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ABSTRACT Multiple sclerosis is an autoimmune disease that causes psychological impacts and severe 

physical disabilities, including motor disabilities and partial blindness. This work introduces an early 

detection method for multiple sclerosis disease by analyzing transcriptomic microRNA data. By 

transforming this phenotype classification problem into a text mining problem, multiple sclerosis disease 

biomarkers can be obtained. To our knowledge, text mining methods have not been introduced previously 

in transcriptomic data analysis of multiple sclerosis disease. Hence, this work presents a complete predictive 

model by combining consecutive transcriptomic data preprocessing procedures, followed by the proposed 

KmerFIDF method as a feature extraction method and linear discriminant analysis for dimensionality 

reduction. Predictive machine learning methods can then be obtained accordingly. This study describes 

experimental work on a transcriptomic dataset of noncoding microRNA sequences denoted from relapsing-

remitting multiple sclerosis patients before fingolimod treatment and after six consecutive months of 

treatment. The experimental results of the predictive methods with the proposed model report sensitivity, 

specificity, F1-score, and average accuracy scores of 96.4, 96.47, 95.6, and 97% with random forest, 92.89, 

92.78, 93.2, and 94% with support vector machine and 91.95, 92.2, 93.1, and 94% with logistic regression, 

respectively. These promising results support the introduced model and the proposed KmerFIDF method 

in transcriptomic data analysis. Moreover, comparative experiments are conducted with two referenced 

studies. The obtained results show that the average reported accuracy scores of the proposed model 

outperform the referenced literature work. 

 

INDEX TERMS KmerFIDF, miRNA analysis, Multiple Sclerosis, Machine Learning, text mining, 

Transcriptomic data 

 

 
I. INTRODUCTION 

Multiple sclerosis (MS) is an autoimmune disease that 

causes demyelination of the myelin sheath of nervous cells. 

Myelin is a layer that insulates the nervous cells that make 

up the central nervous system (CNS). This myelin sheath 

permits electrical impulses to be transmitted efficiently and 

rapidly along with nerve cells. If myelin is damaged, these 

impulses slow down, causing severe physical and 

psychological impacts [1] [2]. 

This demyelination of the myelin sheath impacts the signal 

conduction between nervous cells. Consequently, it causes 

disabilities, including partial or total blindness, double 

vision, muscle weakness, motor disabilities, and 

psychological problems [3]. 

 

In microbiology, RNA sequencing is a specific technology 

based on a sequencing technique that uses next-generation 

sequencing (NGS) to determine the presence and quantity 

of RNA within a given biological sample at a given 

moment. Analyzing RNA sequences promotes the ability to 

investigate mutations, SNPs, and changes in gene 

expression across populations or generations. Alternative 

gene spliced transcripts, gene fusion, or differences in gene 

expression in different groups or treatments can also be 

determined. Thanks to NGS, vast quantities of data on 

transcriptomes and human genomes are available to 

researchers [4]. 

In addition to mRNA transcripts, RNA  sequencing can be 

obtained on several RNA populations to provide total RNA 

or small RNA, such as miRNA, tRNA, and ribosomal 

profiling. Moreover, RNA sequencing can also be used to 

obtain exon/intron boundaries and verify or alter 

previously annotated 5' and 3' gene boundaries [5]. 

miRNA is a short noncoding RNA molecule that binds to 

target mRNAs and regulates translational repression and 

gene silencing and is primarily expressed in all eukaryotic 

cells. Hence, miRNAs organize pathological and 
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physiological processes, such as development, proliferation, 

cell differentiation, apoptosis, and tumor growth. miRNA is 

considered as a type of noncoding sequence. Thus, it has not 

been regarded as informative for RNA expression analysis. 

Nevertheless, recent studies have commenced analyzing 

miRNAs in disease detection [6]. This work introduces a 

complete detailed model to analyze microRNA data through 

text mining methods for early MS biomarker detection. We 

studied an NGS dataset of relapsing-remitting MS patients 

before and after treatment with fingolimod for six 

consecutive months. 

Thus, the primary contributions of this study are: 

• Proposes a complete model of obtaining multiple 

sclerosis (MS) disease biomarkers by transforming 

the microRNA analysis problem into a text mining 

problem. 

