution. Experimental results obtained from fitting synthetically 

generated benchmark traces and two real traffic traces as well as quantitative results from 

queueing analysis are presented in Section 5. Finally, concluding remarks are given. 

 

2 Hyper-Erlang Distributions and its Properties 

2.1 Hyper-Erlang Distributions 

We consider a mixture of M mutually independent Erlang distributions weighted with the 

(initial) probabilities α1,…,αM with αm ≥ 0 and α1+α2+…+αM = 1. The number of phases of 
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the m-th Erlang distribution is denoted with rm. We assume 1 ≤ r1 ≤ … ≤ rM without loss of 

generality. Furthermore, let λm be the scale parameter of the m-th Erlang distribution. Note, 

that the individual Erlang distributions need not have the same mean. According to [9], we 

call this mixture of Erlang distributions a hyper-Erlang distribution (HErD). The HErD 

belongs to the class of acyclic phase-type distributions [2]. Besides the Erlang distribution, for 

M = 1, the hyperexponential distribution is a special case of a HErD with rm = 1 for all 

m = 1,…,M. Let X be a hyper-Erlang random variable. The probability density function (pdf) 

for X is given by 

m
m

r 1M
xm

X m m
m 1 m

( x)f (x) e
(r 1)!

−
−λ

=

λ= α λ
−∑ , (1) 

and the cumulative distribution function (cdf) is given by 

( )m
m

ir 1M
m x

X m
m 1 i 0

x
F (x) 1 e

i!

−
−λ

= =

λ
= − α∑ ∑ . (2) 

The i-th moment E[Xi] is given by 
M

i m
m i

m 1 m m

(r i 1)! 1E[X ]
(r 1)!=

+ −= α
− λ∑ . (3) 

A common measure to characterize the flexibility in approximating a given general 

distribution function is the range of variability of the squared coefficient of variation 2
Xc , 

which is defined in terms of the first and second moment, i.e., 

2
2
X 2

E[X ]c 1
E[X]

= − . (4) 

Recall that an Erlang distribution with r phases is defined as the sum of r independent 

identical exponentially distributed random variables. Thus, the HErD is constructed from a 

mixture of sums of exponential distributions. The number of states of a HErD is the overall 

number of exponential distributions involved in its construction. Keeping this in mind, the 

overall number of states of a HErD is given by 
M

m
m 1

N r
=

= ∑ . (5) 
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Figure 1. State transition graph of a hyper-Erlang distribution 

Figure 1 shows the state transition graph of a HErD, which corresponds to an absorbing 

continuous-time Markov chain where a state change occurs after an exponentially distributed 

delay with mean 1/λm, m = 1,…,M, and the time until absorption has a HErD. The absorbing 

state is shown as a dashed circle in Figure 1. 

Let f(x; M, r, α, λ) denote the density function of the HErD with M Erlang branches, 

where r = (r1, r2, … ,rM) ∈ NM is a vector containing the number of phases of each Erlang 

branch, α = (α1, α2, …,αM) ∈ RM is a vector with the initial probabilities for each Erlang 

branch and λ = (λ1, λ2, …,λM) ∈ RM is a vector with the scaling parameters, respectively. 

Using the constraint M
m 1 m 1=∑ α = , a HErD with M Erlang branches has 2M−1 continuous 

parameters given by α and λ and M discrete parameters given by the vector r. Let HN be a set 

of all HErD with N states, i.e., 

( )
M M

 N m m m m m
m 1 m 1

f x;M, , , 1 M N, 0, 0, r 1, 1, r N
= =

⎧ ⎫⎪ ⎪= ≤ ≤ λ > α ≥ ≥ α = =⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑r α λH . (6) 

Note, that the set HN contains all HErD distributions having at most N states, since HErD 

with less than N states are obtained by simply setting some αm values to zero. The versatility 

of the HErD in approximating general distributions is shown by the following theorem. 

Theorem 1: 

(i) Let F denote the set of all probability density functions of nonnegative random variables, 

then H∞ is a dense set in F. In fact, for every density function f ∈ F it is possible to 

choose a sequence of hyper-Erlang densities hλ,M(x) œ HN with M Erlang branches each 

having scale parameter λ, such that 



-6- 

,MM
lim lim h (x) f (x)λλ→∞ →∞

=  (7) 

for all x at which f(x) is continuous. 

(ii) Let h be a hyper-Erlang density out of the set HN, with N ≥ 2. The parameters of h can be 

tuned such that the squared coefficient of variation of h equals 1/N or takes on an 

arbitrary value greater or equal to 1/(N–1) with h still being an element of HN. 

Proof: The proof of (i) can be found in [16]. In particular, the hyper-Erlang densities hλ,M(x) 

are to be chosen so that λm = λ, rm = m, and αm = ( ) ( )( ) ( )F m F (m 1) F Mλ − − λ λ  for 

m = 1,…,M, where F is the cdf of f ∈ F. For the proof of (ii) we distinguish three different 

cases. Let c0 be the value that should be matched by the squared coefficient of variation of a 

hyper-Erlang density h ∈ HN. 

Case 1: c0 = 1/N: It is a well known fact that the squared coefficient of variation of an Erlang 

distribution with r phases equals 1/r, independent of the scaling parameter λ (see e.g. 

[25]). Thus, to obtain a squared coefficient of variation c2 = c0 = 1/N we simply 

choose M = 1, r1 = N, and α1 = 1. 

To find a hyper-Erlang distribution with coefficient of variation that is greater or equal to 

1/(N–1) we only have to consider the case M = 2 with α1 := α, α2 := 1–α, r1 = 1, and 

r2 = N–1, i.e., a mixture of an exponential distribution and an Erlang distribution with N–1 

phases. Simplifying Eq. (4) with the help of Eq. (3) the general form of the squared 

coefficient of variation for this hyper-Erlang distribution is given by 

2 2
2 1 2

2
1 2

(1 ) (N 1) N 2c 1
((1 ) (N 1) )
− α ⋅ − ⋅ ⋅λ + α ⋅λ= −

− α ⋅ − ⋅λ + α ⋅λ
. (8) 

Case 2: 1/(N–1) ≤ c0 < 1: A possible setting of the scaling parameters and weights is λ1 = 1, 

λ2 = N–1, and α = ( ) ( )0(N 1) c 1 N 2− ⋅ − − . 

Case 3: c0 ≥ 1: It is sufficient to consider the case N = 2, i.e., a hyperexponential distribution 

with 2 phases. Recall, that H2 is also a subset of HN. A possible setting of the scaling 

parameters and weights is λ1 = 1, λ2 = 1/(2c0), and α = 2(c0–1)/(2c0–1). 

 ■ 
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Note that Theorem 1 states that any probability density function of a nonnegative random 

variable can be approximated arbitrarily close by a hyper-Erlang distribution. That is, for 

every point of continuity of a general density function f, there exist values λ and M such that 

the finite hyper-Erlang density hλ,M(x) is arbitrarily close to f(x). 

 

2.2 Hyper-Erlang Distributions as Subclass of PH 

In this section, we intend to shed some light onto the relationship between sub-classes of PH 

distributions. Let A and B be sets of specific PH distributions. We consider three types of 

relationships between sets A and B. 

(i) A < B means that all finite-state distributions of A can be represented by an 

appropriately selected finite-state distribution of B and B contains at least one 

distribution that cannot be represented by a distribution of A even with an infinite 

number of states. 

(ii) A ≤∞ B means that all finite-state distributions of A can be represented by an 

appropriately selected finite-state distribution of B and B contains at least one 

distribution that can only be represented by a distribution of A with an infinite 

number of states. 

