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Abstract—This paper describes a novel tortuosity measure,
based on the premise that tortuosity is a measure of deviation
from an ideal non-tortuous vessel. Hence, we propose to model
the overall shape of an ideal vessel as a quadratic polynomial
at a larger scale while the deviations are modeled as quadratic
polynomials at smaller scales. Thus, a given vessel center-line
is decomposed as a sum of quadratic polynomials of decreasing
scale. This Quadratic Polynomial Decomposition is used as a
framework for defining a quantitative measure of tortuosity.
As opposed to the existing proposed measures, our method can
distinguish between the relative size, shapes and orientations of
the vessel bends. The measure is position and scale invariant
and satisfies two key desired properties: it varies directly with
frequency of twists at fixed amplitude and it varies directly with
amplitude of twists when their frequency is fixed. The proposed
method has been tested on a standard data set containing 30
artery and 30 vein vessel segments, and shown to be among the
best measures as compared to the results of existing methods.

I. INTRODUCTION

Healthy Retinal Vessels are either straight or gently curved.

In some diseases, vessels develop a number of twists and

take on a serpentine path. Such vessels are termed as tortuous

vessels. Tortuosity is one of the earliest changes in vessel

morphology that occurs at the onset of many retinal and

systemic deseases. The cause of tortuosity is attributed to

stretching of the blood vessels due to increase in blood

pressure or weak vessel walls [1]. Some of the common

diseases, that may result in tortuous vessels are cardiovascular

diseases such as hypertension [3] ,familial retinal arteriolar

tortuosity [2], occlusion of retinal arteries and veins and

diabetic Retinopathy [7]. It is the primary symptom used

for tracking plus disease in Retinopathy of Prematurity [6].

Figures 1 and 2 illustrates the visual difference between a

healthy and a tortuous vasculature network in retinal Color

Fundus Images.

Tortuosity of vessels is graded by ophthalmologists

qualitatively on a scale varying from 2 to 5 [1] based

on their clinical judgment. The absence of any gold standard

for grading vessel tortuosity makes it highly susceptible

to intra and inter observer variability in grading. A robust

tortuosity measure, is highly desirable in CAD systems as an

aid in early detection and tracking the progress of diseases.

Fig. 1. Fundus Image of a healthy Eye

Fig. 2. Fundus Image having tortuous blood vessels

One of the earliest measures proposed was the Arc to Length

Ratio [4], which used the ratio of actual length of the vessel to

its chord length as a tortuosity measure. It was error prone as

it failed to differentiate between vessels with gentle arc over

large chord length and vessels with large number of twists.

Dougherty and Varro [10], represented vessels as a 1D signal

and proposed a measure based on the absolute sum of second

derivatives of the signal normalized by the sampling interval.

Six variants of curvature based measures were compared by

Hart et al. [1] and two were identified to correlate well with

clinical perception of tortuosity: the sum of squared curvature

without normalization and the sum of curvature normalized by



arc length. The main disadvantage of curvature based methods

is that the results are highly dependent on the technique used

in computation of curvature. Direct computation using finite

differences do not give desirable results. Spline representation

[5] or arbitrary smoothing [1] is required. A recursive formu-

lation calls for bisection of chord lengths at each step and

measuring the rate of increase of bisected chord lengths to

the original chord length [6]. Another approach quantizes the

vessels into discrete points and computes for each point, the

average angle of line segments joining the previous and the

next points [11]. This method is highly sensitive to noise and

is dependent on the quantisation process. A recent approach

divides the vessels into turn curves (vessel segments with

constant sign of curvature) and defines tortuosity as a product

of the sum of arc-chord ratio of each turn curve [5]. Included

in the measure is a term to account for number of twists,

normalized by chord length. Starting with the notion of an

osculating circle at a point as the largest circle touching it and

having maximum contact length with the centerline, a measure

is proposed in [8] based on the average of the reciprocal of the

radii of osculating circles over each vessel centerline pixel.

