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Te vast majority of sleep disturbances are caused by various types of sleep arousal. To diagnose sleep disorders and prevent health
problems such as cardiovascular disease and cognitive impairment, sleep arousals must be accurately detected. Consequently,
sleep specialists must spend considerable time and efort analyzing polysomnography (PSG) recordings to determine the level of
arousal during sleep. Te development of an automated sleep arousal detection system based on PSG would considerably beneft
clinicians. We quantify the EEG-ECG by using Lyapunov exponents, fractals, and wavelet transforms to identify sleep stages and
arousal disorders. In this paper, an efcient hybrid-learning method is introduced for the frst time to detect and assess arousal
incidents. Modifed drone squadron optimization (mDSO) algorithm is used to optimize the support vector machine (SVM) with
radial basis function (RBF) kernel. EEG-ECG signals are preprocessed samples from the SHHS sleep dataset and the PhysioBank
challenge 2018. In comparison to other traditional methods for identifying sleep disorders, our physiological signals correlation
innovation is much better than similar approaches. Based on the proposed model, the average error rate was less than 2%–7%,
respectively, for two-class and four-class issues. Additionally, the proper classifcation of the fve sleep stages is determined to be
accurate 92.3% of the time. In clinical trials of sleep disorders, the hybrid-learning model technique based on EEG-ECG signal
correlation features is efective in detecting arousals.

1. Introduction

An arousal during sleep is often thought of as a sleep dis-
order caused by fragmented sleep [1]. Changes in mobility,
motor consciousness, and response readiness are caused by
arousal-induced changes in sleep because they raise blood
pressure and heart rate [2]. Multiple system atrophy (MSA),
Lewy body disease (LBD), and Alzheimer’s disease (AD) can
all be detected early by studying physiological sleep signals
[3]. Te precise recognition of sleep stages and patterns can
be crucial in reducing the progression of neurological dis-
eases in such situations [4]. According to the American
Academy of Sleep Medicine (AASM), monitoring physio-
logical markers can detect rapid changes in sleep stages [5].
Consequently, classifcation of sleep stages, investigation of

heart rate variability, REM sleep without atonia (RSWA),
polysomnography (PSG), electrooculography (EOG), elec-
troencephalography (EEG), electrocardiography (ECG), and
electromyography (EMG) have received less attention in
detecting arousal (EMG). To make easier the recognition of
neurocognitive disorders, EEG is a cost-efective and
promising test [6]. Trough activation of the autonomic
nervous system (ANS), cortical arousals are linked to
fuctuations in heart rate and blood pressure [7–9]. Neu-
rologists recognize arousals as abrupt changes in the EEG
frequency [10], so they prefer to use EEG signal analysis to
detect them. Although recording EEG data during sleep
testing can be cumbersome for most individuals, most
arousal episodes are associated with ANS activity. Sleep stage
changes and other related problems are commonly
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accompanied by increased heart rate variability [11–13].
Arousals, also called cortical and autonomic activation, can
occur spontaneously or as a result of respiratory dysfunction
during sleep [14]. Physiological markers such as EEG and
ECG and ANS activation during sleep arousal have been
studied previously [15].

Nonlinear dynamical systems (NDSs) are thought to
possess key properties based on their metric disparities
between events [16]. Due to the complex patterns of such
metric discrepancies, quantifying such diferences is a dif-
fcult task for recognizing a correlation. Physiological sleep
signals are assessed and managed nightly by neurologists
[17], which is an empirical, inefcient, and time-consuming
process [18]. Terefore, automatic interpretation and rec-
ognition are desirable.

Some previous research studies attempted to undertake
automatic arousal detection based on physiological signals,
with varying degrees of success. Attempts have been made to
establish a link between physiological signals and sleep stage
shifts [12, 13]. Te study [14] has examined the relationship
between arousal and the heart rate response to sleep stage
changes. Despite the fact that the standard approach implies
that at least one EEG channel is benefcial, some contributors
have suggested that alternative physiological signals be used
[19]. Te difculties of using a semiautomated system to
detect and measure arousal have been highlighted in ECG
signals [20]. Pillar et al. described an automated detection
technique for separating AASM-defned arousals from sleep
using peripheral arterial tonometry and amobile device [21].
Warrick and Nabhan Homsi [22] proposed identifying sleep
arousal using PSG and recurrent neural networks (RNNs).
Deep learning (DL) has recently been widely employed to
analyze EEG and ECG signals, including convolutional
neural networks (CNNs) for sleep stage scoring [23–26], and
an end-to-end (e2e) deep learning method based on mul-
tiphysiological inputs [27]. Tsinalis et al. [28] used time-
frequency analysis and stacked sparse auto-encoders (AEs)
to create an autonomous sleep stage grading system. Macias
et al. [29] used the wavelet transform (WT) to classify
physiological sleep data and then used neural network (NN)
to detect alertness. Zhou et al. [30] reported a developed
ensemble deep learning (EDL) structure that retains tem-
poral associations of multimodal physiological inputs using
a positional embedding-based multihead attention archi-
tecture. Ugur and Erdamar [31] used an ensemble bagged
tree to assess quantitative sleep EEG synchronization for
automatic arousals detection and achieved 99.5% accuracy.
From PSG recordings, Karimi and Asl [32] proposed an
automatic identifcation approach for nonapneic sleep
arousal zones. Tey developed ensemble techniques and
concentrated on feature subset selection and consensus
approaches.

