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Abstract: A Pythagorean fuzzy set (PFS) is a powerful tool for depicting fuzziness and uncertainty.
This model is more flexible and practical as compared to an intuitionistic fuzzy model. This paper
proposes a new graph, called Pythagorean fuzzy graph (PFG). We investigate some properties of
our proposed graphs. We determine the degree and total degree of a vertex of PFGs. Furthermore,
we present the concept of Pythagorean fuzzy preference relations (PFPRs). In particular, we solve
decision-making problems, including evaluation of hospitals, partner selection in supply chain
management, and electronic learning main factors evaluation by using PFGs.
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1. Introduction

Since Zadeh’s seminal work [1], the classical logic has been extended to fuzzy logic, which is
characterized by a membership function in [0, 1] and provides a powerful alternative to probability
theory to characterize imprecision, uncertainty, and obscureness in various fields. Gradually, it has
been discovered that sometimes the membership function of the fuzzy set is not enough to reveal
the characters of things because of the complexity of data and the ambiguity of the human mind.
To overcome this shortcoming of the fuzzy set, Atanassov [2] extended fuzzy set to an intuitionistic
fuzzy set (IFS) by adding a non-membership function and a hesitancy function. An IFS is able to
describe the things from three aspects of superiority, inferiority and hesitation, which are usually
represented by the intuitionistic fuzzy numbers (IFNs) [3]. To capture more useful information under
imprecise and uncertain circumstances, Yager [4–6] recently proposed the concept of Pythagorean
fuzzy set (PFS) as a new evaluation format, which is characterized by the membership and
the non-membership degree satisfying the condition that their square sum is not greater than 1.
Zhang and Xu [7] provided the detailed mathematical expression for PFS and put forward the concept
of Pythagorean fuzzy number (PFN). The PFS is more general than the IFS because the space of
PFS’s membership degree is greater than the space of IFS’s membership degree. For instance,
when a decision-maker gives the evaluation information whose membership degree is 0.4 and
non-membership degree is 0.9, it can be known that the IFN fails to address this issue because
0.4 + 0.9 > 1. However, (0.4)2 + (0.9)2 < 1, that is to say, the PFN is capable of representing this
evaluation information, as shown in Figure 1. For this case, the PFS shows its wider applicability
than the IFS. PFSs as a novel evaluation have been prosperously applied in various fields, such as the
internet stocks investment [8], the service quality of domestic airline [7] and the governor selection of
the Asian Infrastructure Investment Bank [9].
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Figure 1. Comparison of spaces of the intuitionistic fuzzy numbers (IFNs) and the Pythagorean fuzzy
numbers (PFNs).

A graph is a convenient way of interpreting information involving the relationship between
objects. Fuzzy graphs are designed to represent structures of relationships between objects such that the
existence of a concrete object (vertex) and relationship between two objects (edge) are matters of degree.
The concept of fuzzy graphs was initiated by Kaufmann [10], based on Zadeh’s fuzzy relations [11].
Later, another elaborated definition of fuzzy graph with fuzzy vertex and fuzzy edges was introduced
by Rosenfeld [12] and obtaining analogs of several graph theoretical concepts such as paths, cycles and
connectedness, etc., he developed the structure of fuzzy graphs. Mordeson and Peng [13] defined
some operations on fuzzy graphs and investigated their properties. Later, the degrees of the vertices of
the resultant graphs, obtained from two given fuzzy graphs using these operations, were determined
in [14,15]. Parvathi and Karunambigai considered intuitionistic fuzzy graphs (IFGs). Later, IFGs
were discussed by Akram and Davvaz [16]. After the inception of IFGs, many researchers [17,18]
generalized the concept of fuzzy graphs to IFGs. Naz et al. [19,20] discussed some basic notions
of single valued neutrosophic graphs along with its application in multi criteria decision-making.
More recently, Akram et al. introduced many new concepts related to m-polar fuzzy graph, fuzzy soft
graph, rough fuzzy graph, neutrosophic graph and their extensions [21–25]. This paper proposes a
new graph, called Pythagorean fuzzy graph (PFG). In particular, we solve decision-making problems,
including evaluation of hospitals, partner selection in supply chain management, electronic learning
main factors evaluation by using PFGs.

2. Pythagorean Fuzzy Graphs

Definition 1. A PFS Q in Z× Z is said to be a Pythagorean fuzzy relation (PFR) in Z, denoted by

Q = {〈xy, µQ(xy), νQ(xy)〉 | xy ∈ Z× Z},

where µQ : Z× Z → [0, 1] and νQ : Z× Z → [0, 1] represent the membership and non-membership function
of Q, respectively, such that 0 ≤ µ2

Q(xy) + ν2
Q(xy) ≤ 1 for all xy ∈ Z× Z.

Definition 2. A PFG on a non-empty set Z is a pair G = (P ,Q), where P is a PFS on Z and Q is a PFR on
Z such that

µQ(xy) ≤ min{µP (x), µP (y)} , νQ(xy) ≥ max{νP (x), νP (y)}

and 0 ≤ µ2
Q(xy) + ν2

Q(xy) ≤ 1 for all x, y ∈ Z.
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Remark 1. • We call P and Q the Pythagorean fuzzy vertex set and the Pythagorean fuzzy edge set of
G, respectively.

• If Q is a symmetric on P , then G = (P ,Q) is called PFG.

• If Q is not symmetric on P , then D = (P ,
−→Q ) is called Pythagorean fuzzy digraph.

• The proposed concept of PFGs is a generalization of the notion of Akram and Davvaz’s IFGs [16].

Example 1. Consider a graph G = (V, E), where V = {l, m, n, o, p, q, r} and E = {lm, mn, no, nr, pq, qr}. LetP
andQ be the Pythagorean fuzzy vertex set and the Pythagorean fuzzy edge set defined on V and E, respectively:
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)
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.

By direct calculations, it is easy to see from Figure 2 that G = (P ,Q) is a PFG.
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Figure 2. Pythagorean fuzzy graph (PFG).

Definition 3. The degree and total degree of a vertex x ∈ V in a PFG G is defined as dG(x) = (dµ(x), dν(x))
and tdG(x) = (tdµ(x), tdν(x)), respectively, where

dµ(x) = ∑
x,y 6=x∈V

µQ(xy), dν(x) = ∑
x,y 6=x∈V

νQ(xy),

tdµ(x) = ∑
x,y 6=x∈V

µQ(xy) + µP (x), tdν(x) = ∑
x,y 6=x∈V

νQ(xy) + νP (x).

The degree of a vertex n is dG(n) = (1.3, 2.2) and the total degree of a vertex n in Figure 2 is
tdG(n) = (2.0, 2.6).

Definition 4. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs of the graphs G1 = (V1, E1) and
G2 = (V2, E2), respectively. The direct product of G1 and G2 is denoted by G1 × G2 = (P1 ×P2,Q1 ×Q2)

and defined as:

(i)

{
(µP1 × µP2)(x1, x2) = µP1(x1) ∧ µP2(x2)

( νP1 × νP2)(x1, x2) = νP1(x1) ∨ νP2(x2) f or all (x1, x2) ∈ V1 ×V2,

(ii)

{
(µQ1 × µQ2)((x1, x2)(y1, y2)) = µQ1(x1y1) ∧ µQ2(x2y2)

( νQ1 × νQ2)((x1, x2)(y1, y2)) = νQ1(x1y1) ∨ νQ2(x2y2) f or all x1y1 ∈ E1, f or all x2y2 ∈ E2.

Proposition 1. Let G1 and G2 be the PFGs of the graphs G1 and G2, respectively. The direct product G1 × G2

of G1 and G2 is a PFG of G1 × G2.
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Definition 5. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. Then, for any vertex, (x1, x2) ∈ V1 ×V2,

(dµ)G1×G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1×E2

(µQ1 × µQ2)((x1, x2)(y1, y2))

= ∑
x1y1∈E1,x2y2∈E2

µQ1(x1y1) ∧ µQ2(x2y2),

(dν)G1×G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1×E2

( νQ1 × νQ2)((x1, x2)(y1, y2))

= ∑
x1y1∈E1,x2y2∈E2

νQ1(x1y1) ∨ νQ2(x2y2).

Theorem 1. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. If µQ2 ≥ µQ1 , νQ2 ≤ νQ1 ,
then dG1×G2(x1, x2) = dG1(x1) and if µQ1 ≥ µQ2 , νQ1 ≤ νQ2 , then dG1×G2(x1, x2) = dG2(x2) for all
(x1, x2) ∈ V1×V2.

Proof. By definition of vertex degree of G1 × G2, we have

(dµ)G1×G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1×E2

(µQ1 × µQ2)((x1, x2)(y1, y2))

= ∑
x1y1∈E1,x2y2∈E2

µQ1(x1y1) ∧ µQ2(x2y2)

= ∑
x1y1∈E1

µQ1(x1y1) (since µQ2 ≥ µQ1)

= (dµ)G1(x1),

(dν)G1×G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1×E2

( νQ1 × νQ2)((x1, x2)(y1, y2))

= ∑
x1y1∈E1,x2y2∈E2

νQ1(x1y1) ∨ νQ2(x2y2)

= ∑
x1y1∈E1

νQ1(x1y1) (since νQ2 ≤ νQ1)

= (dν)G1(x1).

Hence, dG1×G2(x1, x2) = dG1(x1). Similarly, it is easy to show that, if µQ1 ≥ µQ2 , νQ1 ≤ νQ2 ,
then dG1×G2(x1, x2) = dG2(x2).