• To our knowledge, text mining methods have not 

been introduced previously in transcriptomic data 

analysis of MS disease. 

• This work introduces kmerFIDF as a feature 

extraction method and examines it accordingly. 

• The experimental results have an average accuracy 

score of 97.0 in disease biomarker detection. 

• The proposed model results outperform literature 

results  in obtaining MS biomarkers using the same 

dataset. 

• The implications of this study indicate the high 

detection potential of MS biomarkers from 

transcriptomic data and the use of the introduced 

method compared to traditional EEG signal 

analysis. 

II. BIOLOGICAL BACKGROUND 

In molecular biology, gene expression is the procedure by 

which information from DNA is used to synthesize a 

functional gene product such as a protein. These procedures 

primarily involve two main phases: transcription and 

translation. In prokaryotes, transcription and translation are 

executed. On the other hand, a nuclear membrane separates 

the two processes in eukaryotes [7]. 

 
A. TRANSCRIPTION 

Transcription is the process of replicating the information 

contained in a section of DNA to synthesize messenger 

RNA (mRNA). The enzymes that alleviate this replication 

process primarily involve RNA 

polymerase and transcription factors [8]. 

A transcription factor (TF) is a protein that binds to a 

specific DNA sequence to regulate the transcription 

rate of genetic information from DNA to messenger RNA. 

The primary role of TFs is to regulate genes to guarantee 

that they are expressed in the correct cell with the correct 

number and at the proper time. 

In eukaryotes, the transcription process is carried out in the 

nucleus and involves three types of RNA polymerases. Each 

type requires specific transcription factors. Through these 

TFs and RNA polymerase, premRNA is produced as the 

primary transcript in eukaryotic cells. This pre-mRNA then 

goes through a series of alternations to synthesize mature 

mRNA [9]. 

Pre-mRNA must be prepared before the translation process 

commences. This preparation process includes adding a 5' 

cap and a poly-A tail to the pre-mRNA chain and 

then splicing. 

5' Capping involves enzymatic reactions that add 7-

methylguanosine (m7G) to the 5' end of pre-mRNA, which 

consequently protects the RNA from degradation 

by exonucleases. Then, the cap-binding 

complex heterodimer (CBC20/CBC80) binds with m7G. 

This binding supports mRNA export to the cytoplasm and 

protects the RNA from decapping[10]. 

A second alteration that pre-mRNA undergoes is 3' cleavage 

and polyadenylation. First, the pre-mRNA is cleaved, 

followed by a series of adenine (A) added to synthesize a 

poly(A) tail. This poly(A) tail preserves the RNA from 

degradation. Afterward, the poly(A) tail is bound by 

many poly (A)-binding proteins (PABPs), which are 

mandatory for mRNA export and translation 

reinitiation[11]. 

Additionally, RNA splicing is another major significant 

alternation in eukaryotic pre-mRNA. Most eukaryotic pre-

mRNAs are made up of alternating segments of 

exons and introns. 

The splicing process involves the spliceosome as an RNA-

protein catalytically complex. Spliceosomes primarily 

catalyzes two transesterification reactions. The first 

removes an intron and releases it in the form of a lariat 

structure; the second splices the adjacent exons together. 

Moreover, under some circumstances, alternative splicing is 

applied. Some introns or exons are retained or removed 

within a mature messenger RNA (mRNA) [12]. 

Hence, a noncoding RNA (ncRNA) is a functional RNA 

molecule transcribed from DNA. The critical difference 

between it and the coding RNA is that it is not translated 

into proteins. Epigenetic-related ncRNAs primarily include 

Piwi-interacting RNA (piRNA), microRNA (miRNA), long 

noncoding RNAs (lncRNAs), and small interfering 

RNA (siRNA). 

Their primary function is to regulate gene expression at both 

the transcriptional and post-transcriptional levels. These 

ncRNAs that appear to be involved in epigenetic processes 

can be divided into two main categories: short ncRNAs (<30 

nucleotides) and long ncRNAs (>200 nucleotides). The 

three main classes of short noncoding RNAs are miRNAs, 

siRNAs, and piRNAs. Both the long and short ncRNA 

categories are involved 

in heterochromatin formation, histone modification, DNA 

methylation targeting, and gene silencing [13]. 

