
Research Article

A Novel Approach to Detect Malware Based on
API Call Sequence Analysis

Youngjoon Ki,1 Eunjin Kim,2 and Huy Kang Kim1

1Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 137-713, Republic of Korea
2Kyonggi University, Gwanggyosan-ro, Yeongtong-gu, Suwon 443-760, Republic of Korea

Correspondence should be addressed to Huy Kang Kim; cenda@korea.ac.kr

Received 7 November 2014; Revised 23 February 2015; Accepted 4 April 2015

Academic Editor: Praveen Rao

Copyright © 2015 Youngjoon Ki et al. 	is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the era of ubiquitous sensors and smart devices, detectingmalware is becoming an endless battle between ever-evolvingmalware
and antivirus programs that need to process ever-increasing security related data. For malware detection, various approaches
have been proposed. Among them, dynamic analysis is known to be e
ective in terms of providing behavioral information. As
malware authors increasingly use obfuscation techniques, it becomes more important to monitor how malware behaves for its
detection. In this paper, we propose a novel approach for dynamic analysis of malware. We adopt DNA sequence alignment
algorithms and extract common API call sequence patterns of malicious function from malware in di
erent categories. We �nd
that certain malicious functions are commonly included in malware even in di
erent categories. From checking the existence of
certain functions or API call sequence patterns matched, we can even detect new unknown malware. 	e result of our experiment
shows high enough �-measure and accuracy. API call sequence can be extracted from most of the modern devices; therefore, we
believe that our method can detect the malware for all types of the ubiquitous devices.

1. Introduction

Nowadays, power-saving techniques and enhanced comput-
ing power allow us to use sensors as multifunctional devices.
	ey can perform complex tasks and are connected to the
Internet all the time. 	ey are now playing a major role in
sensing and generating big data in IoT (Internet of 	ings)
era. Besides, the increased use of the mobile smart devices
also allows us powerful ubiquitous computing. Ubiquitous
sensors and smart devices are becoming critical source of
data. However, as their operating system and so�ware are
almost same to the traditional Windows based system or
UNIX based system, traditional malware and exploit can
work on these small smart sensors and devices, the use
of which is exponentially increased. 	erefore, it becomes
critical tomanage ever-evolvingmalware and related security
risks in the era of ubiquitous sensors and smart devices.

Various approaches have been proposed for malware
detection [1–3]. Detection techniques proposed earlier were
based on static analysis. Static analysis examines the binary
code, analyzes all possible execution paths, and identi�es

malicious code without execution [4]. However, analyzing
binary code turns out to be dicult nowadays. As obfuscation
techniques become more sophisticated, static analysis can
be bypassed by various obfuscation techniques, such as
polymorphism, encryption, or packing [4]. In addition, as
static analysis relies on a prebuilt signature database, it cannot
easily detect new unknown malware until the signature is
updated [4, 5]. Besides, some execution paths can be only
explored a�er execution [4, 5]. To overcome these limitations
of static analysis and complement it, dynamic analysis has
been proposed and is widely used to achieve more e
ective
malware detection.

Techniques based on dynamic analysis execute malware
and trace its behaviors. Two major approaches in dynamic
analysis are control �ow analysis and API call analysis. Both
approaches detect malware based on analysis of similarity
between the behavior of the new and the known ones.
However, malware authors try to circumvent those tech-
niques through inserting meaningless codes or shu�ing the
sequence of programs.
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Figure 1: Chronicles of advances in malware analysis.

Many of currently available API call analysis techniques
fail to detect malware of such circumvention. Some tech-
niques focus on extracting APIs that are frequently observed
in malware in each class [6, 7]. 	ey monitor APIs that are
called and calculate the frequency and total number of events
that certain API function called. Even though they quickly
reveal the characteristics of malware in the same class, they
fail to show the sequence of malware behavior and can be
easily evaded by malware authors’ inserting and executing
dummy and redundant API calls.