Definition 6. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(tdµ)G1×G2 (x1, x2) = ∑
(x1,x2)(y1,y2)∈E1×E2

(µQ1 × µQ2 )((x1, x2)(y1, y2)) + (µP1 × µP2 )(x1, x2)

= ∑
x1y1∈E1,x2y2∈E2

µQ1 (x1y1) ∧ µQ2 (x2y2) + µP1 (x1) ∧ µP2 (x2),

(tdν)G1×G2 (x1, x2) = ∑
(x1,x2)(y1,y2)∈E1×E2

( νQ1 × νQ2 )((x1, x2)(y1, y2)) + ( νP1 × νP2 )(x1, x2)

= ∑
x1y1∈E1,x2y2∈E2

νQ1 (x1y1) ∨ νQ2 (x2y2) + νP1 (x1) ∨ νP2 (x2).

Theorem 2. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. If

(i) µQ2 ≥ µQ1 , then (tdµ)G1×G2(x1, x2) = (dµ)G1(x1) + µP1(x1) ∧ µP2(x2);
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(ii) νQ2 ≤ νQ1 , then (tdν)G1×G2(x1, x2) = (dν)G1(x1) + νP1(x1) ∨ νP2(x2);
(iii) µQ1 ≥ µQ2 , then (tdµ)G1×G2(x1, x2) = (dµ)G2(x2) + µP1(x1) ∧ µP2(x2);
(vi) νQ1 ≤ νQ2 , then (tdν)G1×G2(x1, x2) = (dν)G2(x2) + νP1(x1) ∨ νP2(x2)

for all (x1, x2) ∈ V1 ×V2.

Proof. The proof is straightforward using Definition 6 and Theorem 1.

Example 2. Consider two PFGs G1 = (P1,Q1) and G2 = (P2,Q2) on V1 = {l, m, n} and V2 = {o, p},
respectively, as shown in Figure 3. Their direct product G1 × G2 is shown in Figure 4.
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Figure 3. PFGs.
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Figure 4. Direct product of two PFGs.

Since µQ2 ≥ µQ1 , νQ2 ≤ νQ1 , so, by Theorem 1, we have

(dµ)G1×G2(m, p) = (dµ)G1(m) = 1.0, (dν)G1×G2(m, p) = (dν)G1(m) = 1.5.

Therefore, dG1×G2(m, p) = (1.0, 1.5).
In addition, by Theorem 2, we have

(tdµ)G1×G2(m, p) = (dµ)G1(m) + µP1(m) ∧ µP2(p) = 1.8,

(tdν)G1×G2(m, p) = (dν)G1(m) + νP1(m) ∨ νP2(p) = 2.1.

Therefore, tdG1×G2(m, p) = (1.8, 2.1).
Similarly, it is easy to find the degree and total degree of all the vertices in G1 × G2.

Definition 7. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs of G1 = (V1, E1) and G2 = (V2, E2),
respectively. The Cartesian product of G1 and G2 is denoted by G1 2 G2 = (P1 2 P2,Q1 2 Q2) and defined as:
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(i)

{
(µP1 2 µP2)(x1, x2) = µP1(x1) ∧ µP2(x2)

( νP1 2 νP2)(x1, x2) = νP1(x1) ∨ νP2(x2) f or all (x1, x2) ∈ V1 × V2,

(ii)

{
(µQ1 2 µQ2)((x, x2)(x, y2)) = µP1(x) ∧ µQ2(x2y2)

( νQ1 2 νQ2)((x, x2)(x, y2)) = νP1(x) ∨ νQ2(x2y2) f or all x ∈ V1, f or all x2y2 ∈ E2,

(iii)

{
(µQ1 2 µQ2)((x1, z)(y1, z)) = µQ1(x1y1) ∧ µP2(z)
( νQ1 2 νQ2)((x1, z)(y1, z)) = νQ1(x1y1) ∨ νP2(z) f or all z ∈ V2, f or all x1y1 ∈ E1.

Proposition 2. Let G1 and G2 be the PFGs of the graphs G1 and G2, respectively. The Cartesian product
G1 2 G2 of G1 and G2 is a PFG of G1 2 G2.

Definition 8. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(dµ)G1 2 G2 (x1, x2) = ∑
(x1,x2)(y1,y2)∈E1 2 E2

(µQ1 2 µQ2 )((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

µP1 (x1) ∧ µQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

µP2 (x2) ∧ µQ1 (x1y1),

(dν)G1 2 G2 (x1, x2) = ∑
(x1,x2)(y1,y2)∈E1 2 E2

( νQ1 2 νQ2 )((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

νP1 (x1) ∨ νQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

νP2 (x2) ∨ νQ1 (x1y1).

Theorem 3. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. If µP1 ≥ µQ2 , νP1 ≤ νQ2 and
µP2 ≥ µQ1 , νP2 ≤ νQ1 . Then dG1 2 G2(x1, x2) = dG1(x1) + dG2(x2) for all (x1, x2) ∈ V1 ×V2.

Proof. By definition of vertex degree of G1 2 G2, we have

(dµ)G1 2 G2 (x1, x2) = ∑
(x1,x2)(y1,y2)∈E1 2 E2

(µQ1 2 µQ2 )((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

µP1 (x1) ∧ µQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

µP2 (x2) ∧ µQ1 (x1y1)

= ∑
x2y2∈E2

µQ2 (x2y2) + ∑
x1y1∈E1

µQ1 (x1y1)

(by using µP1 ≥ µQ2 and µP2 ≥ µQ1 )

= (dµ)G1 (x1) + (dµ)G2 (x2),

(dν)G1 2 G2 (x1, x2) = ∑
(x1,x2)(y1,y2)∈E1 2 E2

( νQ1 2 νQ2 )((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

νP1 (x1) ∨ νQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

νP2 (x2) ∨ νQ1 (x1y1)

= ∑
x2y2∈E2

νQ2 (x2y2) + ∑
x1y1∈E1

νQ1 (x1y1)

(by using νP1 ≤ νQ2 and νP2 ≤ νQ1 )

= (dν)G1 (x1) + (dν)G2 (x2).

Hence, dG1 2 G2(x1, x2) = dG1(x1) + dG2(x2).
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Definition 9. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(tdµ)G1 2 G2 (x1, x2) = ∑
(x1,x2)(y1,y2)∈E1 2 E2

(µQ1 2 µQ2 )((x1, x2)(y1, y2)) + (µP1 2 µP2 )(x1, x2)

= ∑
x1=y1,x2y2∈E2

µP1 (x1) ∧ µQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

µP2 (x2) ∧ µQ1 (x1y1)

+µP1 (x1) ∧ µP2 (x2),

(tdν)G1 2 G2 (x1, x2) = ∑
(x1,x2)(y1,y2)∈E1 2 E2

( νQ1 2 νQ2 )((x1, x2)(y1, y2)) + ( νP1 2 νP2 )(x1, x2)

= ∑
x1=y1,x2y2∈E2

νP1 (x1) ∨ νQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

νP2 (x2) ∨ νQ1 (x1y1)

+ νP1 (x1) ∨ νP2 (x2).

Theorem 4. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. If

(i) µP1 ≥ µQ2 and µP2 ≥ µQ1 , then (tdµ)G1 2 G2(x1, x2) = (tdµ)G1(x1) + (tdµ)G2(x2) − µP1(x1) ∨
µP2(x2);

(ii) νP1 ≤ νQ2 and νP2 ≤ νQ1 , then (tdν)G1 2 G2(x1, x2) = (tdν)G1(x1) + (tdν)G2(x2)

− νP1(x1) ∧ νP2(x2)

for all (x1, x2) ∈ V1 ×V2.

Proof. By definition of vertex total degree of G1 2 G2,

(i) If µP1 ≥ µQ2 , µP2 ≥ µQ1

(tdµ)G1 2 G2 (x1, x2) = ∑
x1=y1,x2y2∈E2

µP1 (x1) ∧ µQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

µP2 (x2) ∧ µQ1 (x1y1)

+µP1 (x1) ∧ µP2 (x2)

= ∑
x2y2∈E2

µQ2 (x2y2) + ∑
x1y1∈E1

µQ1 (x1y1) + µP1 (x1) + µP2 (x2)

−µP1 (x1) ∨ µP2 (x2)

= ∑
x2y2∈E2

µQ2 (x2y2) + µP2 (x2) + ∑
x1y1∈E1

µQ1 (x1y1) + µP1 (x1)

−µP1 (x1) ∨ µP2 (x2)

= (tdµ)G1 (x1) + (tdµ)G2 (x2)− µP1 (x1) ∨ µP2 (x2),

(ii) If νP1 ≤ νQ2 , νP2 ≤ νQ1

(tdν)G1 2 G2 (x1, x2) = ∑
x1=y1,x2y2∈E2

νP1 (x1) ∨ νQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

νP2 (x2) ∨ νQ1 (x1y1)

+ νP1 (x1) ∨ νP2 (x2)

= ∑
x2y2∈E2

νQ2 (x2y2) + ∑
x1y1∈E1

νQ1 (x1y1) + νP1 (x1) + νP2 (x2)

− νP1 (x1) ∧ νP2 (x2)

= (tdν)G1 (x1) + (tdν)G2 (x2)− νP1 (x1) ∧ νP2 (x2).

Example 3. Consider two PFGs G1 and G2 as in Example 2, where µP1 ≥ µQ2 , νP1 ≤ νQ2 and
µP2 ≥ µQ1 , νP2 ≤ νQ1 . Their Cartesian product G1 2 G2 is shown in Figure 5.
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Figure 5. Cartesian product of two PFGs.

Then, by Theorem 3, we have

(dµ)G1 2 G2(l, o) = (dµ)G1(l) + (dµ)G2(o) = 1.1,

(dν)G1 2 G2(l, o) = (dν)G1(l) + (dν)G2(o) = 1.3.