(iii) A ≠ B means that none of the relationships (i) and (ii) hold. 

Note, that relationship (i) means that a distribution of B cannot be approximated arbitrarily 

close by a distribution of A, whereas in relationship (ii) this approximation is possible. 

According to this definition, we consider the relationship between some well-known sub-

classes of phase-type distributions and their versatility in representing general distributions. In 

particular we consider exponential distributions (ED), hyperexponential distributions (HED), 

Erlang distributions (ErD), hyper-Erlang distributions (HErD), hypoexponential distributions 

(HoED), acyclic phase-type distributions (APHD), and phase-type distributions (PHD). A 

detailed definition of these distributions as well as the computation of their squared 
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coefficient of variation 2
Xc  can be found in standard textbooks (see e.g. [25]). Nevertheless, 

we briefly introduce the HoED, also called generalized Erlang distribution by some authors. 

In fact, the HoED is an Erlang distribution where the scaling parameters are not necessarily 

identical in each phase. A HoED where scaling parameters λi are pairwise different in each 

phase has the probability density function 

n

N
x

X n n
n 1

f (x) a e−λ

=
= λ∑ , where 

N
i

n
i ni 1,i n

a
= ≠

λ=
λ − λ∏  and λn ≠ λi for n ≠ i. (9) 

Similarly the probability density function can be expressed in closed-form if some of the 

scaling parameters are equal. 
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Figure 2. Relationship of sub-classes of phase-type distributions 

Figure 2 shows the relationship between the distributions introduced above according to 

the cases (i) to (iii). The results for 2
Xc  for the HErD are presented in Theorem 1. The classes 

of distributions that are dense in the set of general distributions, i.e., HErD, APHD, and PHD, 

are combined in the gray shaded area. Most of the relationships can be simply explained by 

comparing the possible range of the squared coefficient of variation that a distribution can 

take on. Since the HErD is a generalization of ErD and HED, which are both generalizations 

of ED, these distributions can be represented by a distribution of HErD with the same number 

of states. Comparing the possible range of the squared coefficient of variation, we see that the 

ED is less expressive than HED and ErD, which are again less expressive than HErD. 

Similarly, the relationship ErD < HoED < APHD can be explained. Furthermore, HED is 

clearly different from ErD and HoED. The relationship between APHD and PHD is true, 

since there is a simplification of the distributions from PHD to APHD. Nevertheless, a PHD 

can be approximated arbitrarily close by an APHD [3]. 
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The relationship between HErD and HoED as well as HErD and APHD needs a further 

explanation. Comparing the squared coefficient of variation range of HoED and HErD we see 

that HoED are less expressive than HErD. On the other hand, one might think that an N-state 

HoED can be represented by an (N+1)-state HErD such that the relationship HoED < HErD 

holds, but it can be shown by a comparison of the densities (see Eqs. (1) and (9)) that even a 

two-state HoED with distinct scaling parameters cannot be represented by any finite-state 

HErD. Nevertheless, due to Theorem 1 all distributions of HoED can be approximated 

arbitrarily close by a distribution of HErD but not vice versa. Comparing HErD with APHD, 

we see that HErD is a special case of APHD, but any APHD can be approximated arbitrarily 

close with a HErD (see Theorem 1), hence the relationship “≤∞” holds. On the other hand 

considering a finite number of states, HErD is less expressive than APHD with the same 

reason as for HoED. We conclude from this comparison that HErD is the most versatile sub-

class of APHD, since HErD also provides full flexibility but can be more efficiently tuned to 

match general distributions than APHD as shown in Section 3. 

 

2.3 Matching Moments with Hyper-Erlang Distributions 

In this section we consider the problem of adjusting the parameters of a hyper-Erlang 

distribution to match the first three empirical moments jµ̂ , j = 1,2,3, as estimated from trace 

data. First of all we consider the case M = 2, i.e., a mixture of two Erlang distributions with 

number of phases r1 and r2, respectively. Without loss of generality we assume r1 ≤ r2. The 

moment matching problem for mixtures of Erlang distributions was extensively studied by 

Johnson and Taaffe [15], [17], [18]. They provided conditions under which the problem is 

solvable, but determined the solution only for the case r1 = r2. Suppose n* is the smallest 

integer that satisfies the inequality 

2 2
1 2

2 2
2 1 1 3 2

ˆ ˆ
n* max , 1

ˆ ˆ ˆ ˆ ˆ
⎧ ⎫µ µ⎪ ⎪> −⎨ ⎬

µ − µ µ µ − µ⎪ ⎪⎩ ⎭
, (10) 

then the following cases must be distinguished (see [15]): 

(i) If r1, r2 < n*, then the first three moments cannot be matched exactly. 
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(ii) If r1 < n* ≤ r2, then the moment matching problem has (at least) one solution. 

(iii) If n* ≤ r1 = r2, then the moment matching problem has a unique solution. 

(iv) If n* ≤ r1 < r2, then the moment matching problem has (at least) two solutions. 

In case (iii) a simple closed-form solution exists (see [17]) whereas in cases (ii) and (iv) the 

solution can only be determined numerically. In fact, the roots of a polynomial of degree five 

must be computed. In Appendix A.1 we show how to determine the parameters λ1, λ2, and α1 

(α2 = 1–α1) for cases (ii) to (iv). Our results are in contrast to the results from Schmickler who 

determined a polynomial of degree six for the matching problem, but did not provide any 

conditions when it gives feasible solutions [24]. In fact, we were not able to find any correct 

solution with his polynomial. 

Suppose now we have given a hyper-Erlang distribution with M Erlang branches and 

number of phases of each branch rm, m = 1,…,M. For matching the first three empirical 

moments only three of the 2M–1 free continuous parameters are needed. The moments of a 

HErD with more than two branches can be reduced to the two-branch case by subtracting the 

contributions of the other branches, if their parameters are known. To be precise, let i1 and i2, 

with 1 ≤ i1 < i2 ≤ M, be the indices of the two Erlang branches to be used for the moment 

matching. Then we define the j-th reduced moment jµ  by 

1 2

M
m

j j m j
m 1,m i ,i m m

(r j 1)! 1 1ˆ
(r 1)!= ≠

⎛ ⎞+ −µ = µ − α ⋅⎜ ⎟⎜ ⎟− βλ⎝ ⎠
∑ , (11) 

where 
1 2i iβ = α + α  is the portion of the two branches used for matching the moments. Note 

that the reduced moments are not necessarily moments of a distribution function. A sufficient 

condition for values 1µ , 2µ , and 3µ  to be moments of a distribution with support on [0, ∞] is 

{ }2 2
1 2 1 1 3 2min , , 0µ µ − µ µ µ − µ > . (12) 

If condition (12) holds we can apply the procedure for matching the moments 1µ , 2µ , and 

3µ  with a mixture of the two Erlang branches i1 and i2. Denote ′α  and (1 )′− α  the initial 

probabilities of this two-branch solution. Finally, we have to set the weights 
1iα  and 

2iα  

properly, i.e., 
1i

′α = α ⋅β  and 
2i (1 )′α = − α ⋅β . 
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3 An EM Algorithm for Fitting Hyper-Erlang Distributions 

3.1 Fitting Mixture-Densities with the EM Algorithm 

The mixture-density parameter estimation problem is probably one of the most widely used 

applications of the EM algorithm [6]. In this case, we assume the following probabilistic 

model 

( ) ( )
M

m m m
m 1

p x p x
=

Θ = α θ∑ , (13) 

where the parameters are Θ = (α1,…,αM, θ1,…,θM) such that α1+α2+…+αM = 1 and each pm 

is a density function parameterized by θm. In other words, we assume that M component 

densities are mixed using M mixing coefficients αm. Note that in general θm can be a vector of 

parameters for each density function pm, but it is a single value in our HErD fitting method. 