Others extract API call sequence for each class and
develop static signature based on it [8–11]. 	ey are better
from the semantic view because they monitor the sequence
of calls and the �ow of programs. However, simply creating
signatures from the extracting frequently found that call
sequence for malware in each class does not allow them to
detect malware in polymorphic or unknown form. It can
be also evaded by malware authors’ evading tricks such as
inserting redundant API calls. 	is incurs the need for new
approaches in API call sequence analysis.

Recent few studies focus on the fact that unless the main
purpose or functions of themalware are not changed, the crit-
ical low-level system call sequence does not change. 	ere-
fore, instead of extracting API call sequence for malware in
each class, they propose to focus onAPI call sequence for cer-
tain functions of malware [12–14]. However, such approach
has not been empirically well studied comparing to the API
call sequence analysis techniques proposed previously. In this
study, with a large set of data, we empirically study whether
such approach generates superior results comparing with the
previous ones.

In this study, we adopt sequence alignment algorithm
which is known to performwell in extracting the similar sub-
sequences from the di
erent sequences. Sequence alignment
algorithm will make us less confused by meaningless codes
inserted in malware in its detection. Sequence alignment
algorithms have been applied in various areas such as natural
language processing and biometrics and have proven their
excellence [15]. In this paper, we propose a new approach

in API call sequence analysis with introducing sequence
alignment algorithm. 	e rest of the paper is organized as
follows. In Section 2, we review the related literature. In
Section 3, we present our methodology and experiment.
In Section 4, we conclude our research and suggest future
research direction.

2. Literature Review

2.1. Malware Analysis. Malware analysis has made its
advances as shown in Figure 1. Signature based detection was
proposed in its early stage. In this stage, automatic generation
of malware’s signatures as much as possible was assumed
to be important and this increased pattern matching speed
[16, 17].

However, the signature based detection method shows
following weaknesses. It requires continuous updates of sig-
nature and high maintenance cost. In addition, such method
could be easily evaded by malware in polymorphic form [5].
To overcome theweakness, it embraces code normalization to
capture the canonized original maliciousness [18]. 	rough
this, capturing malicious codes that vary by polymorphic
techniques applied becomes possible. However, it is still weak
in detecting obfuscated malware. Besides, some execution
paths could be only explored a�er execution [4, 5].

Malware analysis technique kept its advance due to cer-
tain needs; hence, dynamic analysis was proposed. Dynamic
analysis methods are known to perform well for obfuscated
malware [3]. Dynamic analysis executes malware, monitors
how it behaves, and detects unknown malware that shows
similar behavior to the known ones [3]. Two major dynamic
analysismethods that arewell known are control �ow analysis
and API call analysis [19, 20].

API call information shows how malware behaves. API
call information can be extracted by both static and dynamic
approaches. With static approach [6, 10, 11, 21], API list can
be extracted from PE format of the executable �les. With
dynamic approach [7–9, 22–24], the APIs that are called can
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Table 1: Comparison of previous researches.

Reference Method # of malware �-measure Accuracy Used feature

Alazab et al., 2011 [21] Static analysis 66,703
0.984

(for detection)
0.985 Frequency of API usage

Sathyanarayan et al., 2008 [6] Static analysis 800
0.909

(for detection)
0.841 API call sequence

Tian et al., 2010 [7] Dynamic analysis 1,368
0.969

(for detection)
0.973 Frequency of API usage

Sami et al., 2010 [10] Static analysis 32,000
0.878

(for detection)
0.983 Frequency of API usage

Ye et al., 2007 [11] Static analysis 17,366
0.941

(for detection)
0.930 API call sequence

Ahmed et al., 2009 [22] Dynamic analysis 416
—

(not mentioned)
0.98 API call sequence

Rieck et al., 2011 [26] Dynamic analysis 3,133
0.950

(for clustering)
— API call sequence

Qiao et al., 2014 [23] Dynamic analysis 3,131
0.909

(for clustering)
— API call sequence

Qiao et al., 2013 [24] Dynamic analysis 3,131
0.947

(for clustering)
— API call sequence

Our method Dynamic analysis 23,080
0.999

(for detection)
0.998 API call sequence

be observed by running the executable �les (usually run on
virtual machine).

	ere are two major ways to analyze the API call infor-
mation gathered through the static approach. 	e �rst one
applies simple statistical analysis, for example, counting the
frequency of the called APIs, which can be used as a feature
for classifyingmalware [6].	e second approach applies data
mining or machine learning techniques to the collected API
call information [21].