 
B. TRANSLATION 

Following transcription of DNA into mRNA processes, 

translation procedures are performed to synthesize proteins. 

It takes place in ribosomes in the cytoplasm or endoplasmic 

reticulum. In the translation process, the messenger RNA 
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(mRNA) is first decoded into a specific amino acid chain (a 

polypeptide). 

Afterward, the produced polypeptide folds into an active 

protein and performs its functions in the cell accordingly. 

The ribosome's role is to facilitate the decoding process by 

instigating the binding of complementary transfer RNA 

(tRNA) anticodon sequences to mRNA codons [8]. The 

translation process involves three main phases. The first 

phase is initiation, where the ribosome assembles around the 

target mRNA. 

That is, the first tRNA is attached at the start codon. 

Afterward, the elongation phase pursues, where the tRNA 

transforms the amino acid into the tRNA corresponding to 

the next codon. Consequently, the ribosome then 

translocates to the next mRNA codon and eventually 

produces an amino acid chain. The final phase is 

termination, where the ribosome releases the polypeptide 

when a stop codon is reached [14]. 

III. LITERATURE REVIEW 

Several studies have utilized machine learning methods to 

analyze medical data and introduced the analysis of several 

text mining methods. A study has investigated using active 

learning (AL) methods to label medical data. In addition, a 

comparative study of AL techniques using machine and 

deep learning methods was developed. The obtained results 

of the study showed that AL techniques have high potential 

in the cost reduction of manual labeling[15]. 

A second study analyzed the unstructured data of 124 

journal articles employing text mining techniques. The 

results of the applied computational analysis and systematic 

manual of these articles illustrated the state and evolution of 

text mining applications and provided evidence-based 

recommendations regarding their future use[16]. 

Moreover, another report analyzed patients' biomedical data 

using the topic modeling technique for text mining through 

hybrid inverse document frequency and machine learning 

fuzzy k-means clustering method. The Calinsiki-Har-Abasz 

(CH) index internal validation method was used to evaluate 

the clustering performance. The reported results have shown 

the potential of enhancing the redundancy issue and 

determining topics from biomedical text documents[17]. 
Another study analyzed MS patients' data by processing the 

patients' progress notes and other clinical text in the 

electronic medical record (EMR) to identify MS phenotypes 

and classify them three classes: relapsing-remitting MS 

(RRMS), primary-progressive MS (PPMS), secondary-

progressive MS (SPMS), or progressive-relapsing MS 

(PRMS) using natural into language processing (NLP) 

techniques given specific codes. The study introduced 

promising results of determining MS phenotypes from 

EMR. The article also reported a positive predictive value 

of 93.8% over studying a dataset of 145 EMR samples [18]. 

An NLP model was introduced to classify patients with 

systemic lupus erythematosus (SLE) disease from clinical 

notes. Bag-of-Words (BOWs) and Unified Medical 

Language System (UMLS) and Concept Unique Identifiers 

(CUIs) matrices were produced using NLP pipelines. Then, 

the following classifiers were applied to the produced 

matrices: shallow neural networks, random forest, naïve 

Bayes, and support vector machines with word2vec 

inversion. The results indicated that the random forest 

classifier reported the highest accuracy of 92.1% with CUI 

[19]. 

Another NLP method was developed to extract 

approximately 1000 MS-related terms that occurred 

significantly more frequently in MS patients' notes for signs 

and symptoms than in the controls'. Synonymous terms 

were manually clustered. Patients' notes were extracted 

from an outpatient clinic data warehouse, and signs and 

symptoms were mapped to Unified Medical Language 

System (UMLS) terms using MedLEE. A naïve Bayes 

classifier was obtained, and an accuracy of 90% was 

reported [20]. 

 

Phenotype prediction was conducted from a bacterial isolate 

by studying NGS of a prokaryotic dataset of bacterial 

isolates. The research team utilized high specifications 

hardware to develop software that uses text mining methods 

for feature extraction followed by regression analysis. The 

introduced method was validated against a dataset of 167 

Klebsiella pneumonia isolates, 200 Pseudomonas 

aeruginosa isolates, and 459 Clostridium difficile isolates. 

The presented work has reported a prediction accuracy of 

88% [21]. 