Therefore, dG1 2 G2(l, o) = (1.1, 1.3).
In addition, by Theorem 4, we have

(tdµ)G1 2 G2(l, o) = (tdµ)G1(l) + (tdµ)G2(o)− µP1(l) ∨ µP2(o) = 1.8,

(tdν)G1 2 G2(l, o) = (tdν)G1(l) + (tdν)G2(o)− νP1(l) ∧ νP2(o) = 1.8.

Therefore, tdG1 2 G2(l, o) = (1.8, 1.8).
Similarly, we can find the degree and total degree of all the vertices in G1 2 G2.

Definition 10. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs of the graphs G1 = (V1, E1) and
G2 = (V2, E2), respectively. The semi-strong product of G1 and G2, denoted by G1 • G2 = (P1 • P2,Q1 • Q2),
is defined as:

(i)

{
(µP1 • µP2)(x1, x2) = µP1(x1) ∧ µP2(x2)

( νP1 • νP2)(x1, x2) = νP1(x1) ∨ νP2(x2) f or all (x1, x2) ∈ V1 ×V2,

(ii)

{
(µQ1 • µQ2)((x, x2)(x, y2)) = µP1(x) ∧ µQ2(x2y2)

( νQ1 • νQ2)((x, x2)(x, y2)) = νP1(x) ∨ νQ2(x2y2) f or all x ∈ V1, f or all x2y2 ∈ E2,

(iii)

{
(µQ1 • µQ2)((x1, x2)(y1, y2)) = µP1(x1y1) ∧ µQ2(x2y2)

( νQ1 • νQ2)((x1, x2)(y1, y2)) = νP1(x1y1) ∨ νQ2(x2y2) f or all x1y1 ∈ E1, f or all x2y2 ∈ E2.

Proposition 3. Let G1 and G2 be the PFGs of the graphs G1 and G2, respectively. The semi-strong product
G1 • G2 of G1 and G2 is a PFG of G1 • G2.

Definition 11. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(dµ)G1•G2 (x1, x2) = ∑
(x1,x2)(y1,y2)∈E1•E2

(µQ1 • µQ2 )((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

µP1 (x1) ∧ µQ2 (x2y2) + ∑
x1y1∈E1,x2y2∈E2

µQ1 (x1y1) ∧ µQ2 (x2y2),

(dν)G1•G2 (x1, x2) = ∑
(x1,x2)(y1,y2)∈E1•E2

( νQ1 • νQ2 )((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

νP1 (x1) ∨ νQ2 (x2y2) + ∑
x1y1∈E1,x2y2∈E2

νQ1 (x1y1) ∨ νQ2 (x2y2).
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Theorem 5. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. If µP1 ≥ µQ2 , νP1 ≤ νQ2 , µQ1 ≤ µQ2 ,
νQ1 ≥ νQ2 . Then, dG1•G2(x1, x2) = dG1(x1) + dG2(x2) for all (x1, x2) ∈ V1 ×V2.

Proof. By definition of vertex degree of G1 • G2, we have

(dµ)G1•G2 (x1, x2) = ∑
(x1,x2)(y1,y2)∈E1•E2

(µQ1 • µQ2 )((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

µP1 (x1) ∧ µQ2 (x2y2) + ∑
x1y1∈E1,x2y2∈E2

µQ1 (x1y1) ∧ µQ2 (x2y2)

= ∑
x2y2∈E2

µQ2 (x2y2) + ∑
x1y1∈E1

µQ1 (x1y1)

(Since µP1 ≥ µQ2 and µQ1 ≤ µQ2 )

= (dµ)G2 (x2) + (dµ)G1 (x1).

Analogously, it is easy to show that (dν)G1•G2(x1, x2) = (dν)G1(x1) + (dν)G2(x2). Hence,
dG1•G2(x1, x2) = dG1(x1) + dG2(x2).

Definition 12. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(tdµ)G1•G2 (x1, x2) = ∑
(x1,x2)(y1,y2)∈E1•E2

(µQ1 • µQ2 )((x1, x2)(y1, y2)) + (µP1 • µP2 )(x1, x2)

= ∑
x1=y1,x2y2∈E2

µP1 (x1) ∧ µQ2 (x2y2) + ∑
x1y1∈E1,x2y2∈E2

µQ1 (x1y1) ∧ µQ2 (x2y2)

+µP1 (x1) ∧ µP2 (x2),

(tdν)G1•G2 (x1, x2) = ∑
(x1,x2)(y1,y2)∈E1•E2

( νQ1 • νQ2 )((x1, x2)(y1, y2)) + ( νP1 • νP2 )(x1, x2)

= ∑
x1=y1,x2y2∈E2

νP1 (x1) ∨ νQ2 (x2y2) + ∑
x1y1∈E1,x2y2∈E2

νQ1 (x1y1) ∨ νQ2 (x2y2)

+ νP1 (x1) ∨ νP2 (x2).

Theorem 6. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. If

(i) µP1 ≥ µQ2 , µQ1 ≤ µQ2 , then (tdµ)G1•G2(x1, x2) = (tdµ)G1(x1) + (tdµ)G2(x2)− µP1(x1) ∨ µP2(x2);
(ii) νP1 ≤ νQ2 , νQ1 ≥ νQ2 , then (tdν)G1•G2(x1, x2) = (tdν)G1(x1) + (tdν)G2(x2)− νP1(x1) ∧ νP2(x2)

for all (x1, x2) ∈ V1 ×V2.

Proof. By definition of vertex total degree of G1 • G2,

(i) If µP1 ≥ µQ2 , µQ1 ≤ µQ2

(tdµ)G1•G2 (x1, x2) = ∑
x1=y1,x2y2∈E2

µP1 (x1) ∧ µQ2 (x2y2) + ∑
x1y1∈E1,x2y2∈E2

µQ1 (x1y1) ∧ µQ2 (x2y2)

+µP1 (x1) ∧ µP2 (x2)

= ∑
x2y2∈E2

µQ2 (x2y2) + ∑
x1y1∈E1

µQ1 (x1y1) + µP1 (x1) + µP2 (x2)

−µP1 (x1) ∨ µP2 (x2)

= (tdµ)G1 (x1) + (tdµ)G2 (x2)− µP1 (x1) ∨ µP2 (x2).

Analogously, we can prove (ii).

Example 4. Consider two PFGs G1 and G2 as given in Example 2, where µP1 ≥ µQ2 , νP1 ≤ νQ2 , µQ1 ≤ µQ2 ,
νQ1 ≥ νQ2 , and their semi-strong product G1 • G2 is shown in Figure 6.
Thus, by Theorem 5, we have
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(dµ)G1•G2(m, p) = (dµ)G1(m) + (dµ)G2(p) = 1.7,

(dν)G1•G2(m, p) = (dν)G1(m) + (dν)G2(p) = 2.1.

Therefore, dG1•G2(m, p) = (1.7, 2.1).
In addition, by Theorem 6, we have

(tdµ)G1•G2(m, p) = (tdµ)G1(m) + (tdµ)G2(p)− µP1(m) ∨ µP2(p) = 2.5,

(tdν)G1•G2(m, p) = (tdν)G1(m) + (tdν)G2(p)− νP1(m) ∧ νP2(p) = 2.7.

Therefore, tdG1•G2(m, p) = (2.5, 2.7).
Similarly, we can find the degree and total degree of all the vertices in G1 • G2.
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Figure 6. Semi-strong product of two PFGs.

Definition 13. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs of G1 = (V1, E1) and G2 = (V2, E2),
respectively. The strong product of these two PFGs is denoted by G1 � G2 = (P1 �P2,Q1 �Q2) and defined as:

(i)

{
(µP1 � µP2)(x1, x2) = µP1(x1) ∧ µP2(x2)

( νP1 � νP2)(x1, x2) = νP1(x1) ∨ νP2(x2) f or all (x1, x2) ∈ V1 ×V2,

(ii)

{
(µQ1 � µQ2)((x, x2)(x, y2)) = µP1(x) ∧ µQ2(x2y2)

( νQ1 � νQ2)((x, x2)(x, y2)) = νP1(x) ∨ νQ2(x2y2) f or all x ∈ V1, f or all x2y2 ∈ E2,

(iii)

{
(µQ1 � µQ2)((x1, z)(y1, z)) = µQ1(x1y1) ∧ µP2(z)
( νQ1 � νQ2)((x1, z)(y1, z)) = νQ1(x1y1) ∨ νP2(z) f or all z ∈ V2, f or all x1y1 ∈ E1,

(iv)

{
(µQ1 � µQ2)((x1, x2)(y1, y2)) = µQ1(x1y1) ∧ µQ2(x2y2)

( νQ1 � νQ2)((x1, x2)(y1, y2)) = νQ1(x1y1) ∨ νQ2(x2y2) f or all x1y1 ∈ E1, f or all x2y2 ∈ E2.

Proposition 4. Let G1 and G2 be the PFGs of the graphs G1 and G2, respectively. The strong product G1 � G2

of G1 and G2 is a PFG of G1 � G2.

Definition 14. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(dµ)G1�G2 (x1, x2) = ∑
(x1,x2)(y1,y2)∈E1�E2

(µQ1 � µQ2 )((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

µP1 (x1) ∧ µQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

µP2 (x2) ∧ µQ1 (x1y1)

+ ∑
x1y1∈E1,x2y2∈E2

µQ1 (x1y1) ∧ µQ2 (x2y2),
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(dν)G1�G2 (x1, x2) = ∑
(x1,x2)(y1,y2)∈E1�E2

( νQ1 � νQ2 )((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

νP1 (x1) ∨ νQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

νP2 (x2) ∨ νQ1 (x1y1)

+ ∑
x1y1∈E1,x2y2∈E2

νQ1 (x1y1) ∨ νQ2 (x2y2).