Nonlinear analysis of the EEG signal has long been
recognized as providing information beyond that provided
by regular EEGmetrics [31]. Pathological events and normal
cognition have both been shown to have diferent levels of
brain complexity [32].Te chaotic phenomena are one of the
primary causes of EEG signal complexity, and chaotic dy-
namics are characterized by sensitive dependency on initial

conditions. Moreover, a Lyapunov exponent [33] is a
method for describing the chaotic nature of EEG signals. In
addition, some research has shown that the R segment of
ECG signals can exhibit fractal behavior [34].Te classic and
efective techniques for constructing discriminating features
from physiological signals is single spectrum entropy
analysis [35], entropy [36], complexity [37], Lyapunov ex-
ponent [38], fractal dimension [39], and wavelet transform
[40].

Comparing existing studies in an unbiased and fair
manner is very difcult because there are so many ap-
proaches to study the same subject [41, 42]. For datasets that
are not publicly available, physiological signals and evalu-
ation performance metrics difer. A major problem is the
lack of standards for detecting sleep arousal, which is what
creates this issue.

2. Motivation and Contribution

Te frequent awakening from sleep, in addition to disrupted
and fragmented sleep, is a precursor to somnipathy, which
can lead to a variety of future health problems. Problems
with sleep arousal have been linked to obesity, depression,
heart disease, and diabetes. In order to improve public
health, we need a deeper understanding of arousal
neurophysiology.

It is possible to diagnose and treat sleep issues if excessive
arousals are detected early. Early recognition of a patient’s
health condition can prevent changes in blood pressure and
heart disease. Sleep arousal is often determined by PSG
recordings. Furthermore, sleep-awakening events are sub-
jectively assessed and vary greatly among professionals. In
order to determine the level of arousal during sleep, sleep
experts must examine PSG recordings. Clinicians would
greatly beneft from an automated PSG-based sleep arousal
detection system.

Two major obstacles must be overcome (1) under-
standing arousal disorders, which can cause disease, and the
detrimental efects of excessive arousal on regular sleep. (2)
Te neurologist’s outcome must be consistent if the model
creates sleep stages and detects arousal disorders.

Taking care of these issues may have a substantial impact
on the treatment process, and the individual may be cured of
neurological ailments in the future. Tus, a precise approach
for assessing arousals and sleep stages must be developed to
monitor the diagnosis. Experts can signifcantly beneft from
improving decision making through meta-learning and
optimization methods in this context [43].

In this study, Lyapunov exponents, wavelet transforms,
and fractals are used to quantify sleep and arousal stages
through feature extraction from EEG-ECG signals. For the
frst time, an efcient hybrid-learningmethod is presented in
this paper to detect and assess arousal incidents. In this novel
model, a modifed drone squadron optimization (mDSO)
algorithm [44] is used to optimize support vector machines
(SVMs) with radial basis functions (RBFs). As compared to
other traditional methods for identifying sleep disorders, our
physiological signals correlation innovation is much more
efective. According to the proposed model, there was an
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average error rate of less than 2% for two-class issues and 7%
for four-class issues, respectively.

A key contribution of this study is (a) the development of
correlations between physiological signals, (b) the devel-
opment of feature extraction methods, and (c) the design of
the optimal classifcation scheme for the diagnosis of
arousals, sleep stages, and sleep disorders.

We also present evidence supporting the utility of EEG
and ECG signals with correlated brain and autonomic ac-
tivity efects.Te analyses of ECGs and EEGs enabled a more
detailed understanding of arousal and sleep stages. An EEG-
ECG system can also be used to quantify psychological sleep
events such as arousal disorders and sleep stage changes as
shown in Figure 1. It is common for physiological signals of
arousal to change abruptly from deep to light sleep, which is
why sleep stages were also identifed. Due to this, the authors
decided to classify sleep steps as well as determine arousal
levels.

Tis paper is organized as follows: Section 3 introduces
the learning structure. Section 4 describes the method
proposed for identifying abrupt changes and sleep stage. In
Section 5, statistical analyses and results are discussed. Fi-
nally, conclusions are drawn in Section 6.

3. Learning Structure

To optimize the classifcation approach based on the
learning process, this section discusses the components of
the learning structure.

3.1. Classifcation Learning. Let us assume that we need to
obtain a determination function f with the characteristic f
(xj)� yj, ∀j [45].

yj w.xj  + b ≥ 1,∀j. (1)

A discriminating hyper-plane typically does not exist.
Te slack variables ζj are ofered to provide for the event of
examples violating (1):

ζ ≥    0∀j. (2)

Moreover, w is a weight vector, x is the input vector, and
b is bias. As a result, we have

yj[(w.xj) + b]≥ 1 − ζj,∀j. (3)

Te support vector (SV) procedure to minimize the
assured uncertainty bound includes

τ(w, ζ) � 0.5 ×(w .w) + c 
l

j�1
ζj. (4)

Te soft margin equation is made by multiplying ζ by a
hyperparameter c and adding two terms with l training
points. Te minimization procedure is conducted based on
mentioned constraints in (2)–(3). Importing Lagrange
multipliers αj and applying the Kuhn–Tucker theory of the
optimization approach, the answer can be determined

w � 
l

j�1
yiαjxj. (5)

Tis condition in (3) must be precisely met by the rel-
evant cases (xjand yj) in order for αj to be nonzero. Tese xj
are known as “support vectors” and the rest of the training
examples are unnecessary. Teir exclusion from the ex-
pansion (5) is due to the fact that (3) is immediately satisfed
(with ζj � 0). Calculating αj’s coefcients entails solving the
quadratic programming issue as shown. Tus, the maxi-
mization of the following equation can be applied with
regard to (7):

w(α) � 
l

j�1
αj −

1
2



l

j,k�1
αjα kyjyk xj.xk , (6)