 

An automated workflow that analyzes shotgun sequencing 

metagenomics data was proposed. A user-friendly interface 

was introduced to facilitate interactions and integrated with 

other popular software such as FASTQC, MultiQC, 

Trimmomatic, and Diamond[35]. 

A stand-alone application for NGS data processing and 

retrieval was proposed, where the Aspera high-speed file 

transfer protocol was utilized to maintain transfer speed 

optimization. FASTQC software was used to evaluate the 

quality of raw sequence data. In addition, Trimmomatic was 

used for data trimming and alignment. The obtained results 

reported that the proposed tool has outperformed a similar 

processing speed tool [45]. 

Another classification system was conducted to classify 

phase 1 and two cancer patients by analyzing big data of the 

EHR (electronic health record) and EMR (electronic 

medical record). The phenotype classifier used NLP for 

feature extraction. The proposed system reported higher 

performance compared to the other techniques mentioned. 

Nevertheless, the results that the paper demonstrated were 

provided from simulated data; the authors will test real big 

data in their future work [29]. 

An NGS file preprocessing software named "FastProNGS" 

was introduced. It primarily integrates the quality control 

process with automatic adapter removal to preprocess NGS 

data files. The results have shown that the proposed 

software is faster than similar preprocessing tools. 
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Moreover, the authors reported that the introduced 

FastProNGS outperformed similar preprocessing tools in 

terms of processing time. Furthermore, the output can be 

formatted in plain-text, JSON, or HTML formats with user-

friendly demonstration [30]. 

The serum exosome microRNAs of multiple sclerosis 

patients profiled using next-generation sequencing were 

studied as biomarkers for disease activity in response to 

fingolimod therapy. Disease activity was obtained through 

gadolinium-enhanced magnetic resonance imaging. 

Authors have used univariate/multivariate modeling and 

machine learning to obtain microRNA signatures. 

Moreover, the paper has reported individual microRNAs' 

modest power to predict disease status post fingolimod 

therapy (average 77%, range 65 to 91%) [22]. 

In this work, the same dataset used in [22] was utilized with 

the proposed model, and the obtained results outperformed 

the results reported in [22]. 
 

IV. MATERIALS AND METHODS 
 

A. DEVELOPMENT ENVIRONMENT 

The specifications of the development environment used to 

implement the introduced model are summarized in Table I. 
 

TABLE I 
DEVELOPMENT ENVIRONMENT 

Specification Value 

Hardware accelerator TPU 
Available RAM 35.35GB 

Disk Space 225.89GB 

Development Environment Python 3.6 

 

B. DATASET 

The dataset was available through the National Center for 

Biotechnology Information (NCBI) in November 2019  [23], 

consisting of NGS files of microRNA sequences of 

relapsing-remitting MS patients before fingolimod 

treatment and after six months of therapy. Dataset details are 

summarized in Table II. The data were balanced as 105 runs 

before the treatment and 110 total runs of patients after 

treatment, as illustrated in Figure 1. 

 
TABLE II 

DETAILS OF THE DATASET USED 
Parameter Value 

Dataset source NCBI 

Dataset Provider School of Biotechnology and 

Biomolecular Sciences, University of 
New South Wales 

Dataset Registration Date November 2019 

Sequencing Instrument Illumina HiSeq 2000 

Strategy ncRNA-Seq 

Library Source TRANSCRIPTOMIC 

Sequencing Layout Single 

Source name Serum_Exosome 

Parameter Value 

Runs of untreated patients 105 

Runs of treated patients 110 

Number of total runs 215 

Number of Patients 54 

File type SRA 

Average FASTQ Files size 3 GB 

 

 
 
FIGURE 1. The Used MS patients Dataset balance- 51.16% of the files 
was of nontreated MS patients, and 48.83% of the files were of the 
patients after being treated for six months with Fingolimod 

C. PROPOSED MODEL 
In this work, a complete model for analyzing NGS data is 

proposed to obtain MS disease biomarkers by analyzing 

noncoding miRNA sequence files with nonbiological 

methods and combining text mining methods with 

predictive machine learning algorithms. 