Thus, a common strategy is to divide the vessel centerline

into constituent bends, quantify the tortuosity measure for each

bend and take an average or sum of the tortuosity values of

all the segments [4], [1], [5], [8]. Using measures such as

the arc-chord ratio for quantifying curvature of each bend,

the information related to the relative size of the bends is

lost. Also, the orientation among the vessel bends is not given

any consideration. However, both size and orientation have

important effect on the shape of the vessel and neglecting them

will lead to a loss of discrimination among a wide variety of

vessels which are perceptually very different.

In this work, we propose an intuitive model for multi-scale

representation of vessel segments. We refer to it as Quadratic

Polynomial Decomposition (QPD). This permits comparison

of tortuosity of vessels at multiple scales and takes into

account the scale and relative orientation of the vessel bends.

We also propose a quantitative measure of tortuosity based on

the QPD framework. QPD is inspired from the observation

that to determine tortuosity, experts have a mental reference

of an ideal non-tortuous vessel for the given vessel and they

measure significant deviations from it often in the form of

sharp U shaped bends to define tortuosity [7]. A multi-scale

QPD framework provides an effective way of representing

both the underlying ideal non-tortuous shape of vessel at a

large scale as well as the local bends at smaller scales.

The rest of the paper is organised as follows: Section II

presents a method for converting a vessel centerline to a

1D signal. Section III presents the details of the proposed

QPD based on which a tortuosity measure is defined in

Section IV. Section V verifies the basic abstract properties

of the proposed tortuosity measure. Section VI, presents the

details of assessment of the proposed measure on a publicly

available dataset RET-TORT [5], followed by a discussion and

conclusion.

II. CONVERTING VESSEL CENTERLINE TO A 1D SIGNAL

Similar to [5] we start with a set of vessel segments as input

on which a set of points are marked by an expert on the vessel

centerline. These points are interpolated first, using bicubic

spline interpolation, to obtain the vessel centerlines. For ro-

tation invariance, Principal Component Analysis is computed

on the vessel centreline points following which each vessel

centerline pixel is projected to their principal components. The

direction of the first principle component is along the length

of the vessel as the centerline pixels show maximum variance

in this direction, while the second principle component lies

perpendicular to it.It ensures that irrespective of the initial

orientation of vessels, all centerline points are transformed to

a coordinate system where x-axis corresponds to the direction

of length of the vessel and y-axis is perpendicular to it. Next

we quantize the projected points along the principal axis and

obtain the corresponding second principal component values

as a 1D signal. Figure 3 illustrates a vessel segment, the

interpolated centreline and the derived 1D signal.

Fig. 3. a. An artery vessel segment from the RET-TORT dataset [5]; b.
Centerline mask obtained by bicubic spline interpolation of points manually
marked by an expert and c. Corresponding 1D signal

III. QUADRATIC POLYNOMIAL DECOMPOSITION

A. Motivation

We consider tortuosity of a given vessel as a measure which

signifies the degree to which it deviates from an ideal non-

tortuous vessel. Since retinal images are projections of the

spherical retinal surface on a 2D plane, even normal vessels

appear to be gently curved in the image rather than following

a straight path. Thus the reference is not a straight line but

a curve with no twists (as twists contribute to tortuosity).

Tortuosity is characterised by abnormal spring-like windings

in vessels in 3 dimensions which project to ′U ′ or ′S′ shaped

bends in retinal images of varying shapes and sizes. Quadratic

polynomials can offer a good approximation of such bends

as polynomial fitting with a larger chord length (scale) can

capture the underlying reference non-tortuous shape, while

that of smaller scale fitted on deviation of the vessels from

the reference smooth curve can be used to model the local



bends. Thus quadratic polynomials offer a good model for

representation of vessels at multiple scales.