0≤ αj ≤ c, i � 1, . . . , l, 
l

j�1
αjyj � 0. (7)

Based on the dot product’s linearity, the decision
function can also be constructed as follows:

f(x) � sgn 
l

j�1
yjαj x.xj ⎡⎢⎢⎣ ⎤⎥⎥⎦ + b, (8)

where, the sgn corresponds to the sign function or signum
function. A set of input vectors x1,. . ., xl can be nonlinearly
translated into a high-dimensional feature space to provide
signifcantly more general decision surfaces. Te decision-
making function is

f(x) � sgn 
1

j,k�1
yjαj.K x.xj ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ + b. (9)

As a result, kernel RBF can be displayed as the following
for support vectors:

K x , xj  � exp − x − xj

�����

�����  × 2σ2 
− 1

. (10)

3.2. Drone Squadron Optimization. Te drone squadron
optimization (DSO) is comprised of two components:
semiautomated drones that conduct environmental surveys
and a command center that processes data and updates the
drones’ frmware system as needed. Te self-adaptive
component of DSO used in this work is the perturbation/
motion method used to get the target coordinates [44]. Te
command center devised this method of customizing the
DSO to the search perspective during the global optimiza-
tion phase.

Drones’ capacity to be changed or modifed in both
hardware and software is one of its most distinguishing
features (the frmware). As a result, researchers may quickly
include new processes into the algorithm because these
devices are controlled by software (frmware).Te command
center serves as a single point of contact for issuing orders
and overseeing assigned responsibilities. Internal decisions
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are made based on the system’s processing of inputs and
data. Te command center can update the drone software at
any time, adapting a team’s behavior to the scenario
dynamically.

Drone squadrons and command centers make up the
DSO algorithm. Te command center accomplishes two
goals by utilizing data collected by/from drones. To keep
some control over the search process while also developing
new drone-fying technology. Drones are not the answer
because they are programmed to fy to a specifc location (the
actual solution). It consists of the methods and parameters
used by teams when doing landscape searches.

Tere must be a departure point in order to avoid
limiting the search area towards the origin assuming that the
ofset value is zero, the departure coordinates still have noise
app lied to them, which causes a neighborhood search. If a
frmware update condition is reached (for example, the
number of iterations), the command center substitutes
variations of the w best frmware for the w worst frmware.
For w � 1, this indicates that the team with the lowest cu-
mulative rank will obtain a frmware version (random
subtree replacement) of the best team.

4. Proposed Methodology

Feature extraction, feature selection, and optimized classi-
fcation are steps of the proposed strategy (Figure 2).

4.1. Preprocessing. We must window nonstationary physi-
ological signals in order to conduct the essential analysis.
Each window overlaps the previous one to preserve the
information’s nature. Due to the fact that EEG and ECG
signals vary in length across states, we separated them into
equal segments based on the sampling frequency. In other

words, we used the windowing technique, which divides the
signal into equal time segments. By considering a 20%–50%
overlap between two consecutive windows, the length of
each window must be calculated in such a way that ap-
propriate features may be extracted based on the established
step-times [46]. Te rationale for selecting the signal length
and the percentage of overlap between the consecutive
signals will be discussed in detail in the section on experi-
mental results.

By generating deep sleep in the third stage and allowing
it to take its course naturally in the ffth stage, band sepa-
ration is accomplished utilizing EEG signals. Te third stage
is defned by the presence of slow, deep brain waves termed
waves. We created low-pass flters with passing frequencies
of 3Hz or fewer to diferentiate EEG signals from waves.
Individuals’ attentiveness decreases during the deep sleep
stage, which means that nearby noises or activities may go
unnoticed. Tis stage serves as a transition between awake
and deep sleep. Dreaming typically happens at step 5,
sometimes referred to as rapid eye movement (REM). Deep
sleep, which is frequently referred to as partial sleep, is
defned by increased brain activity, eye movement, and rapid
breathing. Using the linear regression algorithm (LRA), we
can similarly distinguish cardiac complexes from signals
[47].

4.2. Feature Extraction and Selection. Te feature extraction
level includes three descriptors as follows:

4.2.1. Lyapunov’s Exponent. In phase space, we can deter-
mine the convergence or average exponential divergence of
surrounding trajectories by using Lyapunov exponents [48].
Generally, chaotic systems have a positive Lyapunov ex-
ponent. Consider _p � f(p) indicates the N-dimensional

Recording EEG signals Recording ECG signals

Feature extraction
(from EEG signals)

Feature extraction
(from ECG signals)

Segmented EEG Segmented ECG

Feature selection Feature selection

Sleep signals
(Pre-processing)

Classification
(Optimized learning)

Signal 1

Signal 2

Signal 3

Signal 4

Signal Windowing

| F (EEG-Sig1) F (EEG-Sig2) F (EEG-Sig3) ... F (EEG-Sigm) | | F (ECG-Sig1) F (ECG-Sig2) F (ECG-Sig3) ... F (ECG-Sign) |

k k + 1 k + 2 k + 3 k + 4

Figure 1: Te framework of the proposed procedure.
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state vector p of a dynamic system. As the system progresses,
we measure the evolution of the distance d between the
adjacent phase points p1 and p2 in the dimensional space and
generate trajectories [p1 (t), p2 (t)]:

d(t) � p1(t)– p2(t)


,

� | ε→(t)|,
(11)

where | ε→(t)| is a very small and positive value. When
chaotic dynamics are present in system _p � f(p), d (t) will
increase exponentially

d(t) ≈ d(0)e
λt. (12)

Using the average velocity of the trajectories as a starting
point, we can determine the exponential divergence of the
average velocity:

λ ≈
[ln(d(t)/d(0))]

t
. (13)

In exact terms

λ �

lim
t⟶∞
d(0)⟶0

[ln(d(t)/d(0))]

t
.