Several consecutive data preprocessing steps were applied 

to transform the given transcriptomic data into a text mining 

problem. Nevertheless, the data being analyzed are not in 

the English language and thus cannot use the ordinary 

feature extraction methods of English text. Hence, 

KmerFIDF was proposed as a feature extraction method, a 

hybridized K-mer counting method, and the term frequency 

inverse document frequency method. 

As demonstrated in Figure 2, the proposed model is 

primarily divided into three main phases: preprocessing 

followed by the proposed feature extraction method and 

predictive machine learning algorithms. Each of these 

phases is explained in detail in the following sections. 

 

D. SRA DATA DOWNLOAD 

NCBI's studied dataset was directly downloaded to the 

cloud development platform using the pysradb library [24]. 

These procedures saved considerable time and helped to 

105
(48.83%)

110
(51.16%)

Untreated Patients

Treated patients with Fingolimod
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avoid connectivity errors or data loss, incompletion, or 

interruption. 

 
 

FIGURE 2. The proposed model for determining MS biomarkers by 
analyzing NGS files of microRNA data using nonbiological 
methods. 

E. DATA PRE-PROCESSING 

 
1) SRA FILES CONVERSION INTO FASTQ FILES 

NCBI provides the NGS files in Sequence Read Archive 

(SRA) format. Consequently, it has to be converted into 

fastq files format. The "SRA-Toolkit" provided by NCBI 

was used for this file conversion process [25]. 

 
2) OBTAINING QUALITY CONTROL REPORTS 

In this step, a quality check was applied to the converted 

files. The FastQC tool was used, which NCBI and literature 

recommend [26]. 

FastQC provides an inclusive view of the quality scores of 

the given input sequences, base composition statistics, 

length distribution in addition to other sequencing and 

preparation quality parameters such as trimming position 

and the contamination extent of data at specific positions of 

the file [27]. 

 
3) FILES TRIMMING 

Based on this quality check, sequence trimming, filtering, 

and enhancement are performed. Trimming involves 

cropping sequence vectors with low quality and removing 

adapters from the sequences. As per NCBI and the literature, 

we used Trimmomatic for sequence trimming [28]. 

 

4) CONVERTING FASTQ FILES INTO FASTA FILES 

Fastq files primarily contain nucleotide sequences and their 

quality scores; that is, they consist of a set of sequence reads. 

Each read has four lines. The first line begins with an "@" 

character followed by a sequence identifier. The second line 

contains the actual nucleotide sequence; the third line 

contains a '+' symbol followed optionally by the same 

sequence identifier. The fourth line encodes the quality 

values in ASCII for the sequence given in the second line. 

On the other hand, Fasta files only contain nucleotide 

sequences in addition to their identifiers. Thus, this file 

conversion significantly shrinks the studied files' sizes. 

The Biopython library was used to perform this file 

conversion accordingly [29][30]. 

 
5) DATASET FORMATION AND LABELING 

In this step, the actual dataset construction takes place. That 

is, the transcriptome data are read from the produced fasta 

files. Hence, all sequence identifiers are removed, and then 

all the transcriptome sequences contained in one fasta file 

are scanned and concatenated together into one long 

transcriptome sequence. According to the NCBI-provided 

dataset metadata, a record label [treated/nontreated] is given 

to each produced sequence. Thus, in the following model 

steps, the transcriptome sequences shall be treated as plain 

throughput stream text [31]. 

F. FEATURE EXTRACTION USING THE KmerFIDF 
METHOD 

1) OBTAINING K-MER COUNTS 
K-mers are the unique subsequences of a k 

length nucleotide sequence. Table III demonstrates the K-

mer method's notion. As shown, a sequence of a length L 

can produce L − k + 1 k-mers [32]. 

Hence, the K-mer method was applied to segment the 

transcriptome producing the "K-mer matrix" of M 

Sequences × 4k (i.e., given the four proteins A, C, T, and G). 

Following this k-mer segmentation, counting vectors were 

obtained accordingly for each k-mer sequence in each fasta 

file of the studied dataset. 