Let T = {x1,…,xK} be a data set of measurements supposedly drawn from the distribution 

(13). That is, we assume that these data values are drawn from independent and identically 

distributed random variables with probability density function (13). The log-likelihood 

expression for this mixture density for the trace T is given by 

( ) ( ) ( )
K K M

k m m k m
k 1 m 1k 1

log L log p x log p x
= ==

⎛ ⎞
Θ = Θ = α θ⎜ ⎟

⎝ ⎠
∑ ∑∏T , (14) 

which is difficult to optimize because it contains the logarithm of a sum. If we consider T as 

incomplete data and assume the existence of unobserved data items yk ∈ {1,…,M}, k=1,…,K, 

whose values inform us which component density “generates” each data item of T, the 

likelihood expression can be significantly simplified. That is, we assume yk = m if the k-th 

sample xk was generated by the m-th mixture component pm. If we know the values 

y = (y1,…,yK) the log-likelihood expression of Eq. (14) becomes 

( ) ( )( )k k k

K

y y k y
k 1

log L , log p x
=

Θ = α θ∑yT . (15) 

The problem in dealing with Eq. (15) is, that we do not know the values of yk. If we 

assume yk as random values drawn from a random variable Y, we can derive an expression for 

the probability mass function (pmf), denoted by q(y), of the unobserved data. First, we guess 
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at parameters for the mixture density, i.e., we guess that ( )1 M 1 M
ˆ ˆˆ ˆ ˆ, , , , ,Θ = α α θ θ… …  are the 

appropriate parameters. Given Θ̂ , we can easily compute the mixture components 

( )m k m
ˆp x θ  for each k and m. Keeping in mind that αm is the probability of choosing the 

m-th mixture component we can compute the pmf of the unobserved data given the observed 

data T and the estimates Θ̂  using Bayes’s rule 

( ) ( ) ( )
( )

( )
( )

k k ky y k yk k k
k k M

k
m m k m

m 1

ˆˆ ˆ ˆ p xq y p x y ,
ˆq y x ,

ˆp x ˆˆ p x
=

α ⋅ θΘ ⋅ Θ
Θ = =

Θ α ⋅ θ∑
 (16) 

and 

( ) ( )
K

k k
k 1

ˆ ˆq , q y x ,
=

Θ = Θ∏y T , (17) 

where y ∈ {1,…,M}K is an instance of the unobserved data independently drawn from Y. The 

expected value of the complete-data log-likelihood with respect to the unknown random 

variable Y given the observed data T and the current parameter estimates Θ̂ , is given by 

( ) ( ) ( ) ( )
K{1, ,M}

ˆ ˆ ˆQ , E log L ,Y , log L , q ,
∈

⎡ ⎤Θ Θ = Θ Θ = Θ ⋅ Θ⎣ ⎦ ∑
y

y y
…

T T T T . (18) 

Inserting Eqs. (15) and (17) into Eq. (18) we get 

( ) ( )( ) ( )k k k
K

KK

y y k y i i
k 1{1, ,M} i 1

ˆ ˆQ , log p x q y x ,
=∈ =

Θ Θ = α θ ⋅ Θ∑ ∑ ∏
y …

 (19) 

and rearranging the sums and the product results in (see Appendix A.2) 

( ) ( ) ( ) ( )( ) ( )
M K M K

m k m k m k
m 1 k 1 m 1 k 1

ˆ ˆ ˆQ , log q m x , log p x q m x ,
= = = =

Θ Θ = α ⋅ Θ + θ ⋅ Θ∑∑ ∑∑ . (20) 

Note that the computation of the expectation in Eq. (18) constitutes the E-step of the EM 

algorithm. In general, the main difficulty in computing this expectation is to obtain an 

expression for the marginal distribution of the unobserved data. However, for the mixture 

density problem discussed in this section the marginal distribution can be simply computed by 

Eqs. (16) and (17). The M-step of the EM algorithm is to maximize the expectation computed 

in the E-step with respect to Θ. To maximize Eq. (20), we can maximize the term containing 

αm (first sum in Eq. (20)) and the term containing θm (second sum in Eq. (20)) independently 
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since they are not related. According to [19], a Lagrange multiplier can be applied to find the 

expression for αm, resulting in 

( )
K

m k
k 1

1 ˆq m x ,
K =

α = Θ∑ . (21) 

The computation of θm depends on the form of the mixture density component pm and is 

addressed in the next section for a mixture of Erlang distributions. 

 

3.2 Application to Hyper-Erlang Distributions 

In this section we develop the formulas for application of the EM algorithm to the mixture 

density parameter estimation problem when the m-th mixture component is an Erlang 

distribution with a fixed number of phases, i.e., 

( )
m

m k

r 1
xm k

m k m m
m

( x )p x e
(r 1)!

−
−λλλ = λ

−
, (22) 

and the mixture distribution is described by the parameter vector Θ = (α1,…,αM,λ1,…,λM). 

The parameters αm, m = 1,…,M, that maximize Eq. (20) are determined according to Eq. (21). 

In order to determine the parameters λm, m = 1,…,M, that maximize Eq. (20) we set the 

derivatives with respect to λm of Eq. (20) equal to zero 

( ) ( )( )
K

k m k m
k 1 m

ˆq m x , log p x 0
=

∂Θ λ =
∂λ∑ . (23) 

Putting Eq. (22) into Eq. (23) and applying logarithm-rules we get 

( )
( )

K

m k
k 1

m K

k k
k 1

ˆr q m x ,

ˆq m x , x

=

=

⋅ Θ
λ =

Θ ⋅

∑

∑
. (24) 

Note that Eqs. (21) and (24) together with Eq. (16) are simple closed-form expressions for the 

parameters of a HErD according to a given number of Erlang branches M and a given number 

of phases rm per branch. 
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3.3 Implementation Issues 

A high-level pseudo-code representation of the EM algorithm tailored to the parameter 

estimation of HErD is presented in Figure 3. Note that each iteration (see steps (2) to (7) in 

Figure 3) is guaranteed to increase the log-likelihood value and the algorithm is guaranteed to 

converge to a local maximum of the likelihood function [19]. To check whether convergence 

is reached, we compute in each iteration either 

(i) the maximal difference of the values of the parameter vectors of successive iterations, 

(ii) the relative difference of the log-likelihood values of successive iterations, 

and stop the algorithm when the computed difference is below a predefined ε, e.g. ε = 10-6. 

The computational complexity of the E-step is O(M·K) when computing the numerator and 

denominator of the unobserved data pmf separately. The complexity of the M-step is also 

O(M·K). Thus, the overall computational complexity for one iteration of the EM algorithm is 

O(M·K). Note that the log-likelihood (see Eq. (14)) can be computed without additional effort 

during the E-step of the fitting algorithm. 

A straightforward computation of the Erlang densities (22) can exhibit numerical 

difficulties, since for a high number of Erlang phases (e.g. r > 50) large factorials and large 

power values must be computed. To avoid these difficulties, we suggest an evaluation of (22) 

in logarithmic form, i.e., 

( ) m m k m m k(r 1) ln( x ) ln(r 1)! x
m k m mp x e − λ − − −λλ = λ , (25) 

with pre-computed logarithms of the factorial values, i.e., 
r

i 1
ln r! ln i

=
=∑ . (26) 

On a standard PC with 3 GHz Pentium CPU running the operating system Linux, the EM 

algorithm requires about 2.4 seconds for 100 iterations when fitting a HErD with M = 5 

Erlang branches to a trace with K = 104 samples. The overall number of iterations required to 

achieve convergence depends on several factors, i.e., the initial setting of αm and λm, the 

number of Erlang branches M, and the trace data. However, for small values of M (i.e., 
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M ≤ 10) the algorithm converges faster than for larger values of M, since fewer parameters 

have to be optimized. With M ≤ 10 the number of iterations is almost always less then 100 to 

reach convergence with ε = 10-6. 