Theorem 7. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. If µP1 ≥ µQ2 , νP1 ≤ νQ2 , µP2 ≥ µQ1 ,
νP2 ≤ νQ1 , µQ1 ≤ µQ2 , νQ1 ≥ νQ2 . Then, for all (x1, x2) ∈ V1 × V2, dG1�G2(x1, x2) = p2dG1(x1) +

dG2(x2), where p2 = |V2|.

Proof. By definition of vertex degree of G1 � G2, we have

(dµ)G1�G2 (x1, x2) = ∑
(x1,x2)(y1,y2)∈E1�E2

(µQ1 � µQ2 )((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

µP1 (x1) ∧ µQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

µP2 (x2) ∧ µQ1 (x1y1)

+ ∑
x1y1∈E1,x2y2∈E2

µQ1 (x1y1) ∧ µQ2 (x2y2)

= ∑
x2y2∈E2

µQ2 (x2y2) + ∑
x1y1∈E1

µQ1 (x1y1) + ∑
x1y1∈E1

µQ1 (x1y1)

(Since µP1 ≥ µQ2 , µP2 ≥ µQ1 and µQ1 ≤ µQ2 )

= p2(dµ)G1 (x1) + (dµ)G2 (x2).

Analogously, it is easy to show that (dν)G1�G2(x1, x2) = p2(dν)G1(x1) + (dν)G2(x2).
Hence, dG1�G2(x1, x2) = p2dG1(x1) + dG2(x2).

Definition 15. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(tdµ)G1�G2 (x1, x2) = ∑
(x1,x2)(y1,y2)∈E1�E2

(µQ1 � µQ2 )((x1, x2)(y1, y2)) + (µP1 � µP2 )(x1, x2)

= ∑
x1=y1,x2y2∈E2

µP1 (x1) ∧ µQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

µP2 (x2) ∧ µQ1 (x1y1)

+ ∑
x1y1∈E1,x2y2∈E2

µQ1 (x1y1) ∧ µQ2 (x2y2) + µP1 (x1) ∧ µP2 (x2),

(tdν)G1�G2 (x1, x2) = ∑
(x1,x2)(y1,y2)∈E1�E2

( νQ1 � νQ2 )((x1, x2)(y1, y2)) + ( νP1 � νP2 )(x1, x2)

= ∑
x1=y1,x2y2∈E2

νP1 (x1) ∨ νQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

νP2 (x2) ∨ νQ1 (x1y1)

+ ∑
x1y1∈E1,x2y2∈E2

νQ1 (x1y1) ∨ νQ2 (x2y2) + νP1 (x1) ∨ νP2 (x2).

Theorem 8. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. If

(i) µP1 ≥ µQ2 , µP2 ≥ µQ1 , µQ1 ≤ µQ2 , then (td µ)G1�G2(x1, x2) = (tdµ)G2(x2) + p2(tdµ)G1(x1)−
(p2 − 1)µP1(x1)− µP1(x1) ∨ µP2(x2);

(ii) νP1 ≤ νQ2 , νP2 ≤ νQ1 , µQ1 ≥ µQ2 , then (tdν)G1�G2(x1, x2) = (tdν)G2(x2) + p2(tdν)G1(x1) −
(p2 − 1) νP1(x1)− νP1(x1) ∧ νP2(x2)

for all (x1, x2) ∈ V1 ×V2.

Proof. For any vertex (x1, x2) ∈ V1 ×V2,
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(i) If µP1 ≥ µQ2 , µP2 ≥ µQ1 , µQ1 ≤ µQ2

(tdµ)G1�G2 (x1, x2) = ∑
x1=y1,x2y2∈E2

µP1 (x1) ∧ µQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

µP2 (x2) ∧ µQ1 (x1y1)

+ ∑
x1y1∈E1,x2y2∈E2

µQ1 (x1y1) ∧ µQ2 (x2y2) + µP1 (x1) ∧ µP2 (x2)

= ∑
x2y2∈E2

µQ2 (x2y2) + ∑
x1y1∈E1

µQ1 (x1y1) + ∑
x1y1∈E1

µQ1 (x1y1)

+µP1 (x1) + µP2 (x2)− µP1 (x1) ∨ µP2 (x2)

= ∑
x2y2∈E2

µQ2 (x2y2) + µP2 (x2) + p2 ∑
x1y1∈E1

µQ1 (x1y1) + µP1 (x1)

−µP1 (x1) ∨ µP2 (x2)

= ∑
x2y2∈E2

µQ2 (x2y2) + µP2 (x2) + p2

(
∑

x1y1∈E1

µQ1 (x1y1) + µP1 (x1)

)
−(p2 − 1)µP1 (x1)− µP1 (x1) ∨ µP2 (x2)

= (tdµ)G2 (x2) + p2(tdµ)G1 (x1)− (p2 − 1)µP1 (x1)− µP1 (x1) ∨ µP2 (x2).

Analogously, we can prove (ii).

Example 5. Consider two PFGs G1 and G2 as in Example 2, where µP1 ≥ µQ2 , νP1 ≤ νQ2 , µP2 ≥ µQ1 ,
νP2 ≤ νQ1 , µQ1 ≤ µQ2 , νQ1 ≥ νQ2 and their strong product G1 � G2 is shown in Figure 7.
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Figure 7. Strong product of two PFGs.

Then, by Theorem 7, we must have

(dµ)G1�G2(m, o) = p2(dµ)G1(m) + (dµ)G2(o) = 2.7,

(dν)G1�G2(m, o) = p2(dν)G1(m) + (dν)G2(o) = 3.6.

Therefore, dG1�G2(m, p) = (2.7, 3.6).
In addition, by Theorem 8, we must have

(tdµ)G1�G2(m, o) = p2(tdµ)G1(m) + (tdµ)G2(o)− (p2 − 1)µP1(m)− µP1(m) ∨ µP2(o) = 3.4,

(tdν)G1�G2(m, o) = p2(tdν)G1(m) + (tdν)G2(o)− (p2 − 1) νP1(m)− νP1(m) ∧ νP2(o) = 4.0.

Therefore, tdG1�G2(m, o) = (3.4, 4.0).
Similarly, we can find the degree and total degree of all the vertices in G1 � G2.
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Definition 16. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs of G1 = (V1, E1) and G2 = (V2, E2),
respectively. The lexicographic product of these two PFGs is denoted by G1 ◦ G2 = (P1 ◦ P2,Q1 ◦ Q2) and
defined as follows:

(i)

{
(µP1 ◦ µP2)(x1, x2) = µP1(x1) ∧ µP2(x2)

( νP1 ◦ νP2)(x1, x2) = νP1(x1) ∨ νP2(x2) f or all (x1, x2) ∈ V1 ×V2,

(ii)

{
(µQ1 ◦ µQ2)((x, x2)(x, y2)) = µP1(x) ∧ µQ2(x2y2)

( νQ1 ◦ νQ2)((x, x2)(x, y2)) = νP1(x) ∨ νQ2(x2y2) f or all x ∈ V1, f or all x2y2 ∈ E2,

(iii)

{
(µQ1 ◦ µQ2)((x1, z)(y1, z)) = µQ1(x1y1) ∧ µP2(z)
( νQ1 ◦ νQ2)((x1, z)(y1, z)) = νQ1(x1y1) ∨ νP2(z) f or all z ∈ V2, f or all x1y1 ∈ E1,

(iv)

{
(µQ1 ◦ µQ2)((x1, x2)(y1, y2)) = µP2(x2) ∧ µP2(y2) ∧ µQ1(x1y1)

( νQ1 ◦ νQ2)((x1, x2)(y1, y2)) = νP2(x2) ∨ νP2(y2) ∨ νQ1(x1y1) f or all x1y1 ∈ E1, x2 6= y2.

Proposition 5. The lexicographic product G1[G2] of two PFGs of G1 and G2 is a PFG of G1[G2].

Definition 17. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(dµ)G1[G2](x1, x2) = ∑
(x1,x2)(y1,y2)∈E1◦E2

(µQ1 ◦ µQ2 )((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

µP1 (x1) ∧ µQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

µP2 (x2) ∧ µQ1 (x1y1)

+ ∑
x2 6=y2,x1y1∈E1

µP2 (y2) ∧ µP2 (x2) ∧ µQ1 (x1y1),

(dν)G1[G2](x1, x2) = ∑
(x1,x2)(y1,y2)∈E1◦E2

( νQ1 ◦ νQ2 )((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

νP1 (x1) ∨ νQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

νP2 (x2) ∨ νQ1 (x1y1)

+ ∑
x2 6=y2,x1y1∈E1

νP2 (y2) ∨ νP2 (x2) ∨ νQ1 (x1y1).

Theorem 9. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. If µP1 ≥ µQ2 , νP1 ≤ νQ2 and
µP2 ≥ µQ1 , νP2 ≤ νQ1 . Then, dG1[G2]

(x1, x2) = p2dG1(x1) + dG2(x2) for all (x1, x2) ∈ V1 ×V2.

Proof. For any vertex (x1, x2) ∈ V1 ×V2,

(dµ)G1[G2](x1, x2) = ∑
(x1,x2)(y1,y2)∈E1◦E2

(µQ1 ◦ µQ2 )((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

µP1 (x1) ∧ µQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

µP2 (x2) ∧ µQ1 (x1y1)

+ ∑
x2 6=y2,x1y1∈E1

µP2 (y2) ∧ µP2 (x2) ∧ µQ1 (x1y1)

= ∑
x2y2∈E2

µQ2 (x2y2) + ∑
x1y1∈E1

µQ1 (x1y1) + ∑
x1y1∈E1

µQ1 (x1y1)

(Since µP1 ≥ µQ2 and µP2 ≥ µQ1 )

= (dµ)G2 (x2) + p2(dµ)G1 (x1).