B. Methodology
A 1D sequence representing a vessel segment centreline

V ,can be represented as a sum of localized quadratic polyno-

mials, P1,P2,....Pn defined at different scales. Each quadratic

polynomial Pi : y = aix
2 + bix + ci is defined by a 5-tuple

(ai,bi,ci,si,li), where si, li represent the starting position and

chord length of Pi respectively. Given a vessel segment V

{v1, v2, ...vn}, the steps in its quadratic polynomial decompo-

sition (QPD) are as follows :

1) Find second order polynomial P{p1, p2, ...pn} that fits

the vessel V with least squared error. P is the quadratic

polynomial approximation of V at current level.

2) Evaluate the Error signal,

E = (p1 − v1), (p2 − v2), ..., (pn − vn).
E quantifies the deviation of the vessel V from the

reference polynomial P.

3) Compute the Error per unit length, ε =

n∑

i=1

E(i)

l
, where

l represents the length of chord from p1 to pn.

4) Divide E into sub-segments E1,E2...En demarcated by

zero crossings of E.

5) If ε < δ then terminate the recursion. δ is a small

tolerance, such that when ε of a segment goes below

it, the segment is assumed to be well represented.

Otherwise, recursively apply steps 1 to 4 on each of

the error signal segments E1,E2...En independently to

obtain the decomposition at the next level.

Figure 4, shows the result of QPD of a vessel segment using

the above method. The sample corresponds to the vessel seg-

ment ”14 Arteria.jpg” from the RET-TORT dataset. Figure

4b-d represent the decomposition of the vessel at levels 1-3

respectively. The QPD allows perfect reconstruction implying

that no information of the vessel shape is lost during this

process. Figure 4 e, shows the result of reconstruction by

addition of all the localized quadratic polynomials extracted

at the different scales. Ideally, there should be zero error in

reconstruction, however due to the use of an error tolerance

δ = 3, we can observe some artifacts in the reconstruction.
IV. TORTUOSITY MEASURE

We next show how the QPD framework can be used to

derive a measure for tortuosity. Let the QPD of a vessel

segment V be P1,P2,..Pn at different levels. We model the

tortuosity measure τ(V ) as a sum of contributions of each of

these polynomials Pi to the overall tortuosity. Let us denote

these contributions by ψ(Pi).

τ(v) =

n
∑

i=1

ψ(Pi) (1)

Our aim is now to find the required characteristics of the
function ψ(P ). Consider the four sample vessel segments A,

B, C, D (in cyan) in figure 5 along with their quadratic polyno-

mial decomposition (shown in red,magneta and green). Vessels

A and B are decomposed into single quadratic polynomials

Pa; Pb respectively at the first level of Quadratic Polynomial

Fig. 4. Quadratic Polynomial Decomposition vessel: a. Sample vessel
sequence, b. Quadratic polynomial obtained at scale 1, c. Set of Quadratic
polynomials obtained at Scale 2, d. Set of quadratic polynomials obtained
at scale 3 and e. Reconstructed image by addition of all the polynomials
extracted at different scales.

Decomposition, while the vessels C is decomposed into 3

polynomials at 2 levels and Vessel D is decomposed into 7

polynomials at three levels.

Let us compare the trivial cases of vessels A and B. Both of

them are approximated by single quadratic polynomials Pa and

Pb; Pb appears to be more curved than Pa. Nevertheless, both

vessel segments are normal and must be assigned a tortuosity

measure close to 0. However, as we have to assign a relative

quantitative measure to both the vessel segments, the measure

must be slightly higher for Pb than Pa. Thus, ψ(Pb) > ψ(Pa),
while both ψ(Pa), ψ(Pb) are close to zero.

Comparing vessels A and C, both have identical polynomial

decomposition Pa and Pc at level 1, but C requires more

polynomials Pc2 and Pc3 at successive level for proper repre-

sentation as compared to A. Clearly C is more tortuous than

vessel A. This justifies the criterion ψ(Pi) > 0 ∀i.
Comparing vessels B and C leads to an important observa-



Fig. 5. Four sample vessel segments and their corresponding levels of
Quadratic Polynomial Decomposition

tion. At level 1, the vessels are represented by Pb and Pc1

respectively, with the former being more curved than the latter.