(1) Choose initial parameter estimates ( )1 M 1 M
ˆ ˆˆ ˆ ˆ, , , , ,Θ = α α λ λ… …  

(2) REPEAT 

(3) Compute ( )m k m
ˆp x λ  for m=1,…,M and k=1,…,K according to Eq. (25) 

(4) E-step: Compute the pmf of the unobserved data for m=1,…,M and k=1,…,K 

 ( ) ( ) ( )
M

k m m k m i i k i
i 1

ˆ ˆˆ ˆ ˆq m x , p x p x
=

Θ = α ⋅ λ α ⋅ λ∑  

(5) M-step: Compute αm and λm that maximize Eq. (20) for m=1,…,M 

 ( )
K

m k
k 1

1 ˆq m x ,
K =

α = Θ∑   and  ( ) ( )
K K

m m k k k
k 1 k 1

ˆ ˆr q m x , q m x , x
= =

λ = ⋅ Θ Θ ⋅∑ ∑  

(6) set ˆ :Θ = Θ  
(7) UNTIL convergence reached according to criterion (i) or (ii) 
(8) RETURN optimal parameter vector Θ = (α1,…,αM,λ1,…,λM) 

Figure 3. Pseudo-code of the EM algorithm tailored to hyper-Erlang distributions 

 

4 Finding the Best Hyper-Erlang Distribution 

4.1 Optimizing the Discrete Parameters of a Hyper-Erlang Distribution 

With the EM algorithm presented in Section 3.3 we can optimize the continuous parameter 

vectors α and λ of a HErD for a predefined setting of the number of Erlang branches M and 

number of phases of each Erlang branch rm, m = 1,…,M. However, in order to find the “best” 

N-state HErD we have to consider all HErD out of the set HN as candidates. In other words, 

we have to determine a setting of the number of phases r1,…,rM that maximizes the log-

likelihood. Due to the efficiency of the algorithm it is feasible to enumerate all possible 

settings of M and r1,…,rM and to fit for each such setting a HErD, if N is small (i.e, N ≤ 10) 

and K is not too large (i.e., K ≤ 106). Comparing the fitted HErD according to their log-

likelihood values and choosing the one with the maximum log-likelihood value gives the best 

HErD in this case. Formally, we denote the discrete parameter setting of a HErD f(x; M, r, α, 
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λ) by the tuple (M, r). The following lemma provides a recursive formula to compute the 

overall number of settings of an N-state HErD, denoted by SN. This recursion can also be used 

to enumerate all possible settings in algorithmic fashion. 

Lemma 2: The overall number of different N-state settings, SN, is given by ϕN(N,0), where 

n m

m m 1
i j

(n, j) (n i, i)
⎢ ⎥⎣ ⎦

−
=

ϕ = ϕ −∑    and   1
0, if j n,

(n, j)
1, if j n.

>⎧
ϕ = ⎨ ≤⎩

 (27) 

Proof: If we allow Erlang branches with zero phases, we can assume N Erlang branches 

where N–M branches have zero phases. To compute SN, we have to count the number of 

possibilities to choose values rn ∈ {0,1,…,N}, n = 1,…,N, such that 0 ≤ r1 ≤… ≤ rN and 

r1+…+rN = N. A first observation is that r1 = 0 or r1 = 1, otherwise the sum of the rn-values 

would be larger than N. Assume now r1 = … = rN-M = 0 then it must hold rN-M+1 ≤ N/M, 

otherwise the sum of the rn-values would be larger than N. Thus, for every possible choice of 

rN-M+1 = i with i ∈ {0,…, N M⎢ ⎥⎣ ⎦ }, we have to count the number of possibilities for choosing 

rN-M+2,…,rN such that i ≤ rN-M+2 ≤ … ≤ rN and rN-M+2+…+rN = N–i. This is exactly what the 

recursive function ϕm(n,j) computes, i.e., it counts the number of possibilities to choose m 

values rN-m+1,…,rN such that j ≤ rN-m+1 ≤… ≤ rN and rN-m+1+…+rN = n. To obtain the recursion 

in Eq. (27) we have to sum up the number of possibilities to choose m–1 values for every 

possible choice of rN-m+1, i.e., rN-m+1 = j + i with i = 0,…, n m⎢ ⎥⎣ ⎦ . ■ 

In fact, for N = 5, 6, 7, 8, 9, 10 only SN = 7, 11, 15, 22, 30, 42 settings exist. Unfortunately, 

for larger N the number of settings grows exponentially, e.g., for N = 20 we have 627 

different settings. Thus, for large values of N, i.e., N > 10, it is not feasible to apply the EM 

algorithm for every possible setting. The same holds when fitting even one setting takes some 

time, which may be the case for very large traces (e.g. K > 107 samples). In these cases we 

recommend using one of the following strategies: 

(i) Progressive pre-selection: In a first round enumerate all possible settings and apply the 

EM algorithm until convergence with ε = 10-3 is reached. This requires only a few 

iterations for each setting. Select the settings with the best log-likelihood values and put 

them into a priority queue. We commonly consider at least 5 and at most 50 settings in 
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this round. Then start a second round with continuing iteration of the selected HErD 

until convergence with ε = 10-4 is reached. Finally, start a third round with the 50% best 

of the priority queue until ε = 10-6. Experimental results when applying this strategy are 

presented in Section 5. 

(ii) Special structures: If the empirical distribution of the trace has a small squared 

coefficient of variation (i.e., c2 < 1) we recommend to fit the HErD only with one, two, 

or three Erlang branches, i.e., M = 1, M = 2, or M = 3. Note that the number of N-state 

settings with M ≤ Mmax Erlang branches is 
maxM (N,0)ϕ , e.g., for N = 50 and Mmax = 2 

only 26 settings must be fitted. For monotonically decreasing empirical distributions 

with large squared coefficient of variation (i.e., c2 > 1) we recommend to fit the HErD 

only with N, N–1, or N–2 Erlang branches. Note that M = N corresponds to a 

hyperexponential distribution, which was shown to fit heavy-tailed distributions with 

large squared coefficient of variation quite well in [10]. 

(iii) Body/tail fitting: Fit the body of a distribution, i.e., the part of the distribution that 

contains most samples, with a (say) 10-state HErD with M = 1, 2, and 3 Erlang 

branches, which requires only 1+5+8 = 14 runs of the EM algorithm. Fit the tail of 

distribution with a (say) 5-state hyperexponential distribution, i.e., M = 5 and r1 = … = 

rM = 1. Apply this combined body/tail fitting on a 15-state HErD. Thus, an overall 

number of 14 settings must be evaluated. A good application example for this approach 

is the Pareto-II distribution discussed in Section 5. 

The first approach works automatically, but requires additional effort, which is not 

required if the other two variants are used. In practice especially variant (ii) works well, but 

requires some pre-analysis of the data and an experienced user to decide about a good range 

for the discrete parameters. The separate fitting of body and tail, as suggested in (iii), is often 

used for heavy-tailed distributions (e.g., [23]), but requires an appropriate definition of body 

and tail, and the number of states used for their approximation. Additionally, the low 

complexity of the presented HErD fitting method allows us to optimize the body and the tail 

fitting parameters together, which is preformed separately in [14]. The results from [8] seem 
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to indicate that a common fitting algorithm might yield excellent results for fitting heavy-

tailed distributions. 