 
TABLE III 

POSSIBLE PRODUCED K-MERS (TERMS) GIVEN A SIMPLE NUCLEOTIDE 

SEQUENCE (CTGAACTT) USING THE K-MER METHOD 

K k-mers possible k-

mers (L-k+1) 

1 C,T,G,A,A,C,T,G 8 

2 CT,TG,GA,AA,AC,CT,TT 7 

3 CTG,TGA,GAA,AAC,ACT,CTT 6 

4 CTGA,TGAA,GAAC,AACT,ACTT 5 

5 CTGAA,TGAAC,GAACT,AACTT 4 

6 CTGAAC,TGAACT,GAACTT 3 

7 CTGAACT,TGAACCTT 2 

8 CTGAACTT 1 
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2) OBTAINING THE PROPOSED KmerFIDF FOR 

FEATURE EXTRACTION 

In data mining, Term Frequency Inverse Document 

Frequency (TFIDF) is a numerical statistic method to imply 

a given term's weight within a given document [33]. 

In this work, this method was combined along with the K-

mer counting method for transcriptomic feature extraction. 

KmerFIDF is demonstrated in detail as follows: 

The inverse document frequency IDF and TFIDF are 

defined by equations (1) and (2), respectively. where t is the 

term to be evaluated, d is the document, N is the number of 

documents in the entire corpus D, and tf(t,d) is the frequency 

of a term t in document d [34]. 

𝑖𝑑𝑓(𝑡, 𝐷) = 𝑙𝑜𝑔
𝑁

|{𝑑𝜖𝐷:𝑡𝜖𝑑}|
     (1) 

 

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) ∙ 𝑖𝑑𝑓(𝑡, 𝐷)   (2) 
 

The preceding processing step segmented the transcriptomic 

sequence into kmers, and kmer frequency vectors were 

attained for each k-mer sequence in each fasta file in the 

dataset. 

Our method KmerFIDF defined by equation (3) involves 

using these KmerCount vectors as a substitutional parameter 

in the original TFIDF equation. This new equation has 

retained the sequence ordering and respected the possible 

combinations of the produced kmers. idf(t, D) is obtained 

given the KmerCount matrix to determine the features' (i.e., 

Kmers) weights. 

𝐾𝑚𝑒𝑟𝐹𝐼𝐷𝐹(𝑡, 𝑑, 𝐷) = 𝐾𝑚𝑒𝑟𝐶𝑜𝑢𝑛𝑡(𝑡, 𝑑) ∙ 𝑖𝑑𝑓(𝑡, 𝐷)  (3) 

G. DIMENSIONALITY REDUCTION 

Ordinarily, the preceding step obtains a sparse matrix. 

Hence, dimensionality reduction has to be attained to 

determine the features with higher weights. 

LDA can efficiently perform dimensionality reduction of 

supervised classification problems since LDA leverages the 

maximization separability among the classes which gives it 

superiority with text mining problems as per literature 

[35][36]. In addition, LDA primarily projects the data in a 

new linear feature space. Consequently, the classifier shall 

reach high accuracy if the data are linearly separable. Unlike 

other dimensionality reduction algorithms, such as principal 

component analysis (PCA), which maximizes the variance 

of the data within a class [37].  

In the proposed model, the linear discriminant analysis 

(LDA) algorithm is used for dimensionality reduction. 

Hence, the d-dimensional mean vector is computed for each 

class. Then, between-class scatter matrix Sw and the in-class 

scatter matrix SB are constructed accordingly. Sw is given by 

equations (4) and (5). where c is the number of classes, x is 

the feature vector of each sequence file (dataset row), mi is 

the mean vector of class i∈ 𝑐 and D is the studied dataset. 

At the same time, SB is given by equation (6), where N is the 

number of samples and m is the overall computed mean, 

including all samples from all classes. Afterward, the 

eigenvalue is calculated accordingly using equation (7). The 

eigenvalues are then sorted, and the lowest values are 

eliminated [38]. 

 

Sw = ∑ 𝑆𝑖
𝑐
𝑖=1      (4) 

 

Si = ∑ (𝑥 − 𝑚𝑖)(𝑥 − 𝑚𝑖)
𝑇𝑐

𝑥∈𝐷𝑖
   (5) 

SB = ∑ 𝑁𝑖(𝑚𝑖 − 𝑚)(𝑚𝑖 − 𝑚)𝑇𝑐
𝑖=1    (6) 

Eigenvalue = 𝑆𝑤
−1𝑆𝐵    (7) 

 

H. SUPERVISED MACHINE LEARNING PREDICTIVE 
METHODS 

As per the literature, three machine learning algorithms 

were applied: SVM, logistic regression (LR), and random 

forest (RF) [39]. A sklearn library was used for the 

implementation of these three methods. Table IV 

summarizes the significant parameters that were given a 

value other than their default values. Additionally, Table V 

summarizes the essential libraries and tools used in the 

proposed model implementation. 