Analogously, we can show that (dν)G1[G2]
(x1, x2) = (dν)G2(x2) + p2(dν)G1(x1).

Hence, dG1[G2]
(x1, x2) = dG2(x2) + p2dG1(x1).
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Definition 18. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(tdµ)G1[G2](x1, x2) = ∑
(x1,x2)(y1,y2)∈E1◦E2

(µQ1 ◦ µQ2 )((x1, x2)(y1, y2)) + (µP1 ◦ µP2 )(x1, x2)

= ∑
x1=y1,x2y2∈E2

µP1 (x1) ∧ µQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

µP2 (x2) ∧ µQ1 (x1y1)

+ ∑
x2 6=y2,x1y1∈E1

µP2 (y2) ∧ µP2 (x2) ∧ µQ1 (x1y1) + µP1 (x1) ∧ µP2 (x2),

(tdν)G1[G2](x1, x2) = ∑
(x1,x2)(y1,y2)∈E1◦E2

( νQ1 ◦ νQ2 )((x1, x2)(y1, y2)) + ( νP1 ◦ νP2 )(x1, x2)

= ∑
x1=y1,x2y2∈E2

νP1 (x1) ∨ νQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

νP2 (x2) ∨ νQ1 (x1y1)

+ ∑
x2 6=y2,x1y1∈E1

νP2 (y2) ∨ νP2 (x2) ∨ νQ1 (x1y1) + νP1 (x1) ∨ νP2 (x2).

Theorem 10. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. If

(i) µP1 ≥ µQ2 and µP2 ≥ µQ1 , then (tdµ)G1[G2]
(x1, x2) = (tdµ)G2(x2) + p2(tdµ)G1(x1) − (p2 −

1)µP1(x1)− µP1(x1) ∨ µP2(x2);
(ii) νP1 ≤ νQ2 and νP2 ≤ νQ1 , then (tdν)G1[G2]

(x1, x2) = (tdν)G2(x2) + p2(tdν)G1(x1) − (p2 −
1) νP1(x1)− νP1(x1) ∧ νP2(x2)

for all (x1, x2) ∈ V1 ×V2.

Proof. For any vertex (x1, x2) ∈ V1 ×V2,

(i) If µP1 ≥ µQ2 , µP2 ≥ µQ1

(tdµ)G1[G2](x1, x2) = ∑
x1=y1,x2y2∈E2

µP1 (x1) ∧ µQ2 (x2y2) + ∑
x2=y2,x1y1∈E1

µP2 (x2) ∧ µQ1 (x1y1)

+ ∑
x2 6=y2,x1y1∈E1

µP2 (y2) ∧ µP2 (x2) ∧ µQ1 (x1y1) + µP1 (x1) ∧ µP2 (x2)

= ∑
x2y2∈E2

µQ2 (x2y2) + ∑
x1y1∈E1

µQ1 (x1y1) + ∑
x1y1∈E1

µQ1 (x1y1)

+µP1 (x1) + µP2 (x2)− µP1 (x1) ∨ µP2 (x2)

= (tdµ)G2 (x2) + p2(tdµ)G1 (x1)− (p2 − 1)µP1 (x1)

−µP1 (x1) ∨ µP2 (x2).

Analogously, we can prove (ii).

Example 6. Consider two PFGs G1 and G2 as in Example 2, where µP1 ≥ µQ2 , νP1 ≤ νQ2 and µP2 ≥ µQ1 ,
νP2 ≤ νQ1 and their lexicographic product G1 ◦ G2 is shown in Figure 8.
Then, by Theorem 9, we must have

(dµ)G1◦G2(m, p) = p2(dµ)G1(m) + (dµ)G2(p) = 2.7,

(dν)G1◦G2(m, p) = p2(dν)G1(m) + (dν)G2(p) = 3.6.

Therefore, dG1◦G2(m, p) = (2.7, 3.6).
In addition, by Theorem 10, we must have

(tdµ)G1◦G2(m, p) = p2(tdµ)G1(m) + (tdµ)G2(p)− (p2 − 1)µP1(m)− µP1(m) ∨ µP2(p) = 3.5,

(tdν)G1◦G2(m, p) = p2(tdν)G1(m) + (tdν)G2(p)− (p2 − 1) νP1(m)− νP1(m) ∧ νP2(p) = 4.2.

Therefore, dG1◦G2(m, p) = (3.5, 4.2).
Similarly, we can find the degree and total degree of all the vertices in G1 ◦ G2.
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Figure 8. Lexicographic product of two PFGs.

Definition 19. The union G1 ∪ G2 = (P1 ∪ P2,Q1 ∪Q2) of two PFGs G1 = (P1,Q1) and G2 = (P2,Q2)

of the graphs G1 = (V1, E1) and G2 = (V2, E2), respectively, is defined as follows:

(i) (µP1 ∪ µP2)(x) =


µP1(x) i f x ∈ V1 −V2,
µP2(x) i f x ∈ V2 −V1,
µP1(x) ∨ µP2(x) i f x ∈ V1 ∩V2,

(ii) ( νP1 ∪ νP2)(x) =


νP1(x) i f x ∈ V1 −V2,
νP2(x) i f x ∈ V2 −V1,
νP1(x) ∧ νP2(x) i f x ∈ V1 ∩V2,

(iii) (µQ1 ∪ µQ2)(xy) =


µQ1(xy) i f xy ∈ E1 − E2,
µQ2(xy) i f xy ∈ E2 − E1,
µQ1(xy) ∨ µQ2(xy) i f xy ∈ E1 ∩ E2,

(iv) ( νQ1 ∪ νQ2)(xy) =


νQ1(xy) i f xy ∈ E1 − E2,
νQ2(xy) i f xy ∈ E2 − E1,
νQ1(xy) ∧ νQ2(xy) i f xy ∈ E1 ∩ E2.

Theorem 11. The union G1 ∪ G2 of G1 and G2 is a PFG of G1 ∪G2 if and only if G1 and G2 are PFGs of G1 and
G2, respectively, where P1,P2,Q1 and Q2 are the Pythagorean fuzzy subsets of V1, V2, E1 and E2, respectively
and V1 ∩V2 = ∅.

Definition 20. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. For any vertex x ∈ V1 ∪V2, there are
three cases to consider.
Case 1: Either x ∈ V1−V2 or x ∈ V2−V1. Then, no edge incident at x lies in E1 ∩ E2. Thus, for x ∈ V1−V2,

(dµ)G1∪G2(x) = ∑
xy∈E1

µQ1(xy) = (dµ)G1(x), (dν)G1∪G2(x) = ∑
xy∈E1

νQ1(xy) = (dν)G1(x),

(tdµ)G1∪G2(x) = (tdµ)G1(x), (tdν)G1∪G2(x) = (tdν)G1(x).

For x ∈ V2 −V1,

(dµ)G1∪G2(x) = ∑
xy∈E2

µQ2(xy) = (dµ)G2(x), (dν)G1∪G2(x) = ∑
xy∈E2

νQ2(xy) = (dν)G2(x).

(tdµ)G1∪G2(x) = (tdµ)G2(x), (tdν)G1∪G2(x) = (tdν)G2(x).
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Case 2: x ∈ V1 ∩V2 but no edge incident at x lies in E1 ∩ E2. Then, any edge incident at x is either in E1 − E2

or in E2 − E1.

(dµ)G1∪G2(x) = ∑
xy∈E1∪E2

(µQ1 ∪ µQ2)(xy)

= ∑
xy∈E1

µQ1(xy) + ∑
xy∈E2

µQ2(xy)

= (dµ)G1(x) + (dµ)G2(x).

Similarly, (dν)G1∪G2(x) = (dν)G1(x) + (dν)G2(x),

(tdµ)G1∪G2(x) = ∑
xy∈E1∪E2

(µQ1 ∪ µQ2)(xy) + µP1(x) ∨ µP2(x)

= (dµ)G1(x) + (dµ)G2(x) + µP1(x) ∨ µP2(x)

= (tdµ)G1(x) + (tdµ)G2(x)− µP1(x) ∧ µP2(x).

Similarly, (tdν)G1∪G2(x) = (tdν)G1(x) + (tdν)G2(x)− νP1(x) ∨ νP2(x).
Case 3: x ∈ V1 ∩V2 and some edges incident at x are in E1 ∩ E2.

(dµ)G1∪G2(x) = ∑
xy∈E1∪E2

(µQ1 ∪ µQ2)(xy)

∑
xy∈E1−E2

µQ1(xy) + ∑
xy∈E2−E1

µQ2(xy) + ∑
xy∈E1∩E2

µQ1(xy) ∨ µQ2(xy)

=

(
∑

xy∈E1−E2

µQ1(xy) + ∑
xy∈E2−E1

µQ2(xy) + ∑
xy∈E1∩E2

µQ1(xy) ∨ µQ2(xy)

+ ∑
xy∈E1∩E2

µQ1(xy) ∧ µQ2(xy)

)
− ∑

xy∈E1∩E2

µQ1(xy) ∧ µQ2(xy)

= ∑
xy∈E1

µQ1(xy) + ∑
xy∈E2

µQ2(xy)− ∑
xy∈E1∩E2

µQ1(xy) ∧ µQ2(xy)

= (dµ)G1(x) + (dµ)G2(x)− ∑
xy∈E1∩E2

µQ1(xy) ∧ µQ2(xy).