 

4.2 Combining Moment Matching with Likelihood Maximization 

With the moment matching procedure described in Section 2.3 we can match the first three 

moments of a HErD with M ≥ 2 Erlang branches by only adjusting two of the M Erlang 

branches, i.e., the M–2 remaining Erlang branches (scale parameters and initial probabilities) 

remain unchanged. There are M·(M–1)/2 possibilities to choose two Erlang branches for 

matching. To integrate moment matching and likelihood maximization, we propose to try all 

possibilities, which can be done rather efficiently, and to finally choose the one with the 

largest log-likelihood. For the combination of moment matching with the EM algorithm for 

log-likelihood maximization two strategies are considered: 

(i) Apply the moment matching for a fitted HErD, i.e., first use G-FIT for maximum 

likelihood estimation and then adjust the moments in the result that G-FIT found. We 

tried this approach with quite good results, i.e., the log-likelihood value decreases only 

marginal when the first three moments are matched. It is also reasonable to iterate 

between G-FIT and moment matching, i.e., first use G-FIT then moment matching and 

then G-FIT again with initial distribution obtained from the previous moment matching. 

We applied this approach for the Pareto-II distribution discussed in Section 5. 

(ii) To fit heavy-tailed distributions with a (say) 15-state HerD, a good strategy is to first 

apply G-FIT for finding the best (say) 10-state HErD as described in Section 4.1. Then 

we suggest to add a new Erlang branch with one phase, zero initial probability and 

arbitrary scale parameter and to use this branch together with one of the remaining 

branches for moment matching. Indeed, one of the remaining branches should be chosen 

such that the log-likelihood value is maximized. After matching the moments we apply 

G-FIT where we use the 11-state HErD as initial distribution. Repeating this approach 

five times, we generate the 15-state HErD as desired (including a 5-states 

hyperexponential distribution responsible for the tail). Usually the repeated use of G-
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FIT is rather efficient, since only a small number of iterations is required after the 

distribution has been modified due to moment matching. 

The second strategy is quite useful for heavy-tailed distributions, since our experience is 

that the log-likelihood measure is mainly influenced by the body of a distribution and not by 

the tail (see example in Section 5.2). Therefore, the EM algorithm tends to fit the body 

perfectly for the cost of neglecting the tail in some sense. In contrast, the moments matching 

approach captures the tail behavior of a heavy-tailed distribution much better, since heavy-

tailed distributions are characterized by their low order moments, which differ in orders of 

magnitude. 

Recall, that the EM algorithm converges to a local maximum of the log-likelihood 

function. Thus, the vector Θ = (α1,…,αM, λ1,…,λM) of the continuous parameters of the HErD 

returned by the EM algorithm depends on the initial estimates 1α̂ ,…, Mα̂  and 1λ̂ ,…, Mλ̂ . Our 

experience shows, that reinitializing the EM algorithm with a HErD that matches the first 

three moments exactly, forces the EM algorithm to converge to a local maximum with a better 

tail fitting. 

 

5 Experimental Results 

5.1 Fitting Hyper-Erlang Distributions to Synthetically Generated Traces 

In the experiments a hyper-Erlang distribution (HErD) and an acyclic phase-type distribution 

(APHD) are fitted for given traces with 104 samples drawn from known distributions. In 

particular we consider two Weibull distributions with scale parameter η = 1.0 and shape 

parameter β = 0.5 and β = 5.0, respectively, and a uniform distribution with left and right 

boundary equal to 0.5 and 1.5. In addition we consider a Pareto-like distribution with heavy-

tail index α = 1.5 and b = 2.0. This distribution was previously used in [13] as an example of 

a heavy-tailed distribution, which is not monotonically decreasing. According to [13] it is 

denoted a Pareto-II distribution. Furthermore, we consider the shifted exponential distribution 

as well as the matrix exponential distribution, which are part of a set of benchmark 
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distributions for PH fitting algorithms defined in [3]. The non-standard density functions used 

for the experiments are summarized in Figure 4. 

  Weibull(η,β): ( ) ( )x1
x

weibullf (x; , ) e
β

η
β− −β

η ηη β = ⋅ ⋅  

  Pareto-II(α,b): 
b x

1
paretoII

b ef (x; , b) x
( )

α −
−α−α =

Γ α
 

  Shifted exponential (SE): 
x1

2
SE x (x 1)1 1

2 2

e ,0 x 1
f (x)

e e , x 1

−

− − −

⎧ ≤ <⎪= ⎨
+ ≥⎪⎩

 

  Matrix exponential (ME): ( ) ( )2
x1

ME (2 )
f (x) 1 1 cos(2 x) e−

π
= + ⋅ − π ⋅  

Figure 4. Probability density functions of considered distributions 

With respect to the set of distributions we compared the fitting quality of the HErD found 

by G-FIT with the quality of the APHD found by the tool PH-FIT [14]. The PH-FIT tool 

approximates the optimal parameter set of an APHD by minimizing a predefined distance 

measure with a non-linear optimization algorithm. This algorithm uses an iterative 

linearization method based on numerical computation of partial derivatives and the simplex 

method to determine the direction in which the distance measure decreases most. In the 

presented comparison the fitting parameters of the PH-FIT tool were the following: only body 

fitting is applied (i.e., no separate tail fitting) and the distance of the original and the 

approximate distributions is calculated up to the largest sample value. Furthermore, we run 

PH-FIT with 3 rounds (i.e., starting from 3 different initial guesses) and at most 200 

modifications in each round. 

Figure 5 shows the empirical density functions for the six traces as well as the density 

functions for the fitted HErD and APHD with N = 5 states and N = 10 states, respectively. For 

some of the distributions also results when fitting a HErD with 50 states are plotted. Densities 

of traces are approximated by histograms with intervals of width 0.05. The results for G-FIT 

are obtained by fitting a HErD with the algorithm of Figure 3 for all possible discrete 

parameter settings. Recall, that for N = 5 only 7 settings and for N = 10 only 42 settings are 
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considered. The EM algorithm stops when convergence is reached according to the log-

likelihood criterion with ε = 10-6 (see criterion (ii) in Section 3.3). From the curves of Figure 

5 we conclude that the fitting quality of HErD is almost always as good as the quality for 