To ensure model robustness and overcome the possibility of 

overfitting and selection bias in the proposed model, cross-

validation was applied with each of the implemented 

predictive methods with a folding value of 10. Additionally, 

the dataset was split into 30% for testing and 70% for 

training. 
 

TABLE IV 
THE SIGNIFICANT PARAMETERS THAT WERE DEFINED IN THE 

IMPLEMENTED PREDICTIVE MODEL 

Predictive Method Parameter Value 

SVM, LR, & RF Cross-validation Folding 10 

SVM Kernel Linear 

RF Number of Estimators 500 

RF Information gain method Gini 

Model Preparation Test Size 0.3 

 
 

TABLE V 

ESSENTIAL TOOLS AND LIBRARIES USED 

Implementation Step Tool/Library Used 

Data Download Pysradb 

Files Quality Control FastQC 

Files Trimming Trimmomatic 

File Fastq files conversion Biopython 

Predictive models 
implementation 

Sklearn 

 
V. RESULTS AND DISCUSSION 

Upon implementing the introduced model, three sets of 

experiments were conducted. The first was for parameters 

tuning. The second set of experiments was undertaken to 

evaluate the proposed model in terms of detection accuracy 

and execution time. Moreover, the third set of experiments 



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3109069, IEEE Access

  

    N. Ali et al.: Analysis of Transcriptomic microRNA using Text Mining Methods: An Early Detection of Multiple Sclerosis Disease 

  

VOLUME XX, 2021    7 
 

was conducted to evaluate the proposed model against state-

of-the-art methods. 

The K parameter of KmerFIDF was tuned to k ∈ {2,3,4,5,6}; 

obtaining the value of K>6 was not feasible due to 

processing constraints. 

Figure 3 illustrates the obtained average accuracy scores 

(over 10 runs for each experiment) denoted by applying 

each of the three predictive models with each value of k ∈ 

{2,3,4,5,6}. As shown, the highest accuracy scores were 

obtained when k=5. RF (97.0), while SVM and LR were 

94.0. The demonstrated k-parameter tuning results denote 

that the prediction accuracy is proportionally increased with 

K's value until k=5 and k=6. This relationship can be 

justified since the higher the value of k is, the more 

contextual information is in each feature. 

The second parameter tuning experiment was to determine 

the "number of estimators" parameter, which denotes the 

number of trees in the RF model. As illustrated in Figure 4, 

experiments of 200-700 estimators were run. The peak point 

of average accuracy was obtained by 500 estimators, with 

no further accuracy enhancement on increasing the number 

of estimators above 500. 

 

Furthermore, Figure 5 summarizes the obtained results of 

the second set of experiments that evaluate the model 

performance. The reported values of sensitivity, specificity, 

F1-score, and average accuracy scores with RF were 96.4, 

96.47, 95.6, and 97%, respectively; 92.89, 92.78, 93.2, and 

94% with SVM, respectively; and 91.95, 92.2, 93.1, and 

94% with LR, respectively. 

As illustrated, RF has reported the highest accuracy due to 

the random feature selection over the numerous features set 

being analyzed. The trees are more independent, yielding 

better predictive performance because of the 

higher variance-bias trade-offs where each tree learns only 

from a subset of features. 

On the other hand, SVM primarily works to define a 

hyperplane over a given dataset. Consequently, this margin 

maximization is more challenging on a high-dimensional 

dataset. Similarly, LR assumes a linear relationship among 

data points within the studied dataset. There is no 

severe multicollinearity among the explanatory variables. 

Consequently, RF has reported the highest specificity, 

sensitivity, and F1-score. 

In terms of execution time, no significant difference was 

reported across the experimented predictive models. The 

execution time ranged from 89 to 90.5 minutes. Figure 6 

summarizes the average computational times. 

 

The third set of experiments was conducted to compare the 

obtained model accuracy with the results of two other 

studies that aimed to detect MS disease. The first literature 

work studied the exact dataset used to evaluate our model. 