Similarly, (dν)G1∪G2(x) = (dν)G1(x) + (dν)G2(x)− ∑
xy∈E1∩E2

νQ1(xy) ∨ νQ2(xy). In addition,

(tdµ)G1∪G2 (x) = (tdµ)G1 (x) + (tdµ)G2 (x)− ∑
xy∈E1∩E2

µQ1 (xy) ∧ µQ2 (xy)− µP1 (x) ∧ µP2 (x),

(tdν)G1∪G2 (x) = (tdν)G1 (x) + (tdν)G2 (x)− ∑
xy∈E1∩E2

νQ1 (xy) ∨ νQ2 (xy)− µP1 (x) ∨ νP2 (x).

Example 7. Consider two PFGs G1 = (P1,Q1) and G2 = (P2,Q2) on V1 = {j, k, l, m} and V2 = {j, k, l},
respectively, as shown in Figure 9.
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In addition, their union G1 ∪ G2 is shown in Figure 10.
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Figure 10. Union of two PFGs.

Since m ∈ V1 \V2, thus,

(dµ)G1∪G2(m) = (dµ)G1(m) = 0.9, (dν)G1∪G2(m) = (dν)G1(m) = 1.5.

Therefore, dG1∪G2(m) = dG1(m) = (0.9, 1.5).

(tdµ)G1∪G2(m) = (tdµ)G1(m) = 1.7, (tdν)G1∪G2(m) = (tdν)G1(m) = 2.0.

Therefore, tdG1∪G2(m) = tdG1(m) = (1.7, 2.0).
Since l ∈ V1 ∩V2 but no edge incident at l lies in E1 ∩ E2,

(dµ)G1∪G2(l) = (dµ)G1(l) + (dµ)G2(l) = 1.4,

(dν)G1∪G2(l) = (dν)G1(l) + (dν)G2(l) = 2.4.

Therefore, dG1∪G2(l) = dG1(l) + dG2(l) = (1.4, 2.4),

(tdµ)G1∪G2(l) = (tdµ)G1(l) + (tdµ)G2(l)− µP1(l) ∧ µP2(l) = 2.3,

(tdν)G1∪G2(l) = (tdν)G1(l) + (tdν)G2(l)− νP1(l) ∨ νP2(l) = 2.6.

Therefore, tdG1∪G2(l) = (2.3, 2.6).
Since k ∈ V1 ∩V2 and jk ∈ E1 ∩ E2, thus,

(dµ)G1∪G2(k) = (dµ)G1(k) + (dµ)G2(k)− µQ1(jk) ∧ µQ2(jk) = 1.4,

(dν)G1∪G2(k) = (dν)G1(k) + (dν)G2(k)− νQ1(jk) ∨ νQ2(jk) = 2.4.

Therefore, dG1∪G2(k) = (1.4, 2.4) :

(tdµ)G1∪G2(k) = (tdµ)G1(k) + (tdµ)G2(k)− µQ1(jk) ∧ µQ2(jk)− µP1(k) ∧ µP2(k)

= 1.7 + 1.2− 0.3− 0.5 = 2.1,

(tdν)G1∪G2(k) = (tdν)G1(k) + (tdν)G2(k)− νQ1(jk) ∨ νQ2(jk)− νP1(k) ∨ νP2(k)

= 1.9 + 2.3− 0.8− 0.6 = 2.8.

Therefore, tdG1∪G2(k) = (2.1, 2.8).

Definition 21. The ring-sum G1 ⊕ G2 = (P1 ⊕ P2,Q1 ⊕ Q2) of two PFGs G1 = (P1,Q1) and
G2 = (P2,Q2) of the graphs G1 = (V1, E1) and G2 = (V2, E2), respectively, is defined as follows:

(µP1 ⊕ µP2)(x) = (µP1 ∪ µP2)(x), ( νP1 ⊕ νP2)(x) = ( νP1 ∪ νP2)(x) i f x ∈ V1 ∪V2,
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(µQ1 ⊕ µQ2)(xy) =


µQ1(xy) i f xy ∈ E1 − E2,
µQ2(xy) i f xy ∈ E2 − E1,
0 i f xy ∈ E1 ∩ E2.

( νQ1 ⊕ νQ2)(xy) =


νQ1(xy) i f xy ∈ E1 − E2,
νQ2(xy) i f xy ∈ E2 − E1,

0 i f xy ∈ E1 ∩ E2.

Proposition 6. If G1 = (P1,Q1) and G2 = (P2,Q2) are the PFGs, then G1 ⊕ G2 is the PFG.

Definition 22. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. For any vertex x ∈ V1 ⊕V2, there are
two cases to consider.
Case 1: If either x ∈ V1 −V2 or x ∈ V2 −V1.
Case 2: If x ∈ V1 ∩V2. Then, any edge incident at x is either in E1 − E2 or in E2 − E1.

In both cases:

(dµ)G1⊕G2(x) = (dµ)G1∪G2(x), (dν)G1⊕G2(x) = (dν)G1∪G2(x),

(tdµ)G1⊕G2(x) = (tdµ)G1∪G2(x), (tdν)G1⊕G2(x) = (tdν)G1∪G2(x).

Definition 23. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs of G1 = (V1, E1) and G2 = (V2, E2),
respectively. The join of G1 and G2, denoted by G1 + G2 = (P1 + P2,Q1 +Q2), is defined as:

(i)

{
(µP1 + µP2)(x) = (µP1 ∪ µP2)(x)
( νP1 + νP2)(x) = ( νP1 ∪ νP2)(x) f or all x ∈ V1 ∪V2,

(ii)

{
(µQ1 + µQ2)(xy) = (µQ1 ∪ µQ2)(xy)
( νQ1 + νQ2)(xy) = ( νQ1 ∪ νQ2)(xy) i f xy ∈ E1 ∪ E2,

(iii)

{
(µQ1 + µQ2)(xy) = µP1(x) ∧ µP2(y)
( νQ1 + νQ2)(xy) = νP1(x) ∨ νP2(y) i f xy ∈ E

′
,

where E
′

is the set of all edges joining the vertices of V1 and V2, V1 ∩V2 = ∅.

Theorem 12. The join G1 + G2 of G1 and G2 is a PFG of G1 + G2 if and only if G1 and G2 are PFGs of G1 and
G2, respectively, where P1,P2,Q1 and Q2 are the Pythagorean fuzzy subsets of V1, V2, E1 and E2, respectively,
and V1 ∩V2 = ∅.

Definition 24. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two PFGs. For any vertex x ∈ V1 + V2,

(dµ)G1+G2(x) = ∑
xy∈E1∪E2

(µQ1 ∪ µQ2)(xy) + ∑
xy∈E′

µP1(x) ∧ µP2(y),

(dν)G1+G2(x) = ∑
xy∈E1∪E2

( νQ1 ∪ νQ2)(xy) + ∑
xy∈E′

νP1(x) ∨ νP2(y).

(tdµ)G1+G2 (x) = ∑
xy∈E1∪E2

(µQ1 ∪ µQ2 )(xy) + ∑
xy∈E′

µP1 (x) ∧ µP2 (y) + µP1 (x) ∨ µP2 (y),

(tdν)G1+G2 (x) = ∑
xy∈E1∪E2

( νQ1 ∪ νQ2 )(xy) + ∑
xy∈E′

νP1 (x) ∨ νP2 (y) + νP1 (x) ∧ νP2 (y).

3. Applications to Decision-Making

Decision making is a common activity in daily life, aiming to select the best alternative from a
given finite set of alternatives. In actual decision-making problems, decision makers usually rely on
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their intuition and prior expertise to make decisions. Owing to the complexity of decision-making
problems, the precondition is to represent the fuzzy and vague information appropriately in the
process of decision-making. To express the decision makers’ or experts’ preferences over the given
alternatives (criteria), preference relation is one of the useful techniques by which the ranking of criteria
can be obtained. For a set of criteria X = {x1, x2, . . . , xn}, the experts compare each pair of criteria
and construct preference relations, respectively. If every element in the preference relations is a PFN,
then the concept of the Pythagorean fuzzy preference relation (PFPR) can be put forward as follows:

Definition 25. A PFPR on the set X = {x1, x2, . . . , xn} is represented by a matrix R = (rij)n×n, where
rij = (xixj, µ(xixj), ν(xixj)) for all i, j = 1, 2, ..., n. For convenience, let rij = (µij, νij) where µij indicates
the degree to which the object xi is preferred to the object xj, νij denotes the degree to which the object xi is not

preferred to the object xj, and πij =
√

1− µ2
ij − ν2

ij is interpreted as a hesitancy degree, with the conditions:

µij, νij ∈ [0, 1], µ2
ij + ν2

ij ≤ 1, µij = νji, µii = νii = 0.5, for all i, j = 1, 2, . . . , n.

3.1. Evaluation of Hospitals

For a decision-making problem involving the evaluation of five hospitals xi, i = 1, 2, . . . , 5 of a city,
assume that the decision maker compares the hospital x1 with all the other hospitals xi, i = 2, 3, 4, 5
under the criterion ‘facilities’, and provides the judgements by using a directed network of the PFPR
whose vertices represent the hospitals as shown in Figure 11.
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Figure 11. Directed network of the Pythagorean fuzzy preference relation (PFPR).

The corresponding adjacent matrix R is as follows:

R = (rij)5×5 =


(0.5, 0.5) (0.8, 0.3) (0.7, 0.6) (0.9, 0.4) (0.8, 0.6)
(0.3, 0.8) (0.5, 0.5) (0.3, 0.6) (0.6, 0.5) (0.5, 0.8)
(0.6, 0.7) (0.6, 0.3) (0.5, 0.5) (0.5, 0.8) (0.4, 0.7)
(0.4, 0.9) (0.5, 0.6) (0.8, 0.5) (0.5, 0.5) (0.3, 0.9)
(0.6, 0.8) (0.8, 0.5) (0.7, 0.4) (0.9, 0.3) (0.5, 0.5)

 .