APHD. Moreover, in some cases the results for HErD are better than for APHD, e.g. when 

fitting the uniform distribution with 5 states. The reason why PH-FIT did not find the best 

solution in these cases is that the optimization process got stuck in a local optimum. 
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Figure 5. Densities of fitted HErD and APHD for synthetically generated traces 
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1. Moment 1.99 1.99 (0.0%) 1.98 (0.5%) 1.99 (0.0%) 1.91 (4.3%) 1.99 (0.0%) 1.99 (0.0%)
2. Moment 25.61 22.47 (12.3%) 20.98 (18.1%) 23.78 (7.1%) 17.77 (30.6%) 24.26 (5.3%) 25.76 (0.6%)
3. Moment 995.13 512.55 (48.5%) 422.44 (57.5%) 638.04 (35.9%) 300.78 (69.8%) 701.43 (29.5%) 1156.57 (16.2%)
Log-likelihood
CPU time [sec]
Phase lengths
1. Moment 0.92 0.92 (0.0%) 0.92 (0.1%) 0.92 (0.0%) 0.92 (0.0%) 0.92 (0.0%) 0.92 (0.0%)
2. Moment 0.89 1.02 (14.1%) 1.02 (13.9%) 0.93 (4.6%) 0.93 (4.5%) 0.90 (1.1%) 0.89 (0.1%)
3. Moment 0.90 1.31 (45.6%) 1.31 (45.3%) 1.03 (14.4%) 1.03 (14.4%) 0.93 (3.6%) 0.91 (0.4%)
Log-likelihood
CPU time [sec]
Phase lengths
1. Moment 1.00 1.00 (0.0%) 1.00 (0.1%) 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%) 1.00 (0.0%)
2. Moment 1.08 1.19 (10.6%) 1.24 (15.1%) 1.09 (1.4%) 1.09 (1.4%) 1.08 (0.6%) 1.08 (0.7%)
3. Moment 1.24 1.66 (33.9%) 1.85 (49.2%) 1.30 (5.2%) 1.31 (5.3%) 1.27 (2.7%) 1.27 (2.2%)
Log-likelihood
CPU time [sec]
Phase lengths
1. Moment 4.34 4.34 (0.0%) 3.89 (10.3%) 4.34 (0.0%) 3.78 (12.9%) 4.34 (0.0%) 4.34 (0.0%)
2. Moment 1057.62 323.6 (69.4%) 117.6 (88.9%) 340.7 (67.8%) 105.9 (90.0%) 911.7 (13.8%) 978.0 (7.5%)
3. Moment 1768568 100147 (94.3%) 12348 (99.3%) 114715 (93.5%) 12579 (99.3%) 1389436 (21.4%) 1674493 (5.3%)
Log-likelihood
CPU time [sec]
Phase lengths
1. Moment 1.51 1.51 (0.0%) 1.51 (0.1%) 1.51 (0.0%) 1.51 (0.0%) 1.51 (0.0%) 1.51 (0.0%)
2. Moment 3.58 3.61 (1.0%) 3.59 (0.3%) 3.61 (0.8%) 3.61 (1.0%) 3.59 (0.3%) 3.53 (1.5%)
3. Moment 11.55 11.96 (3.5%) 11.69 (1.2%) 11.79 (2.1%) 12.47 (7.9%) 11.59 (0.3%) 11.01 (4.7%)
Log-likelihood
CPU time [sec]
Phase lengths
1. Moment 1.06 1.06 (0.0%) 1.06 (0.0%) 1.06 (0.0%) 1.06 (0.2%) 1.06 (0.0%) 1.06 (0.0%)
2. Moment 2.12 2.15 (1.7%) 2.10 (0.7%) 2.16 (1.9%) 2.10 (1.1%) 2.13 (0.4%) 2.13 (0.5%)
3. Moment 6.57 6.66 (1.2%) 6.20 (5.6%) 7.24 (10.2%) 6.11 (7.0%) 6.59 (0.2%) 6.53 (0.7%)
Log-likelihood
CPU time [sec]
Phase lengths
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Table 1. Quality indices of fitted HErD and APHD for synthetically generated traces 

Table 1 presents several quality indices for the considered distributions. In particular, the 

first three moments for each of the six traces as well as the fitted HErD and APHD are 

presented. Relative errors of the fitted distributions are presented in brackets behind the 

absolute values. Furthermore, Table 1 contains for each trace the log-likelihood value and the 

CPU time required by G-FIT and PH-FIT. In the last row of each distribution the optimal 

number of phases of each Erlang branch found by G-FIT is shown. Recall, that for N = 5 and 

N = 10 the G-FIT results are found from the best fit when fitting a HErD for all possible 

discrete parameter settings. Applying the progressive pre-selection (see strategy (i) in Section 

4.1) yields almost always the same results but requires less CPU time (see numbers in 
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brackets in the rows with CPU time in Table 1). In fact, only for the shifted exponential trace 

(log-likelihood –13280.73) the results are not as good as in the general case (indicated with an 

asterisk behind the brackets in Table 1). The reason for this is that with progressive pre-

selection some settings may be canceled out of the priority queue in the first or second round, 

which would get better when running the EM algorithm until convergence with ε = 10-6. 

Results presented in Table 1 when applying G-FIT with 20 states are computed with 

progressive pre-selection. Note, that not all of the ϕ20(20,0) = 627 settings are evaluated, but 

only a part of them which seems to be reasonable (see strategy (ii) in Section 4.1). In fact, for 

the Weibull(1.0,0.5) trace we considered all settings with M ≥ 12 Erlang branches (67 

settings), for the Weibull(1.0,5.0) trace and the matrix exponential trace we considered all 

settings with M ≤ 5 Erlang branches (192 settings), and for the Pareto-II trace and the shifted 

exponential trace we fitted all settings with M ≤ 6 Erlang branches (282 settings). Comparing 

the fitted HErD and APHD, it can be observed that for all distributions the fitting quality of 

the 20-state HErD is much better than that of the 10-state APHD. Moreover, the fitting 

process for the 20-state HErD is less time consuming as for the 10-state APHD, although the 

number of states is doubled. 

The last column in Table 1 shows results for G-FIT for some special cases. In particular, 

for the Weibull(1.0,0.5) trace results for an 8-state hyperexponential distribution running the 

EM algorithm until convergence with ε = 10-8 are presented. It can be observed that due to the 

longer iteration time the moments are matched much better than in the case when stopping the 

iteration with ε = 10-6. For the Weibull(1.0,5.0) trace and the uniform trace we fitted all 

50-state settings with at most two Erlang branches (26 settings) until convergence is reached 

with ε = 10-16. The time requirements for the fitting process are still very small as can be 

observed from Table 1. For the shifted exponential trace and the matrix exponential trace we 

applied progressive pre-selection with 50 states and M ≤ 4 Erlang branches (1154 settings). 

Finally, for the Pareto-II trace we applied the body/tail fitting approach (see strategy (iii) in 

Section 4.1). We used 6 states for the body and 4 states for the tail. For the body we fitted all 

settings with two Erlang branches (3 settings) until convergence with ε = 10-10. As expected, 
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the first three moments are fitted very well with this approach and the tail-behavior of the 

distribution is captured much better, although the log-likelihood value is worse compared to 

the best 10-state HErD. 

Figure 6 shows the probability density function and complementary cdf (ccdf) for the 

Pareto-II distribution when fitting a trace with 106 samples. We considered the 10-state HErD 

distribution found by progressive pre-selection, denoted by G-FIT(1,2,3,4), the HErD 

distribution determined with the body/tail fitting approach, denoted with G-FIT(1,1,1,1,2,4), 

and a HErD distribution obtained from additionally applying the moment matching as 

described in strategy (i) in Section 4.2, denoted with MM+G-FIT(1,1,1,1,2,4). Comparing the 

results we observe that the body is fitted quite similar in all cases, whereas the tail fitting 

differs. In fact, the combined moment matching and likelihood maximization gives the best 

tail fitting, even if the log-likelihood is slightly worse, i.e., G-FIT(1,2,3,4) gives log-

likelihood –1991435 and MM+G-FIT(1,1,1,1,2,4) gives log-likelihood –1993697. The tail 

plot of Figure 6 indicates that the likelihood function is less sensitive to the tail fitting than the 

three moments matching also in this case. 