(14)

Te following matrix shows the extracted features from
overlapped-windowed EEG/ECG signals. We form two
independent feature vector matrixes for each physiological
signal. Following is an example using the Lyapunov expo-
nent and a sample feature extraction vector from each
windowed signal based on three descriptors.

EEG
ECG Feature  Vector

�

F Sig1,1  F Sig1,2  F Sig1,3  . . . F Sig1,n 

F Sig2,1  F Sig2,1  F Sig2,3  . . . F Sig2,n 

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

F Sigm,1  F Sigm,2  F Sigm,3  . . . F Sigm,n 





.

An example based on the time series in Lyapunov′s  exponent �

d

2 0.42962 − 1.61402

3 0.41118 − 088236 − 1.61117

4 0.40998 0.49658 − 1.59837 − 1.87389

5 0.83478 0.42890 − 0.88561 − 1.58723 − 1.98871





.

(15)

4.2.2. Fractal. Te development of fractals occurs with
repetitions, meaning that they are regularly deformed and
reliant on the starting position. Tere are many solutions for
implementing stochastic fractal dimensions, particularly
Higuchi and Katz’s fractal dimensions. Tese features are
expressed in the fractal space as follows:

(A) Correlation Dimension. In the fractal theory of a signal,
the correlation dimension (denoted by v) is a measure of the

dimensions of space occupied by a set of random points,
which is known as the fractal dimension. In the frst di-
mension, the distance between every two-point pairs in
feature space is obtained based on the phase environment. In
the second step, the summation of C (N and r) and D2
parameters are estimated according to

C  N ,r 
�

1

N  N− 1( 


N

i�1


N

j�1
θ r − ‖v(j) − v(i)‖

j≠i
⎛⎝ ⎞⎠, (16)

input data

EEG and
ECG signals

EEG decomposition
and signal
windowing

fractal, Lyapunov,
and DWT

wrapper filter optimized kernel of
SVM by DSO

Sleep stage
classification and
arousal detection

preprocessing feature extraction feature selection classification outputs

Figure 2: Te schematic of the proposed method for detecting the arousal events and sleep stages.
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where

θ(x) �
0, if x< 0,

1, if x≥ 0,

⎧⎪⎨

⎪⎩
(17)

D 2 � lim
r⟶0

log2 C(N, r)

log2(r)
, (18)

where ||.|| represents the Euclidean distance and r is the
radius of the V (j) neighborhood. Also, N represents the
number of points, θ is a step function, and fnally, V is the
phase-space vector, which is determined according to the
following

Vm(i) � x(i), x(i + τ), . . . , x(i +(m − 1)τ). (19)

In this equation,m is the embedding dimension, and t is
the time delay.

(B) Fractal Dimension. Te degree of complexity, irregu-
larity, and chaos of the signal is determined by the fractal
dimension.

4.2.3. Wavelet Descriptor. Te discrete wavelet transform
(DWT) was created because of the need for multiscale
feature representation. DWT refects physiological in-
formation in a variety of ways, depending on the size or
scale. Selecting decomposition levels based on the fre-
quency component that dominates the EEG and ECG
data. A high degree of correlation between the levels of the
signal sections and the frequency data are essential for
categorizing signals. For our experiment, the study uses a
fve-level decomposition structure. As a result, physio-
logical signals are divided into D1–D5 (detail coefcients)
specialties and an A5 (approximation coefcients) ap-
proach. Wavelet types are typically investigated until the
most appropriate one is found. A Daubechies wavelet is
more suited for detecting signal changes because of its
second-order (db2) smoothing characteristics. Terefore,
db2 was used to compute the wavelet coefcients for this
study.

4.2.4. Feature Selection. Selecting features based on generic
flters, we can use the shared wrapper feature selection as a
recursive feature eradication for clusters, including the k-
nearest appropriate neighbor and support vector machine.
To do so, we allocate a score called Sci to each group, as
explained by the following. Groups are then ranked relative
to these assigned scores, and top-ranking groups are
identifed as the primary outputs.

Sci � δi+ − ϵi+(  × δi− − ϵi−( 
− 1

, (20)

where δi+ and εi+ are the mean and standard deviation of
features associated with abrupt changes in the sleep stage,
and δi− and εi− are the mean and standard deviation normal
change patterns in the sleep stage, respectively.

4.3. Optimized Learning. A hybrid classifcation model
based on the SVM learning repository is used in the frst
part. Te initialization of the c (i.e., is the inverse of the
standard deviation parameter in the kernel) and C (a soft
margin parameter) in the classifcation kernel is randomly
generated for each classifer. Te speed of change of each of
these qualities is diferent. Te modifed DSO method is
formed with a selected structure based on the least amount
of error in the training data. Tis method accelerates and
fne-tunes convergence toward the optimum response. Tis
technique is repeated fve times to evaluate the classifcation
fusion of the pool structure, the average accuracy, and the
best matching parameters. Te network accuracy is a key
factor in determining an appropriate match. Calculating the
optimal values of the RBF kernel helps to search for the
modifed DSO algorithm for global optimizations.