Using Pythagorean fuzzy weighted averaging (PFWA) operator [6],

ri = PFWA(ri1, ri2, . . . , rin) =


√√√√√1−

 n

∏
j=1

(
1− µ2

ij

)1/n

,

 n

∏
j=1

νij

1/n
 , i = 1, 2, 3, . . . , n,
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we aggregate all rij, j = 1, 2, . . . , 5 corresponding to the hospital xi, and then get the complex PFN ri of
the hospital xi, over all the other hospitals:

r1 = (0.7788, 0.4644), r2 = (0.4637, 0.6258), r3 = (0.5292, 0.5674),

r4 = (0.5580, 0.6560), r5 = (0.7475, 0.4743).

Utilize the score function s(ri) = µ2
i − ν2

i [7] in order to calculate the scores of ri, i = 1, 2, . . . , 5:

s(r1) = 0.3909, s(r2) = −0.1766, s(r3) = −0.0419, s(r4) = −0.1190, s(r5) = 0.3338.

According to s(ri), i = 1, 2, . . . , 5, we get the ranking of the hospitals xi, i = 1, 2, . . . , 5 as:

x1 � x5 � x3 � x4 � x2 (where “ � ” represents “be superior to”).

Therefore, the best hospital is x1.
Now, using Pythagorean fuzzy weighted geometric (PFWG) operator [6],

ri = PFWG(ri1, ri2, . . . , rin) =


 n

∏
j=1

µij

1/n

,

√√√√√1−
 n

∏
j=1

(
1− ν2

ij

)1/n
 , i = 1, 2, 3, . . . , n,

we aggregate all rij, j = 1, 2, . . . , 5 corresponding to the hospital xi, and then get the complex PFN ri of
the hospital xi, over all the other hospitals:

r1 = (0.7259, 0.5016), r2 = (0.4227, 0.6770), r3 = (0.5144, 0.6505),

r4 = (0.4743, 0.7619), r5 = (0.6853, 0.5580).

Utilize the score function to calculate the scores s(ri), i = 1, 2, . . . , 5 of ri, i = 1, 2, . . . , 5:

s(r1) = 0.2753, s(r2) = −0.2797, s(r3) = −0.1585, s(r4) = −0.3555, s(r5) = 0.1583.

According to s(ri), i = 1, 2, . . . , 5, we get the ranking of the hospitals xi, i = 1, 2, . . . , 5 as:

x1 � x5 � x3 � x2 � x4.

Therefore, the best hospital is x1 again.

3.2. Partner Selection in Supply Chain Management

Consider a problem regarding the selection of critical factors used to assess the potential partners
of a company. Supply chain management depends on strategic relationships between companies
related to a supply chain. By effective coordination, companies benefit from lower cost, lower inventory
levels, information sharing and thus stronger competitive edge. Many factors may impact the
coordination of companies. Among them, the following is the list of four critical factors [26]:

C1 : Response time and supply capacity;
C2 : Quality and technical skills;
C3 : Price and cost;
C4 : Service level.

In order to rank the above four factors Ci (i = 1, 2, 3, 4), a committee of three decision makers
ek(k = 1, 2, 3) is invited. The decision makers compare each pair of these factors and provide
Pythagorean fuzzy preferences contained in the PFPRs Rk = (r(k)ij )4×4(k = 1, 2, 3), respectively:
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R1 =


(0.5, 0.5) (0.6, 0.5) (0.9, 0.3) (0.7, 0.4)
(0.5, 0.6) (0.5, 0.5) (0.3, 0.8) (0.8, 0.5)
(0.3, 0.9) (0.8, 0.3) (0.5, 0.5) (0.1, 0.9)
(0.4, 0.7) (0.5, 0.8) (0.9, 0.1) (0.5, 0.5)

 ,

R2 =


(0.5, 0.5) (0.3, 0.9) (0.7, 0.6) (0.5, 0.8)
(0.9, 0.3) (0.5, 0.5) (0.7, 0.4) (0.1, 0.7)
(0.6, 0.7) (0.4, 0.7) (0.5, 0.5) (0.3, 0.6)
(0.8, 0.5) (0.7, 0.1) (0.6, 0.3) (0.5, 0.5)

 ,

R3 =


(0.5, 0.5) (0.4, 0.9) (0.6, 0.5) (0.7, 0.4)
(0.9, 0.4) (0.5, 0.5) (0.7, 0.3) (0.2, 0.6)
(0.5, 0.6) (0.3, 0.7) (0.5, 0.5) (0.8, 0.4)
(0.4, 0.7) (0.6, 0.2) (0.4, 0.8) (0.5, 0.5)

 .

Utilizing the PFWA operator,

PFWA(r(1)ij , r(2)ij , . . . , r(s)ij ) =


√√√√1−

(
s

∏
k=1

(
1− (µ2

ij)
(k)
))1/s

,

(
s

∏
k=1

(νij)
(k)

)1/s
 ,

we can aggregate three PFPRs into group one:

R =


(0.50, 0.50) (0.46, 0.74) (0.77, 0.45) (0.65, 0.50)
(0.84, 0.42) (0.50, 0.50) (0.62, 0.46) (0.55, 0.59)
(0.49, 0.72) (0.59, 0.53) (0.50, 0.50) (0.56, 0.60)
(0.61, 0.63) (0.61, 0.25) (0.73, 0.29) (0.50, 0.50)

 .

Draw a directed network (shown in Figure 12) corresponding to a collective PFPR above.
Then, under the condition µij ≥ 0.5 (i, j = 1, 2, 3, 4), a partial diagram is drawn, as shown in
Figure 13.
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Figure 12. Directed network of the fused PFPR.
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Figure 13. Partial directed network of the fused PFPR.

Calculate the out-degrees out-d(Ci) (i = 1, 2, 3, 4) of all criteria in a partial directed network
as follows:

out-d(C1) = (1.42, 0.95), out-d(C2) = (2.01, 1.47),

out-d(C3) = (1.15, 1.13), out-d(C4) = (1.95, 1.17).

According to membership degrees of out-d(Ci) (i = 1, 2, 3, 4), we get the ranking of the factors
Ci (i = 1, 2, 3, 4) as:

C2 � C4 � C1 � C3.

Therefore, the most influential factor is quality and technical skills C2.
Now, utilizing the PFWG operator,

PFWG(r(1)ij , r(2)ij , . . . , r(s)ij ) =

( s

∏
k=1

(µij)
(k)

)1/s

,

√√√√1−
(

s

∏
k=1

(
1− (ν2

ij)
(k)
))1/s

 ,

we can aggregate three PFPRs into group one:

R =


(0.50, 0.50) (0.42, 0.84) (0.72, 0.49) (0.63, 0.61)
(0.74, 0.46) (0.50, 0.50) (0.53, 0.59) (0.25, 0.61)
(0.45, 0.77) (0.46, 0.62) (0.50, 0.50) (0.29, 0.73)
(0.50, 0.65) (0.59, 0.55) (0.60, 0.56) (0.50, 0.50)

 .

According to the fused PFPR above, draw the directed network as shown in Figure 14. We select
those PFNs whose membership degrees µij ≥ 0.5 (i, j = 1, 2, 3, 4) (see Figure 15). Calculate the
out-degrees out-d(Ci) of all criteria as follows:

out-d(C1) = (1.35, 1.1), out-d(C2) = (1.27, 1.05), out-d(C3) = (0, 0), out-d(C4) = (1.69, 1.76).

According to membership degrees of out-d(Ci) (i = 1, 2, 3, 4), we get the ranking of the factors
Ci (i = 1, 2, 3, 4) as:

C4 � C1 � C2 � C3.
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Therefore, the service level is the most influential factor.
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Figure 14. Directed network of the fused PFPR.
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Figure 15. Partial directed network of the fused PFPR.

3.3. Electronic Learning Main Factors Evaluation

The electronic learning (e-learning) not only can provide expediency for learners to study courses
and professional knowledge without the constraint of time and space especially in an asynchronous
distance e-learning system, but also may save internal training cost for some enterprises’ organizations
in a long-term strategy. The e-learning becomes more and more popular along with the advancement
of information technology and has played an important role in teaching and learning not only in
different levels of schools but also in various commercial or industrial companies. Many schools and
businesses invest manpower and money in e-learning to enhance their hardware facilities and software
contents. Thus, it is meaningful and urgent to determine which is the most important among the main
factors that influence the e-learning effectiveness. There are five key factors (or criteria) to evaluate the
effectiveness of an e-learning system [27]:

C1 : he synchronous learning;
C2 : the e-learning material;
C3 : he quality of web learning platform;
C4 : e-learning course flexibility;
C5 : the self-learning.
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In order to rank the above five factors, a committee comprising four decision makers
ek(k = 1, 2, 3, 4) (whose weight vector is w = ( 1

4 , 1
4 , 1

4 , 1
4 )) is founded. Based on their experiences,

the decision makers compare each pair of factors (or criteria) Ci(i = 1, 2, 3, 4, 5) and give individual
judgments using the following PFPRs Rk = (r(k)ij )5×5 (k = 1, 2, 3, 4):

R1 =



(0.5, 0.5) (0.8, 0.6) (0.7, 0.5) (0.4, 0.7) (0.1, 0.8)

(0.6, 0.8) (0.5, 0.5) (0.4, 0.5) (0.5, 0.6) (0.3, 0.5)

(0.5, 0.7) (0.5, 0.4) (0.5, 0.5) (0.7, 0.6) (0.6, 0.7)

(0.7, 0.4) (0.6, 0.5) (0.6, 0.7) (0.5, 0.5) (0.4, 0.8)