It used conventional univariate/multivariate modeling for 

feature extraction. Univariate analysis involves analyzing a 

single variable, and multivariate analysis uses two or more 

dependent variables and multiple independent variables. 

This literature study also applied RF as a predictive model. 

Figure 7 shows a comparative chart of the average accuracy 

scores reported by our proposed model using SVM, RF, and 

LR as 94, 97, and 94, respectively. In comparison, the 

average accuracy score and highest accuracy reported by 

referenced work using RF were 77.0 and 91.0, respectively 

[22]. 

As illustrated, analyzing microRNA data using the proposed 

model has outperformed the referenced work[22]. This 

accuracy difference can be clearly explained, as our 

proposed model has applied feature engineering among the 

entire dataset. On the other hand, the referenced work used 

conventional univariate/multivariate modeling. 

Furthermore, the obtained experimental results indicate that 

biomarkers of multiple sclerosis disease can be obtained 

from analyzing microRNA data. This finding also confirms 

the impact of fingolimod treatment on MS biomarkers. 

Finally, the reported results of the proposed model were 

compared to the results obtained from a second study. This 

literature work studied MS disease detection by analyzing 

EEG signal data of MS patients with the K-NN classifier 

algorithm and reported overall accuracy, sensitivity, and 

specificity of 80%, 72.7%, and 88.9%, respectively [40]. 

This result implies that the introduced model outperformed 

this literature study. Two key aspects can justify this. The 

first is that the studied transcriptomic data have more 

indicative features of the disease biomarkers. The second is 

the robustness of the proposed model in the detection of MS 

disease biomarkers. Figure 8 summarizes the reported 

accuracy, sensitivity, and specificity scores reported by the 

introduced and referenced studies. 

 

 

FIGURE 3: The average accuracy scores denoted by the parameter 
tuning experiments of K value 
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FIGURE 4: Tuning the "number of estimators" parameter of the random 
forest while keeping the K values of KmerFIDF = 6 

 

 

FIGURE 5. Sensitivity, Specificity, F1-Score, and Average Accuracy 
Scores of RF, SVM, and LR 

 

 
FIGURE 6: The obtained execution time (in minutes) of each predictive 

method (LR, RF, and SVM) used with the proposed model. 

 
FIGURE   7 . Comparing the results reported by the proposed model using 
(SVM, RF and LR) methods with a reference method (using the RF 
method) reported in [22]. 

 
FIGURE 8. Reported (overall accuracy, sensitivity, specificity) of 
referenced work [40] and the proposed model. 
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VI. CONCLUSIONS AND FUTURE WORK 

This work introduced a detailed model for multiple sclerosis 

disease biomarker detection by analyzing transcriptomic 

microRNA data through transforming the phenotype 

classification problem into a text mining problem. 

Experimental work was applied to a transcriptomic dataset 

of multiple sclerosis patients before fingolimod treatment 

and six months after treatment. The highest reported 

sensitivity, specificity, F1-score, and average accuracy 

scores were 96.4, 96.47, 95.6, and 97%, respectively, 

indicating auspicious results in disease biomarker detection 

from transcriptomic data. 

Moreover, this work introduced the KmerFIDF method as a 

novel feature extraction method and has applied 

comparative experiments with two literature works. The 

implications of this model indicate that the proposed model 

outperformed the first literature method over the same 

dataset and used the same random forest as a predictive 

method. The introduced model reported an average 

accuracy on the random forest algorithm of 97%, while the 

literature model reported an average accuracy score of 77% 

and 91% as the highest accuracy. Furthermore, the 

introduced experimental results confirm that fingolimod 

treatment decreases disease progression given the 

considerable classification accuracy. 

Finally, the experimental results also denote that the 

proposed model outperforms the traditional EEG analysis 

for MS diagnosis.  

In our future work, further experimental work will be 

performed on this model using other coding and noncoding 

transcriptomic datasets of MS disease. Our proposed model 

will also be tested against transcriptomic datasets of other 

diseases to study the model's robustness. Furthermore, it 

enables the model to process more extensive sizes of 

transcriptomic files. Data preprocessing enhancements, 

including other dimensionality reduction methods, shall 

also be examined and considered. 
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