Scaling, remodeling, and connection methods are used
in the traditional DSO strategy, as well as selecting lower-
quality solutions when stagnation occurs and frmware
updates. Te initial unpredictability of the procedure, as well
as the occurrence of desperate portions in the search region,
are, however, faws. To reduce unpredictability and avoid
desperate sections of the search region, we employ k-nearest
neighbor (k-NN) clustering technique. Te DSO algorithm’s
initialization challenge is solved, enabling the fltering of
incorrect initialization and, as a result, an improvement in
the fnal response. Te K-NN classifer signifcantly aided in
the determination of optimal starting values while using the
standard DSO technique. K can be unlimited in the k-NN
algorithm, which indicates that all points in the data are used
to make the prediction, although their efect is inversely
proportional to their Euclidean distances from the initial
optimal targets. Te following equation illustrates the pre-
dictor, where is the index of the k-NN

Error wigp  � 

q∈DK

q≠p

1
di stEucli wigp,wigq  + ε

Error wigp .

(21)

Te traditional DSO technique was repeated numerous
times with varying values to create improper and appro-
priate starting points for use in the k-NN learning process,
which were labeled 1 and 2, respectively, in proportion to the
ultimate accuracy gained by establishing the best RBF kernel
parameters.

4.4. Physiological SignalCorrelation. Extracted features from
fve frequency bands are used to explore the correlation
between EEG and ECG data for sleep stages and arousal
detection. A signifcant relation is indicated by a positive
correlation of selected parameters, whereas a negative
correlation implies an inverse relationship. Te EEG signal’s
estimated capabilities include fve frequency bands delta
(4.5–5.0Hz), theta (5.5–8.5Hz), alpha (5–5.9Hz), sigma
(13–16.5 H), and beta (13–16.5 H) (17–30Hz). Te spectral
power of ECG signals was investigated at fve diferent
frequencies ranging from 0.33Hz to 0.4Hz. Normalizing
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signals at three levels of low (LF), high (HF), and very low
(VLF) frequencies was also used to synchronize them.
Diferent signals acquired from each sleep cycle were ana-
lyzed for correlation, which naturally necessitates detecting
and evaluating sleep stages.

5. Experimental Results

5.1. Dataset. Te proposed technique was tested using the
Sleep Heart Health Study (SHHS) and PhysioBank data-
bases, which were part of the Challenge 2018 project. Te
SHHS consists of arousal events and various transitions
from deep sleep to light sleep.Te National Heart, Lung, and
Blood Institute has launched the SHHS, a multipurpose
cohort study, to determine cardiovascular and other re-
spiratory outcomes in the absence of any sleep disturbance.
Between November 1, 1995, and January 31, 1998, 6,441 men
and women over the age of 40 were registered for the SHHS
visit.

As shown in Figure 3, physiological signals such as ECG,
EEG, ABD, SaO2, chest, and AIRFLOW were annotated by
neurological experts from numerous participants in both
data and distinct periods. Wake state (W), sleep stage 1 (S1),
sleep stage 2 (S2), sleep stage 3 (S3), sleep stage 4 (S4), and
REM sleep were all given abbreviations. In both databases,
the events captured in the crucial EEG signal are in the form
of arousal. Te cardiac signal’s duration is measured in
minutes and seconds, just like the EEG signal. During the
incident, the percentage decrease in the amount of dissolved
oxygen in the blood was also recorded. Te lowest levels of
dissolved oxygen in the blood were seen in general. Each
record comprised all of the comments from the specialist’s
manual registration fles that could be identifed based on the
type of occurrence or sleep stage.

5.2. Setting. To run the algorithms in Matlab 2019b simu-
lation environment, a computer system with 8GB of RAM
and a 64-bit operating system was required for Intel (R),
Core (TM), and Core i7 CPU. Te synchronization of both
signals acquired from the volunteers’ sleep phases, which
included six sleep steps, was considered equal to identify the
sleep stages due to the signifcant duration of specifc signals
obtained from the participants.

Te arousal events classifcation problem is a two-class
task for EEG, ECG, and EEG-ECG signals. All ECG and EEG
signals were preprocessed into discrete windows (at 1-sec-
ond intervals) and deep sleep bands, with levels in the ECG
signal that were higher than the EEG signal, however
proportionate to it. It was extracted at the feature extraction
stage along with Katz and Higuchi features (extraction from
all separated signal frames) the following features from EEG
and ECG signals: correlation, entropy, energy, skewness,
standard deviation, mean, power ratio, spectral power, zero
crossing, and reverse of diferentiation (with vector features
ranging in length from 47 to 60).

5.3.Assessments. In the assessment step, we partition data into
test and training data using K-fold cross-validation (CV). In all,

the signals were divided into four groups. Te semiconscious
and awakening periods (also known as the EEG signal with beta
and alpha sub-bands) as well as their homologous time in-
tervals in the ECG signal set were deleted from brain datasets.
Te frst signifes a rapid transition from light to deep sleep
(Class 1). Te second class denotes deep sleep (Class 2), the
third class denotes low-intensity sudden deep-sleep type shifts
(Class 3), and the fourth class denotes rapid deep-sleep style
changes (Class 4). In the frst report of outcomes, we compare
learning based on particle swarm optimization (PSO), genetic
algorithm (GA), andDSO algorithms withmDSO algorithm in
improving the SVM classifer. As shown in Tables 1 and 2, we
compared the performance of the SVM classifer in classes two
and four using themDSOoptimizer to alternative optimization
strategies. As demonstrated in Table 1, the binary classifcation
indicated whether or not there was a sudden transition from
deep to light sleep.

Te results of the sleep stages classifcation are depicted
as confusionmatrices in Figures 4–6. Four folds are available
in these fgures, with two maximum and two minimum
results, and the CV is preferred at 10.

Te matrices shown in Figures 4 and 5 are the results
of the sleep stage classifcation on datasets 1 and 2. Te
classifcation outcomes of sleep stages are displayed as
confusion matrices in Figures 4–6. Te outputs of ap-
plying the approach to both datasets are also shown in
Figure 6.