(0.8, 0.1) (0.5, 0.3) (0.7, 0.6) (0.8, 0.4) (0.5, 0.5)


,

R2 =



(0.5, 0.5) (0.2, 0.7) (0.4, 0.8) (0.6, 0.7) (0.3, 0.7)

(0.7, 0.2) (0.5, 0.5) (0.7, 0.5) (0.3, 0.8) (0.4, 0.5)

(0.8, 0.4) (0.5, 0.7) (0.5, 0.5) (0.6, 0.4) (0.6, 0.7)

(0.7, 0.6) (0.8, 0.3) (0.4, 0.6) (0.5, 0.5) (0.3, 0.5)

(0.7, 0.3) (0.5, 0.4) (0.7, 0.6) (0.5, 0.3) (0.5, 0.5)


,

R3 =



(0.5, 0.5) (0.7, 0.6) (0.3, 0.8) (0.4, 0.6) (0.2, 0.7)

(0.6, 0.7) (0.5, 0.5) (0.4, 0.7) (0.8, 0.1) (0.6, 0.5)

(0.8, 0.3) (0.7, 0.4) (0.5, 0.5) (0.7, 0.5) (0.4, 0.7)

(0.6, 0.4) (0.1, 0.8) (0.5, 0.7) (0.5, 0.5) (0.3, 0.5)

(0.7, 0.2) (0.5, 0.6) (0.7, 0.4) (0.5, 0.3) (0.5, 0.5)


,

R4 =



(0.5, 0.5) (0.6, 0.8) (0.1, 0.7) (0.3, 0.8) (0.7, 0.4)

(0.8, 0.6) (0.5, 0.5) (0.3, 0.5) (0.3, 0.4) (0.6, 0.7)

(0.7, 0.1) (0.5, 0.3) (0.5, 0.5) (0.2, 0.9) (0.3, 0.5)

(0.8, 0.3) (0.4, 0.3) (0.9, 0.2) (0.5, 0.5) (0.4, 0.8)

(0.4, 0.7) (0.7, 0.6) (0.5, 0.3) (0.8, 0.4) (0.5, 0.5)


.

Utilize the aggregation operator to fuse all the individual PFPRs Rk = (r(k)ij )5×5 (k = 1, 2, 3, 4)
into the collective PFPR R = (rij)5×5. Here, we apply the PFWA operator to fuse the individual PFPR.
Thus, we have

PFWA(r(1)ij , r(2)ij , . . . , r(s)ij ) =


√√√√1−

(
s

∏
k=1

(
1− (µ2

ij)
(k)
))1/s

,

(
s

∏
k=1

(νij)
(k)

)1/s
 ,

R =


(0.50, 0.50) (0.65, 0.67) (0.46, 0.69) (0.45, 0.70) (0.43, 0.63)

(0.69, 0.51) (0.50, 0.50) (0.49, 0.54) (0.56, 0.37) (0.50, 0.54)
(0.73, 0.30) (0.56, 0.43) (0.50, 0.50) (0.61, 0.57) (0.50, 0.64)
(0.71, 0.41) (0.58, 0.44) (0.69, 0.49) (0.50, 0.50) (0.35, 0.63)
(0.69, 0.25) (0.56, 0.46) (0.66, 0.46) (0.69, 0.35) (0.50, 0.50)

 .

Draw a directed network corresponding to a collective PFPR above, as shown in Figure 16.
Then, under the condition µij ≥ 0.5 (i, j = 1, 2, 3, 4, 5), a partial diagram is drawn, as shown in
Figure 17.



Mathematics 2018, 6, 95 25 of 28

C2

C1

C5

C3

C4

(0.6
5, 0.

67)

(0.46, 0.69)

(0.45, 0.70)

(0.43,0.63)

(0.6
9, 0.

51)

(0.49, 0.54)

(0.56, 0.37)

(0
.5
0,
0.
54
)

(0.73, 0.30)

(0.56, 0.43)

(0
.6
1,
0.
57
)

(0.5
0, 0

.64
)

(0.71, 0.41)

(0.58, 0.44)

(0
.6
9,
0.
49
)

(0.35, 0.63)

(0
.6
9,
0.
25
)

(0
.5
6,
0.
46
)

(0.6
6, 0.

46)

(0.69, 0.35)

Figure 16. Directed network of the fused PFPR.
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Figure 17. Partial directed network of the fused PFPR.

Calculate the out-degrees out-d(Ci) (i = 1, 2, 3, 4, 5) of all criteria in a partial directed network
as follows:

out-d(C1) = (0.65, 0.67), out-d(C2) = (1.75, 1.42), out-d(C3) = (2.4, 1.94),

out-d(C4) = (1.98, 1.34), out-d(C5) = (2.6, 1.52).

According to membership degrees of out-d(Ci) (i = 1, 2, 3, 4, 5), we get the ranking of the
factors Ci (i = 1, 2, 3, 4, 5) as:

C5 � C3 � C4 � C2 � C1.

Therefore, the self-learning is the most influential factor.
Now, utilizing the PFWG operator,

PFWG(r(1)ij , r(2)ij , . . . , r(s)ij ) =

( s

∏
k=1

(µij)
(k)

)1/s

,

√√√√1−
(

s

∏
k=1

(
1− (ν2

ij)
(k)
))1/s

 ,

we can aggregate four PFPRs into group one:

R =


(0.50, 0.50) (0.51, 0.69) (0.30, 0.73) (0.41, 0.71) (0.25, 0.69)
(0.67, 0.65) (0.50, 0.50) (0.43, 0.56) (0.44, 0.58) (0.46, 0.56)
(0.69, 0.46) (0.54, 0.49) (0.50, 0.50) (0.49, 0.69) (0.46, 0.66)
(0.70, 0.45) (0.37, 0.56) (0.57, 0.61) (0.50, 0.50) (0.35, 0.69)
(0.63, 0.43) (0.54, 0.50) (0.64, 0.50) (0.63, 0.35) (0.50, 0.50)

 .



Mathematics 2018, 6, 95 26 of 28

According to the fused PFPR above, draw the directed network as shown in Figure 18. We select
those PFNs whose membership degrees µij ≥ 0.5 (i, j = 1, 2, 3, 4, 5) (see Figure 19).
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Figure 18. Directed network of the fused PFPR.
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Figure 19. Partial directed network of the fused PFPR.

Calculate the out-degrees out-d(Ci) of all criteria as follows:

out-d(C1) = (0.51, 0.69), out-d(C2) = (0.67, 0.65), out-d(C3) = (1.23, 0.95),

out-d(C4) = (1.27, 1.06), out-d(C5) = (2.44, 1.78).

According to membership degrees of out-d(Ci) (i = 1, 2, 3, 4, 5), we get the ranking of the
factors Ci (i = 1, 2, 3, 4, 5) as:

C5 � C4 � C3 � C2 � C1.

Therefore, the self-learning is the most influential factor.
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3.4. Comparison with IFSs

In this sub-section, the application example concerning the evaluation of hospitals is compared
with IFSs, in order to present the novelty of the introduced approach.

To present a comparison with IFS methods, firstly, we check the constraint condition 0 ≤ µα + να ≤ 1
for the decision matrix of preference relations, as shown in Table 1.

Table 1. Checking intuitionistic fuzzy sets (IFSs) requirement to address the problem.

R x1 x2 x3 x4 x5

x1 0.5 + 0.5 = 1 0.8 + 0.3 > 1 0.7 + 0.6 > 1 0.9 + 0.4 > 1 0.8 + 0.6 > 1
x2 0.3 + 0.8 > 1 0.5 + 0.5 = 1 0.3 + 0.6 < 1 0.6 + 0.5 > 1 0.5 + 0.8 > 1
x3 0.6 + 0.7 > 1 0.6 + 0.3 < 1 0.5 + 0.5 = 1 0.5 + 0.8 > 1 0.4 + 0.7 > 1
x4 0.4 + 0.9 > 1 0.5 + 0.6 > 1 0.8 + 0.5 > 1 0.5 + 0.5= 1 0.3 + 0.9 > 1
x5 0.6 + 0.8 > 1 0.8 + 0.5 > 1 0.7 + 0.4 > 1 0.9 + 0.3 > 1 0.5 + 0.5 = 1

The bold values represent values that do not satisfy the mentioned constraint. From Table 1, it can
be observed that the space in which a number can be defined in IFSs is reduced in comparison with
PFSs. Since the values of experts’ judgments are not in the space of IFS, it is not possible to use the
exact values to IFSs methods. Therefore, it is concluded that using PFS increases the flexibility and
power of the experts in expressing their judgments and, while considering the limited space of IFSs
in comparison with PFSs, it is not possible to solve the case presented in this paper by using IFSs.
Similarly, the other application examples concerning the partner selection in supply chain management
and the electronic learning main factors evaluation can be compared with IFSs to show the superiorities
of the introduced approach.

4. Conclusions

A fuzzy graph can well describe the uncertainty of all kinds of networks. Pythagorean fuzzy
models give more precision, flexibility and compatibility to the system as compared to the classical,
fuzzy and intuitionistic fuzzy models. In this paper, we have introduced a new concept of PFGs. We
have developed a series of operational laws of PFGs and investigated their desirable properties in
detail. We have determined the degree and total degree of a vertex in PFGs formed by these operations
in terms of the degree of vertices in the given PFGs in some particular cases. We have proposed the
concept of PFPRs. Finally, applications of PFG theory in decision-making based on PFPRs are presented
to illustrate the applicability of the proposed generalization of fuzzy graph theory. We are extending
our research work to (1) Interval-valued Pythagorean fuzzy graphs; (2) Simplified interval-valued
Pythagorean fuzzy graphs; and (3) Hesitant Pythagorean fuzzy graphs.
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