Thus, ψ(Pc1) < ψ(Pb), and both ψ(Pc1), ψ(Pb) must be close

to zero. However, since vessel C has bends at the successive

higher levels of QPD, the overall tortuosity of vessel C should

be greater.If ψ(Pc2),ψ(Pc3), is greater than ψ(Pb), then this

condition is satisfied. This leads us to the conclusion that

(i) for 2 segments of similar chord length, the segment with

higher curvature is more tortuous and (ii) for 2 segments of

different chord length, the segment with smaller chord length

must be given a higher weight. Thus, ψ(P ) must be directly

proportional to the curvature of the polynomial and inversely

proportional to the underlying chord length.

It is worth noting that since the polynomials are based on

fitting the error sequence rather than the original sequence, the

curvature actually relates to the deviation from the underlying

quadratic polynomial rather than a straight line.

Now, consider the vessels C and D. At the first level, Pc1

is more curved than Pd1; at level 2 also Pc2 and Pc3 are

more curved than Pd2 and Pd3. Considering the contributions

of the polynomials only upto second level of decomposition,

C is more tortuous than D. However,their relative tortuosity

depends on the the contribution of polynomials at third level

of decomposition Pd4−Pd7 for vessel D. If bends Pd4−Pd7 are

perceptually significant, then vessel D will be more tortuous,

however, if Pd4−Pd7 contributes insignificantly to the shape of

the underlying polynomials at level 2, they must be neglected.

This is handled in the following two ways.Firstly,ψ(P ) being

proportional to curvature of polynomial, Pd4 to Pd7 will

have low contribution in tortuosity if they are perceptually

insignificant. Secondly, Instead of exact decomposition, we

have incorporated a tolerance δ while computing QPD on the

amount of error that is allowed in the decomposition process.

When error becomes below δ, we consider the error to be

perceptually insignificant and choose to ignore it. The vessel

segments being made up of discrete pixels is not smooth

but zigzag in nature.The threshld negates the impact of such

aliasing effects and also improves the computational efficiency

as number of levels of decomposition is reduced. An additional

constraint on ψ(P ) is that it should be normalized by the

overall length of the vessel, so that though we can use ψ to

compare the relative size of the bends in the same vessel, the

measure should be invariant to differences in the overall size

of vessel segments.

Proposed Tortuosity Measure : We define ψ(P )) = Area(P )
l2×L

as the desired toruosity measure.
Area(P )

l
which is defined

below, provides a measure of curvature of the vessel bend; L
represents the chord length of the entire vessel segment and

helps normalize by the scale of the entire vessel segment and

allow comparison of tortuosity of vessel segments of different

scale; an additional term l serves to normalize the measure by

its chord length to give higher weightage to local bends. The

numerator of ψ is computed as follows:

Area(Pi(ai, bi, ci, si, li)) =

l
∫

1

(aix
2 + bix+ ci)dx

=
ai
3
× (l3 − 1) +

bi
2
× (l2 − 1) + ci × (l − 1)

(2)

To summarize, given a 1D sequence representing a vessel

segment centerline, with A being the Area of the least square

quadratic polynomial P fit to the error segment of length l on

V, L the chord length of V, the tortuosity τ(V ) is defined as

τ(V ) =







{ A

L×l2
} if Error ≤ δ

{ A

L×l2
}+

n
∑

i=1

τ(Ei) Otherwise
(3)

In the above equation, l = L at the first level of recursion.

At successive levels, L denotes the length of the entire vessel

segment V while l denotes the length of the error segments Ei

which are computed using QDP. Instead of computing QDP

separartely and then applying equation 3, we can combine the

two steps into a simple recursive algorithm as described in

algorithm 1. Steps 6−8 in Algorithm 1 correspond to the base

condition of equation 3; steps 11− 14 computes the recursive

definition, while remaining steps implements QPD.