In a final experiment, we compared the results obtained by G-FIT with results from the PH 

fitting tool EMpht [1]. Similar to G-FIT the tool EMpht applies the EM algorithm for 

distribution fitting, but with no specialization to a sub-class of PH distributions. Throughout 

all experiments G-FIT outperforms EMpht in terms of CPU time requirements. Furthermore, 

 

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1  2  3  4  5  6

p
d

f

x

Pareto-II(1.5,2.0)

Empirical distribution of trace
G-FIT(1,2,3,4)

G-FIT(1,1,1,1,2,4)
MM + G-FIT(1,1,1,1,2,4)

  
 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0.1  1  10  100  1000  10000  100000

cc
d

f

x

Pareto-II(1.5,2.0)

Empirical distribution of trace
G-FIT(1,2,3,4)

G-FIT(1,1,1,1,2,4)
MM + G-FIT(1,1,1,1,2,4)

 

Figure 6. Densities and complementary cdf of fitted HErD for the Pareto-II trace 
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EMpht converges much slower to optimal parameter values than G-FIT. For example, for the 

Weibull(1.0,0.5) trace EMpht required 260 seconds CPU time for 1000 iterations on a 5-state 

PH distribution and reached only a log-likelihood value of –11481.29, which is worse than 

that for G-FIT and also PH-FIT (see Table 1). For the uniform trace EMpht required 230 

seconds CPU time for 1000 iterations on a 10-state PH distribution and reached a log-

likelihood value of –2034.95, which is also worse than that for G-FIT and PH-FIT. Fitting the 

Pareto-II trace with a 10-state distribution seems to be not practicable since already 100 

iterations take more than 270 seconds of CPU time with log-likelihood values still far away 

from the optimum. 

The results presented in this section underline the flexibility of the class of HErD for fitting 

general distributions as theoretically shown in Section 2. Furthermore, we conclude from the 

experiments that HErD can be fitted much more efficiently and in most cases more accurately 

than APHD with the proposed EM algorithm. We believe that this is essentially due to the 

more restricted structure of the HErD class which practically does not reduces its flexibility 

on fitting. We think that other fitting algorithms over the HErD class would result in similar 

fitting quality but are less efficient in terms of CPU time requirements. 

 

5.2 Fitting Hyper-Erlang Distributions to Real Traffic Traces 

To study an example with a real data traffic trace we used the call center data trace provided 

by Avishai Mandelbaum [21]. The data archives all calls handled by the call center of one of 

Israel’s banks over a period of 12 month from January 1999 till December 1999. For every 

month about 20,000 to 30,000 calls are recorded. For every call the traces contain several 

attributes, from which we used the service times as given in the traces for our study. 

Furthermore, service times are scaled to have mean 1.0. 

Figure 7 shows the empirical density functions for the traces of January and December as 

well as the density functions for the fitted HErD with 5, 10, and 20 states, respectively. 

Service times for January exhibited a quick-hang phenomena [21], i.e., there is a high 
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Figure 7. Densities of fitted HErD for call center traces 

percentage of calls with very short service times, while service times of December are free of 

this problem. From Figure 7 we conclude that the traces are fitted very well by a HErD with 

10 or 20 states whereas 5 states seem to be not sufficient to adequately represent the traces. 

Furthermore, Figure 7 shows that the quick-hang phenomena can also be represented by the 

HErD with 10 states or 20 states. The relative difference between the moments of the trace 

and the moments of the 20-state HErD is at most 1%, which underlines the high accuracy of 

the fitted distribution. 

To provide a second example we considered a log-file from the Squid proxy server at the 

University of Dortmund, which was recorded in March 2005. The considered trace contains 

about 9⋅106 elements and shows heavy-tailed behavior. We used the requested data sizes at 

the proxy server for fitting and scaled the trace to have mean 1.0. The empirical distribution 
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Figure 8. Densities and complementary cdf of fitted HErD for the Squid trace 
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of the trace and the fitted HErD with 10 and 15 states are presented in Figure 8. For fitting we 

applied the combined moment matching and likelihood maximization approach as proposed 

in strategy (ii) in Section 4.2. In fact, we used a 5-state hyperexponential distribution for the 

tail and the remaining states for the body. 

The experiments in Figure 8 show, that the combined moment matching and likelihood 

maximization yields excellent fitting results for the tail. The body of the distribution contains 

two peaks in the intervals [0.0, 0.05] and [0.25, 0.3], which result from a high percentage of 

short file sizes and a very large number of files with size close to 512 bytes. From Figure 8 we 

observe that such peaks can be better approximated by HErD when increasing the number of 

states. Furthermore, we observe a significant difference in the log-likelihood values. The 

10-state HErD gives log-likelihood 4945880 and the 15-state HErD gives log-likelihood 

5332334. Ignoring the tail-fitting completely gives log-likelihood values of 4898814 and 

5321959, respectively. This is in accordance with the discussion at the end of Section 4.2 

where we stated that the body of the distribution has a stronger impact on the log-likelihood 

measure. From the results presented in this section we conclude that even very large traces 

(i.e., 106 – 108 samples) can be fitted efficiently and accurately with the proposed method. 

 

5.3 Comparison of Queueing Performance Measures 

To evaluate the fitting quality, apart from measures directly related to the empirical 

distributions, also performance measures for a queueing system with interarrival times drawn 

from the distributions may be used. In the experiments presented in Figure 9 a 

Weibull(1.0,5.0) trace and a Pareto-II(1.5,2.0) trace each having 106 samples is used as arrival 

process for a G/M/1/K queue with mean service time 0.8. Both traces were scaled to have a 

mean arrival rate 1.0. Applying a trace-driven simulation we determined the mean queue 

length and the probability of blocking an arriving customer for different queue capacities. The 

performance measures were determined from 100 replicated simulations, i.e., an overall 

number of 108 arrival events were simulated. The width of 99% confidence intervals was 

almost always below 1%. 
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Figure 9. Results for the G/M/1/K queuing system and its approximations 

The same performance measures are determined for a HErD/M/1/K queue with 

appropriately fitted HErD as arrival process. Steady-state performance measures for the 

HErD/M/1/K queue are computed from numerical analysis of the underlying continues time 

Markov chain. For both examples we observe that increasing the number of states for the 

HErD increases the accuracy of performance measures. In fact, using only a 2-state HErD 

overestimates the mean queue length for the Weibull trace and underestimated it for the 

Pareto-II trace. Applying the 50-state approximation for the Weibull trace from Table 1, 

performance measures are exactly matched. For the Pareto-II trace we considered two 

different 10-state HErD from Figure 6, i.e., the HErD with maximum log-likelihood, 

G-FIT(1,2,3,4), and the HErD with best tail fitting, MM+G-FIT(1,1,1,1,2,4). The results in 

Figure 9 indicate that an appropriate tail fitting of the distribution is more important for 

accurate queueing behavior than using a distribution with slightly better body fitting, i.e., the 

HErD with maximum log-likelihood. 
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Figure 10. Distribution of M/HErD/1/100 queue length for different utilizations 

In a final experiment we evaluate the behavior of an M/G/1/K queue that models the 

service process at a proxy server. The original Squid trace and the fitted 15-state HErD are 

used to simulate the service time distribution at the proxy server under different load 

conditions. Varying the arrival rate we set server utilization ρ to several values between 0.1 

and 0.95. Note that an adequate traffic model has to capture the autocorrelation dependencies 

of the trace, if they are present. The importance of autocorrelation dependencies can be 

estimated applying a statistical test for data independence. One test method is to plot the 

autocorrelation function r(k) for various lags k and a 95% confidence interval around 0 for 

r(k), a so-called magic window. If more than 95% of autocorrelation values are within this 

interval, then the data trace may be considered as independent [22]. In the autocorrelation 

function of the Squid trace only 4.2% of r(k) values are outside the 95% interval. Therefore to 

model the statistical behavior of this trace the autocorrelation dependencies can be neglected. 