HRV analysis has been employed for decades to assess
changes in the autonomic nervous system (ANS), which is
the balance between the parasympathetic and sympathetic
nervous systems. A change in the heart rate is one of the
main indicators of cerebral cortex arousal [49–55]. Experts
have identifed a stronger correlation between clinical
outcomes and heart rate analysis, which sheds light on the
systemic efects of arousal and sleep phases. Te fndings in
this fgure represent the results of using the suggested
method to both datasets, which were evaluated by concat-
enating the extracted features from both signals. Only the
experiment’s results are shown in these fgures. To prevent
overftting in learning, the data are also shufed. Te sug-
gested method’s sleep stage classifcation fndings are in-
cluded in the confusion matrix. Te primary purpose of
presenting repeats is to demonstrate the degree of the ap-
parent variance among the acquired data by computing the
standard deviation (STD), which is used to verify the
method’s generalizability and robustness in diagnosing
arousal. Te frst dataset’s distribution accuracy is higher,
while the divergence in the second dataset’s results is minor.
Te results of the classifcation of arousal and nonarousal
events for EEG, ECG, and EEG-ECG signals are shown in
Figure 7. Arousal may be identifed with a greater precision
in the presence of both signals and due to their correlation,
i.e., the concatenation of information from both signals.

Te comparison is based on the algorithm being applied
to both datasets. Te appearance of arousal events is also
scored by a neurologist.Te accuracy, AUC, and recognition
rate (RR) were assessed, and the cross-validation approach
was investigated by setting CV� 10. Tables 3–5 illustrate the
accuracy, AUC, and RR of feature selections obtained from
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Table 1: Te error assessment of sleep steps classifcation for a two-class problem using EEG signals.

Repetitions
SVM SVM (RBF) SVM

(RBF) +GA
SVM

(RBF) + PSO
SVM

(RBF) +DSO
SVM

(RBF) +mDSO
Min Max Min Max Min Max Min Max Min Max Min Max

10-fold (1) 0.11 0.15 0.08 0.11 0.08 0.12 0.05 0.08 0.03 0.05 0.02 0.04
10-fold (2) 0.09 0.17 0.08 0.12 0.09 0.12 0.06 0.09 0.04 0.08 0.02 0.05
10-fold (3) 0.15 0.18 0.09 0.13 0.08 0.12 0.06 0.08 0.04 0.06 0.01 0.05
10-fold (4) 0.11 0.16 0.08 0.12 0.06 0.13 0.06 0.08 0.02 0.07 0.03 0.05
10-fold (5) 0.14 0.17 0.11 0.13 0.11 0.12 0.08 0.08 0.04 0.08 0.02 0.04
10-fold (6) 0.13 0.18 0.10 0.14 0.10 0.11 0.09 0.09 0.04 0.06 0.01 0.03
10-fold (7) 0.11 0.16 0.10 0.14 0.09 0.11 0.06 0.11 0.03 0.06 0.01 0.03
10-fold (8) 0.09 0.16 0.07 0.14 0.07 0.09 0.05 0.08 0.05 0.07 0.02 0.03
10-fold (9) 0.10 0.14 0.12 0.13 0.11 0.11 0.09 0.07 0.05 0.09 0.03 0.05
10-fold (10) 0.12 0.15 0.10 0.13 0.09 0.09 0.07 0.12 0.04 0.08 0.02 0.04
Av 0.115 0.162 0.093 0.129 0.088 0.112 0.067 0.088 0.038 0.071 0.0 9 0.04 
Bold values are the best values obtained.

Table 2: Te error assessment of sleep steps classifcation for a multiclass problem using EEG signals.

Repetitions
SVM SVM (RBF) SVM

(RBF) +GA
SVM

(RBF) + PSO
SVM

(RBF) +DSO
SVM

(RBF) +mDSO
Min Max Min Max Min Max Min Max Min Max Min Max

10-fold (1) 0.24 0.31 0.19 0.28 0.16 0.24 0.10 0.22 0.12 0.16 0.08 0.12
10-fold (2) 0.24 0.37 0.19 0.30 0.14 0.26 0.14 0.23 0.13 0.18 0.06 0.14
10-fold (3) 0.21 0.28 0.24 0.32 0.19 0.21 0.16 0.24 0.14 0.17 0.05 0.11
10-fold (4) 0.27 0.30 0.24 0.28 0.20 0.22 0.16 0.21 0.15 0.19 0.06 0.12
10-fold (5) 0.23 0.33 0.18 0.24 0.16 0.23 0.18 0.21 0.14 0.20 0.08 0.13
10-fold (6) 0.24 0.34 0.22 0.32 0.18 0.25 0.16 0.21 0.15 0.19 0.12 0.14
10-fold (7) 0.25 0.27 0.22 0.28 0.16 0.19 0.14 0.17 0.14 0.19 0.10 0.12
10-fold (8) 0.25 0.30 0.19 0.28 0.16 0.20 0.16 0.19 0.15 0.20 0.09 0.12
10-fold (9) 0.22 0.25 0.17 0.24 0.14 0.17 0.15 0.19 0.14 0.19 0.09 0.13
10-fold (10) 0.27 0.33 0.24 0.29 0.19 0.23 0.14 0.21 0.12 0.18 0.06 0.09
Av 0.242 0.308 0.208 0.283 0.168 0.220 0.133 0.208 0.138 0.185 0.079 0. 22
Bold values are the best values obtained.
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Figure 3: Various physiological signals of the human body to detect arousal during sleep are displayed. Te most important signals that
provide the highest classifcation accuracy for discrimination are the EEG and ECG signals.
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FS, DWT, and LE descriptors of arousal events under
various feature selection settings.