V. ABSTRACT PROPERTIES

Since, tortuosity of vessels is graded qualitatively by opthal-

mologists based on their clinical judgement,it is not possible to

come up with a set of sufficient conditions for a good tortuosity

measure. However, related works such as [1], [5], and [9] have

discussed some intuitive features that may act as necessary

conditions for any clinically meaningful tortuosity measure.
1) Invariance to Translation and Rotation: The measure

is translation invariant as the Area, chord length of the

quadratic polynomials, and the overall length of the vessel

segment are translation invariant measures. Rotation invariance

is achieved during the the process of converting the vessel

centerline pixels to a 1D signal as discussed in section II.

Since vessel centerline points are projected in the direction



Algorithm 1 Algorithm to compute tortuosity

1: procedure Compute tortuosity(V )

2: P ← Quadratic PolyF it(V )
3: L← length(P )
4: E ← V − P

5: ε←

∑

i

abs(Ei)

L

6: if ε ≤ δ then

7: τ = A

L×l2

8: return

9: else

10: n← find ZeroCrossings(E)
11: for each turn curveE(ni, ni + 1) do

12: S ← S+Compute tortuosity(E(ni, ni+1))
13: end for

14: τ ← S + A

L×l2
;

15: end if

16: end procedure

of their Principal Components,identical vessels with different

orientation always map to the same 1D signal and hence would

compute to having identical tortuosity measure.
2) Frequency Modulation: Given two vessels with identical

amplitude but with different number of twists, tortuosity is

directly proportional to the frequency of the twists [5]. Our

measure conforms to this principle and we illustrate this

property using vessel segments modeled as sinusoids of 3

increasing frequencies in figure 6. The computed tortuosity

value increases correspondingly.

Fig. 6. Tortuosity dependency on frequency modulation. Vessel segments
modeled as a. sin(3 × t) b. sin(4 × t) and c. sin(5 × t). The computed
tortuosity values are τ = 0.0012, 0.0022 and 0.0035 for a,b,c respectively.

3) Amplitude Modulation: Given 2 vessels having equal

number of twists but different amplitudes, tortuosity is directly

proportional to the amplitude of the twists [5]. Our measure

conforms to this principle and we illustrate this property

using vessel segments modeled as sinusoids of 3 increasing

amplitudes in figure 7. The computed tortuosity values can be

seen to increase correspondingly.
4) Scale Invariance: For tortuosity measure to be scale

invariant, it must be normalized by the total chord length

of the entire vessel resulting in a dimensionality of L−1.

The proposed measure satisfies this condition. For any vessel

segment, the proposed tortuosity measure (eq.3) will be of

form:

τ(v) =

n
∑

i=1

Ai

L× l2
i

=
1

L
×

n
∑

i=1

Ai

l2
i

(4)

Fig. 7. Tortuosity dependency on amplitude modulation. Vessel segments
modeled as a. 3× sin(4× t),b. 5× sin(4× t) and c. 7× sin(4× t). The
computed tortuosity values are τ = 0.0022, 0.0036 and 0.0072 for a,b,c
respectively.

where n is the total number of polynomials extracted at all
scales. 1

L
can be taken out as a common factor from all the

summation terms, while the remaining summation terms of

form: Ai

l2
i

is a dimensionless quantity since both the numerator

and denominaor are of same dimension(L2). Thus the overall

dimension of the measure is L−1.

VI. EXPERIMENTAL RESULTS

We have evaluated our proposed method on a publicly

available dataset RET-TORT [5]. RET-TORT dataset consists

of 30 artery and 30 vessel segments of patients suffering from

hypertension, manually marked and rank ordered by increasing

degree of tortuosity, by an expert. Table I compares the

Spearman rank correlations of the existing methods reported

in literature by Grisan et al. [5], and our proposed method.