In Figure 10, we compared the queue length distribution for the fitted HErD and the Squid 

trace. In all experiments the queue capacity was limited to K = 100. Using the Squid trace, the 

mean queue length is 24.9 for ρ = 0.5 and 41.6 for ρ = 0.95. For the 15-state HErD we obtain 

a mean queue length of 22.1 and 38.3, respectively. This corresponds to about 11.4% and 8% 

relative error. For the 2-state case we observe a relative error of 44.7% and 41.6%, 

respectively. 

Note that for an M/G/1 system with unlimited buffer the mean queue length depends only 

on the first two moments of the service time distribution (Pollaczek-Khinchin’s mean-value 
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formula, see e.g. [25]). To demonstrate that Pollaczek-Khinchin’s formula is not applicable in 

the limited buffer case considered in Figure 10, we also present the mean queue length 

distribution obtained from a 2-state HErD which matches the first three moments exactly. 

This shows that matching the first three moments only is not sufficient to yield accurate 

queueing behavior. Comparing the queue length distributions obtained from the original trace 

with that computed with the 15-state HErD trace, we conclude that our workload model is 

quite accurate for a broad range of server utilizations. 

 

6 Conclusions 

We presented a novel approach that fits a restricted class of phase-type distributions to trace 

data. For the parameter fitting we developed an EM algorithm, which is tailored to the special 

structure of a hyper-Erlang distribution. One of the crucial ideas behind the fitting method 

presented in this paper is the use of the smallest class of phase-type distributions, which is 

still sufficiently general to approximate any non-negative distribution (see Theorem 1 and 

Figure 2). The empirical experiences confirm the expectation that searching for best fitting in 

a smaller class of distributions is numerically more effective and stable. 

The effectiveness of the proposed fitting method is demonstrated by a comparison with 

two other methods using six benchmark traces and two real traffic traces as well as 

quantitative results from queueing analysis. We conclude from this comparison that hyper-

Erlang distributions are the most versatile sub-class of phase-type distributions, since hyper-

Erlang distributions provide practically the full flexibility of the PH class and can be 

efficiently tuned to match general distributions. 
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Appendix 

A.1 Matching Moments with a Mixture of Two Erlang Distributions 

We consider a mixture of two mutually independent Erlang distributions with initial 

probabilities α1 and α2 := 1−α1 with 0 < α1 < 1 and scale parameters λ1 and λ2, respectively. 

The number of phases of the two mixtures is denoted with r1 and r2, respectively. Without loss 

of generality we assume r1 ≤ r2. Let µ1, µ2, and µ3 be the moments to be matched by the 

mixture of the two Erlang distributions. In the following we show how to compute the 

solution for λ1, λ2, and α1 for the moment matching problem according to the cases (ii) to (iv) 

considered in Section 2.3. If case (iii) applies the unique solution can be computed in closed 

form [17] by 
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2
1D A B= − ,   2D AB C= − ,   2

3D B AC= − . (30) 

In cases (ii) or (iv) the moment matching problem can only be solved numerically. Using 

Eq. (3) the first three moments depend on λ1, λ2, and α1 according to 
1 1

1 1 1 1 2 2 2r r− −µ = α λ + α λ , (31) 

2 2
2 1 1 1 1 2 2 2 2r (r 1) r (r 1)− −µ = α + λ + α + λ , (32) 

3 3
3 1 1 1 1 1 2 2 2 2 2r (r 1)(r 2) r (r 1)(r 2)− −µ = α + + λ + α + + λ . (33) 
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The system of Eqs. (31) to (33) can be transformed into a polynomial equation of degree 

five depending only on the reciprocal x := 1/λ2 of the scale parameter of the second branch, 
5 4 3 2

5 4 3 2 1 0c x c x c x c x c x c 0+ + + + + = , (34) 

with coefficients 

( )2
0 3 1 2 1 1 3 1c r (r 2) (r 1)= µ µ + − µ µ + , 

2 3
1 3 1 2 1 1 2 3 1 1 2 2 1 1 2 1 2c r r (r 1) 2 r (r 1)(r 1) (r 2)(2r 2r 3r r )= µ + + µ µ µ + + − µ + + + , 

( )2 2
2 2 2 1 2 1 1 1 3 1 1 2 3 1 1c 2r (r 1) 3 (r 1)(r 2) r (r 1) r (2r 3)= + µ µ + + − µ µ + − µ µ + , 

( )2 2
3 2 2 2 1 1 2 1 2 1 1 2 1 3 1 1 2c 2r (r 1) r (r 2)(r 2) 3 (r 1)(r 2)(r 1) r (r 1)(2r 1)= + µ + + − µ µ + + + + µ µ + + , 

( )2 3 2
4 2 2 1 1 1 2 1 2 1 2 1 1 2 3 1 2c r (r 1) (r 1)(4 4r 4r 3r r ) 2 r (r 1)(r 2) r r= + µ + + + + − µ µ + + − µ , 

( )2
5 1 2 2 2 2 1 2 2 1 2 1 2c r r (r 1)(r 2) r r (r 1) r (r 1)(r 1)= + + µ + − µ + + . 

The roots of polynomial equations cannot be found analytically beyond the special cases of 

polynomials with degree less then five. Nevertheless, determining the roots of a polynomial is 

a standard topic in numerical analysis and can be solved quite fast and numerically stable 

using balanced-QR reduction of the companion matrix of (34) (see e.g. [7]). The roots of this 

polynomial give five (real and complex) solutions for λ2 from which we can compute λ1 and 

α1 and subsequently find the feasible solutions. The system of Eqs. (31) to (33) can be 

transformed to a unique solution for λ1 depending only on λ2, which is given by 

2 1
1 2 2 2 1 1 2 2 2 1

1 2 1
1 2 2 2 2 2 2 3

r r (r 1) 2 (r 1)(r 1) (r 2)
r (r 1) 2 (r 1)

− −

− −
+ λ − µ + + λ + µ +λ =
µ + λ − µ + λ + µ

, (35) 

and finally we can determine a unique solution for α1 from Eq. (31) given by 

1
1 2 2

1 1 1
1 1 2 2

r
r r

−

− −
µ − λα =
λ − λ

. (36) 

Note that Eqs. (34), (35), and (36) give five solutions for λ1, λ2, and α1 fulfilling the 

system (31) to (33). From these solutions we have to find the feasible solutions, i.e., the real-

valued solutions that fulfill the conditions λ1 > 0, λ2 > 0, and 0 < α1 < 1. As a result from our 

experience and as also motivated in [18], the matching problem has a unique solution in case 

(ii) and in case (iv) it has exactly two solutions though not yet proved. 
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A.2 Simplification of the Expectation of the Complete-Data Log-Likelihood 

We start with the expectation of the complete-data log-likelihood function as provided in Eq. 

(19), i.e., 

( ) ( )( ) ( )k k k
K

KK

y y k y i i
k 1{1, ,M} i 1

ˆ ˆQ , log p x q y x ,
=∈ =

Θ Θ = α θ ⋅ Θ∑ ∑ ∏
y …

. (37) 

Introducing the indicator function δx,y with δx,y = 1 if x = y and 0 otherwise we can rewrite Eq. 

(37) as 

( ) ( )( ) ( )
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k 1 m 1{1, ,M} i 1
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y

y

…

…

 (38) 

Now, for every m ∈ {1,…,M} and k ∈ {1,…,K} the sum over the vector y in Eq. (38) can be 

simplified, i.e., 
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since ( )M
m 1 i

ˆq m x , 1=∑ Θ =  for all i = 1,…,K. Using Eq. (39) we can rewrite Eq. (38) as 
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which is exactly Eq. (20). 