As shown in Table 5, all processes of feature extraction,
feature selection, and classifcation were analyzed employing
an improved SVM under various situations. Tese tables
show how to use classifcation and apply features to EEG or
ECG signals in a variety of situations.

6. Discussion

Tree experiments are provided in Figure 8 to assess the
infuence of concatenated features of (a) ECG, (b) EEG, and
(c) EEG-ECG signals. In the distance of 30–50% of all
features, the features are selected because a proper dis-
criminated efect in the classifcation.

For both the EEG-ECG signals, the FS, DWT, and LE
descriptors retrieved a total of 112 features, of which 34–40
concatenated features were chosen as the best subset features

in Figure 8(c). Te efective features, depending on the
signals, have a higher impact on the fnal classifcation ac-
curacy and are critical to the arousal diagnosis in all three
trials shown in Figure 8. For identifying sleep disorders, the
same is true, with 30–50 percent of the selected criteria
yielding the highest classifcation accuracy. Diferent types of
data, such as test and validation signals, were analyzed. As
illustrated in Figure 9, the convergent level of the error is
calculated using the loss function over a fnite number of
epochs. Te mDSO procedures illustrated convergence of
optimizing the SVM classifer is rapid and reliable for both
test and validation data, as seen in this image. As a result, we
investigate SVM in order to achieve optimal classifcation
conditions by altering data.

Te Jaccard and average degree (AD) benchmarks are
shown in Figure 10 to measure the quality of extracted
features from all three FS, DWT, and LE descriptors, which
are used to test the feature integration.
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Figure 4:Te confusion matrix is depicted in this table, which includes the frst (best) and second (worst) rows of the two-fold from the 10-
folds of EEG and ECG signals in the frst dataset.
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Te fndings of its two-stage repeat, as well as for both
EEG and ECG physiological signal models, show that it has a
good performance in identifying sleep stage alterations. Te
most efective classes for identifying transitions in sleep
stages (Class 1 to Class 4) for EEG-ECG data are presented in
this comparison (Class 1 to Class 4). What was thought to be
a 5-repeat accuracy criteria experiment in arousal disorder
detection turned out to be inconsequential, with modest
variations recorded. Te outputs from the usage of the
hybrid descriptor and mDSO procedure between EEG/ECG
signals were more signifcant with the neurologistss’ opin-
ions, as shown in Figures 11 and 12. Te results are com-
pared as a bar-plot based on combined features in Figure 11
for the sleep stage classifcation.

Two diferent types of data are used to assess the
method’s performance: EEG and ECG signals. Te advan-
tages of the mDSO method over other methods for

increasing learning include its confdence in achieving the
optimal response and its rapid convergence.

Unlike prior studies that concentrated exclusively on
arousal, the current research separated the signifcant stages
of sleep to assess the intensity and intervals of arousal events.
Other methods have either used cardiac signals or evaluated
only EEG signals, with no consideration of the factors
underlying their association in the response. Accuracy levels
higher than 90% for diferent classes of sleep stages, and thus
identifying arousal events using traditional algorithms, re-
quire the extraction of precise patterns of features.

Some algorithms in this feld have been successful in
classifying arousal episodes; nevertheless, issues such as
generalizability and computational complexity for big data
still exist [25, 26, 56–60]. Tere has not been a study of the
simultaneous recognition of sleep stages, arousal detection,
and the correlation between EEG and ECG signals. Table 6
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Figure 5:Te confusion matrix is depicted in this table, which includes the frst (best) and second (worst) rows of the two-fold from the 10-
folds of EEG and ECG signals in the second dataset.
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analyses similar arousal detection approaches and compares
the performance of the suggested method-based measures
such as accuracy.

We used multiple signal channels and employed the
method on a large number of similar datasets, whereas
analyzing features and connecting signals using single-
channel signals is a challenge that must be addressed to
ensure precision, both in the detection of sleep stages and in
arousal events of varying intensities [23, 31]. To extract
useful features, we employed a hybrid approach. Deep
learning approaches [23–26, 61] may be able to extract
automated separable features for the categorization.
Nonetheless, extensive data and prolonged training com-
plicate the signal analysis, i.e., the identifcation of hyper-
parameters and variables of training, high susceptibility to
the uncertainty efect, and similar items in variation analysis
parameters. What is referred to as arousal detection in EEG

and even ECG analyzing may yield interpretations other
than arousal based on signals such as PSG [22, 32, 60]. As a
result, the proposed technique has a signifcant advantage
over similar methods that uses single nonstationary and
noise PSG or EEG signals [25, 26, 59] to detect sleep stages.
Tus, by identifying combined features deduced from sig-
nals with richer EEG and ECG information for accurate
arousal analysis.

Study limitations included a limited number of patients,
complex physiological signals, and inaccurate labeling when
it came to identifying arousal. Moreover, there is a lack of
confrmation of a relationship between physiological signals
during arousals, lack of an indicator boundary between
arousals, and insufcient substrate to the estimate arousal
intensity. Noise, including motion noises, is one of the
biggest challenges in arousal and sleep stages detection.
Since the EEG signal also includes artifacts such as
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Figure 6: Te suggested method’s confusion matrices in the concatenating state of the derived features from both physiological signals in
both datasets.
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Figure 7: For ECG (frst raw), EEG (second raw), and EEG-ECG (third raw) signals, the results of a confusion matric (best three-folds) for
the classifcation of arousal and nonarousal events are shown.