Spearmann Rank coefficient gives a measure of how close

TABLE I
COMPARATIVE RESULTS ON RET-TORT DATASET: PERFORMANCE OF

OTHER METHODS FROM [5]

Method Arteries Veins

Lc/Lx .792 .656

tc .922 .837

tsc .925 .826

tc/Lc .919 .814

tsc/Lc .917 .773

tc/Lx .939 .842

tsc/Lx .928 .804

MAC .920 .814

TN .838 .695

ICM .684 .575

DCI .787 .589

Grisan et al. [5] .949 .853

Proposed

Method

.944 .828

the tortuosity measure agrees to the relative ordering of the

vessel segments by the expert. The first seven methods in this

Table define tortuosity as Arc-Chord Ratio (Lc/Lx), Integral

of Absolute Curvature (tc), Integral of squared Curvature

(tsc), Integral of Absolute Curvature normalized by chord

length (tc/Lc), Integral of squared curvature normalized by

chord length (tsc/Lc), Integral of Absolute Curvature Nor-

malized by Arc length (tc/Lx), Integral of squared curvature

normalized by chord length ( tsc/Lx), respectively. The re-

maining measures are Mean Direction Angle Change (MAC)

[11], Absolute Direction Angle Change(TN ) [13], Inflection

Count Metrics( ICM ) [14] and Absolute Direction Angle



Change(DCI) [12].The penultimate entry in the table is the

result from [5]. They propose a measure T that is dependent

on 3 parameters: the chord length of the entire vessel segment

Lc, number of turn curves in the vessel segment n and the

Arc-chord ratio of individual turn curves (vessel sub-segments

with the same sign of curvature). Tortuosity T is defined [5]

as

T (s) =
n− 1

n
×

1

Lc

∑ Lcsi

Lxsi

− 1 (5)

VII. DISCUSSION

From the tabulated results it can be seen that our proposed

measure gives a Spearman rank correlation coefficient of 0.944

in the case of arteries and 0.828 for veins with respect to

the expert ordering. The proposed method correlates well to

the clinical perception of tortuosity and outperforms most of

the existing methods. In comparison, with the best performing

method [5] our results are identical up to second degree of dec-

imal (0.944 vs 0.949), while our performance is slightly below

their performance for veins (0.828 vs 0.853) [5]. However, the

proposed method has a key advantage. We illustrate this with

the help of an example. Figure 8 represents 3 synthetic vessel

Fig. 8. Importance of scale: a,b,c are synthetic vessel segments where
corresponding turn curves have same arc-chord ratio but varying scale

segments with identical chord length over the entire vessel

segment and 3 twists (turns).The arc to chord ratio of the 3

corresponding twists across all the 3 cases are same though

the magnitude of arc and chord lengths vary greatly. The

existing tortuosity metrics will yield identical values for these

3 cases though they are perceptually different. In contrast, the

proposed measure will be able to distinguish between them

since it takes into account the relative size of each turn curve

and their relative orientation into account while computing

tortuosity.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel tortuosity measure,

which works on the underlying principle of QPD which helps

decompose any curve into a set of quadratic polynomials at

decreasing scales. The approach is based on the observation

that experts quantify tortuosity based on a vessel’s deviation

from a reference normal vessel that best fits it. In practise,

the deviations from the model vessel that leads to tortuosity

is in the form of ’U’ shaped bends which can be described by

quadratic polynomials at a smaller scale.

We have shown that the proposed method conforms to the

existing set of guidelines for a clinically meaningful tortuosity

measure and additionally, takes into account the relative shape

and to some extent the relative orientation of the vessel bends

which have been neglected in the existing methods.

Though the underlying assumptions of our work have been

intuitive and considers vessel bends at different relative scales

and orientations, further investigation on a larger dataset with

grading from multiple experts is necessary. Another important

direction is to extend the model to take into account the vessel

caliber as it also plays an important role in computation of

tortuosity. Wide vessels in general have thicker walls, and

hence even a small bend in a thick vessel may characterize

an abnormal tortuous vessel, while more bend should be

necessary to characterise tortuosity of thin vessels.
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