Table 3: Te accuracy, AUC, and RR of the subset feature selection from the fractal descriptor are calculated under various scenarios. Te
results of SVM and improved SVM classifers are compared to detect arousal events.

Signal type No. of features
SVM Optimized SVM

ACC (%) AUC (%) RR (%) ACC (%) AUC (%) RR (%)

EEG

16 74.88 75.64 73.11 83.31 84.19 83.21
24 79.54 77.32 76.11 87.52 87.09 87.13
32 74.14 74.37 75.21 85.18 85.54 84.53
40 73.80 73.94 73.14 82.22 83.81 82.36

ECG

16 71.44 71.15 69.63 80.40 79.74 80.23
24 74.10 74.41 73.30 82.29 82.13 81.53
32 70.89 72.56 72.18 82.26 81.76 80.28
40 68.37 67.51 66.30 81.87 80.54 81.47

EEG+ECG

16 78.29 78.35 78.58 89.74 89.04 89.28
24 81.75 80.64 79.44 88.51 90. 3 89.94
32 78.67 77.18 78.43 88.47 88.03 87.27
40 75.13 75.72 74.54 88.36 86.83 87.70

Bold values are the best values obtained.
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Table 4: Te calculation of accuracy, AUC, and RR in various scenarios of wavelet descriptor and subset feature selection. Te results of
SVM and improved SVM classifers are compared to detect arousal events.

Signal type No. of features
SVM Optimized SVM

ACC (%) AUC (%) RR (%) ACC (%) AUC (%) RR (%)

EEG

4 74.62 74.70 73.91 81.32 79.56 78.38
8 79.73 78.04 78.81 82.81 83.60 82.32
12 75.08 76.50 76.82 83.24 82.36 81.52
16 75.70 75.11 74.89 81.38 81.28 80.24

ECG

4 72.22 72.09 72.49 80.38 79.86 79.24
8 77.29 77.83 76.43 81.82 82.36 81.62
12 73.21 73.37 74.97 81.90 81.44 80.68
16 72.04 73.37 73.84 80.63 80.20 80.11

EEG+ECG

4 78.13 78.04 78.77 86.46 87.66 86.80
8 81.65 80.22 79.05 89.73 90.34 89.76
12 75.61 76.31 76.49 88.47 88.08 86.42
16 75.81 75.05 74.25 86.67 86.33 85.18

Bold values are the best values obtained.

Table 5:Te Lyapunov exponent descriptor was used to calculate accuracy, AUC, and RR in various scenarios of the subset feature selection.
Te results of SVM and improved SVM classifers are compared to detect arousal events.

Signal type No. of features
SVM Optimized SVM

ACC (%) AUC (%) RR (%) ACC (%) AUC (%) RR (%)

EEG

8 73.03 73.60 71.54 80.47 80.99 80.76
12 78.51 79.10 79.83 83.35 84.71 83.02
16 74.98 75.75 75.92 84.27 83.54 81.43
20 76.15 74.33 76.78 82.72 82.07 81.11

ECG

8 71.34 71.86 71.04 80.19 80.14 80.24
12 76.23 76.07 76.66 82.74 83.05 82.62
16 73.45 73.65 73.69 81.73 81.57 80.68
20 72.14 72.62 72.87 80.78 79.66 79.11

EEG+ECG

8 76.54 76.46 76.75 90.14 89.23 90.80
12 79.06 78.81 79.71 91.42 9 .70 9 .56
16 77.80 77.67 77.12 9 .87 91.46 90.48
20 73.11 73.24 73.49 90.93 90.83 89.31

Bold values are the best values obtained.
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Figure 8: Continued.
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respiration signals and movement signals, detecting the
signal’s noise component can be challenging. A second type
of noise is produced when the power frequency of the

recording equipment coincides with that of the well-known
noise [62]. Even though we extracted features using several
methods and windowed the signal, it is proposed that the
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Figure 8: Tree tests were conducted to determine which aspects of (a) ECG, (b) EEG, and (c) EEG/ECG signals were most efcient in
detecting arousal disorder.
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Figure 9: Te comparison of mDSO convergence based on the cost function error calculation. Te mDSO is a speedy algorithm that can
quickly reach the ideal value. As a result, we employ SVM for reaching optimal classifcation conditions by adjusting data. (a, b) Test data and
(c, d) validation data applied to the improved classifer.
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Figure 11: Te results are compared as a bar-plot based on combined features for the sleep stage classifcation.
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method, in addition to fltering the signal based on previous
suggestions regarding the signal decomposition using ef-
cient methods such as wavelet [63], also prevents infor-
mation from being lost by physiological signals by
preventing information from being lost. In the future, au-
thors will use graph convolutional network (GCN) [64] and
improved transfer learning networks [65] to determine
arousal events from EEG to ECG data.

7. Conclusion

Tis paper provided an efective approach for extracting
relevant characteristics from EEG to ECG data and catego-
rizing them using optimal learning. In addition, we develop a
metaheuristic learning model based on physiological sleep
signals to detect arousal disorders. Tis study also intends to
defne distinct sleep stages as well as rapid transitions from
deep to light sleep stages, which is a short-term abnormality in
EEG-ECG signals. Nonetheless, it ofers critical information
on the likelihood of developing Alzheimer’s, Parkinson’s, or
MSA illnesses. Tere is strong evidence of a relationship
between these problems and the diseases indicated above.Te
arousal events were described using an optimal learning
model based on the mDSO and SVM. Using concatenated
features, we were able to develop an efcient discriminative
approach that analyzed physiological signals using three
descriptors. Future research could look into the relationship
between ECG and EEG signals as a way to prevent numerous
diseases caused by sleep disturbances.
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