On the other hand, API call sequence information col-
lected through the dynamic approach can be used for creat-
ing behavioral patterns. 	e information gathered through
the dynamic approach can also be processed using simple
statistics such as frequency counting [7] and data mining or
machine learning [8, 22, 24].

Besides, researchers �nd other ways to process API call
sequence information. Some previous studies applied API
call graph [13]. 	ere are many variations of call graph
analysis. In [25], researchers adopted social network analysis
methods to �nd meaningful features for call graph analysis.
In [9], researchers calculate the similarity between API call
sequences based on cosine similarity function and extended
Jaccard measure. Recent works [19, 20, 26, 27] use additional
information such as control �ow information and API argu-
ment information to increase the accuracy in the mining
process.

In Table 1, we summarize the previous empirical studies
on API call analysis and their overall performances. We also
compare them with our approach. In this study, we adopted
dynamic method to extract the API call sequences. To get
patterns that are rigor, we applied DNA sequence alignment
algorithms (MSA and LCS). By using both extracted API call
sequence patterns and critical API call sequences, we can
detect the unknown malware or variants with high accuracy.

2.2. DNA Sequence Alignment. Sequence alignment algo-
rithms are most widely used in the area of biometrics to cal-
culate the similarity between two or more DNA sequences or
to �nd certain DNA subsequences from full DNA. Sequence
alignment algorithms fall into two categories, which are
global and local alignment [15]. Global alignment aligns
entire sequence. It is useful when we attempt to �nd the
sequence of most similar length and strings. 	e well-known
global alignment algorithm is the Needleman-Wunsch algo-
rithm [28]. Local alignment �nds the highly similar subse-
quences between given sequences [15]. 	e Smith-Waterman
algorithm is the well-known local alignment algorithm [29].

Pairwise sequence alignment methods �nd global align-
ments or the locally similar subsequences of two sequences.
Multiple sequence alignment algorithm extends pairwise
alignment to handle multiple sequences at the same time
[15]. Since we need to handle multiple API call sequences, we
applied multiple sequence alignment algorithm in this study.

3. Methodology

3.1. Environment Setup for Dynamic Analysis. For our exper-
iment, we set up a virtual environment to run malicious
programs. To trace API call sequence in runtime, we hook the
program. In this study, we used the Detours hooking library
[30] supported byMicroso� to trace API call sequences from
Windows executable programs.

	e Detours hooking process proceeds as shown in
Figure 2 [30]. Unlike the original process without Detours,
the hooking process goes through the Detour function and
theTrampoline function. Before the target function starts, the
Detour function leaves the log of the target function’s name.
A�er the Detour function ends, the Trampoline function that
saves the start address of the target function begins. A�er
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Figure 2: Hooking process of Detours.

the target function �nishes, the Detours function also can
check the end of target function. 	is allows us to trace API
call sequence.

For experiment, we set up a virtual machine environment
to run and monitor any suspicious executable programs’
behavior. VirtualBox [31] was used to execute malware and
observe its activity. We adopted 32-bit Windows XP Service
Pack 3 as the virtual machine’s operating system because
most malware easily runs on a Windows XP environment.
In addition, we set the maximum monitoring period as two
minutes for the default value to trace each API call sequence.
	is monitoring period is con�gurable.

For DNA sequence alignment, we used the ClustalX
[32]. ClustalX is widely used freeware in genome sequence
analysis, such as DNA, RNA, or protein sequences. 	e
program supports multiple sequence alignment (MSA) [33]
and also provides visualization.

Figure 3 shows the result of sequence alignment by
ClustalX.

Figure 3(a) presents the API call sequences found in some
malware samples in the same class and Figure 3(b) shows the
result a�er applying MSA. 	is shows that, for those given
malware samples, malware in the same family shares much
common call subsequences. In Figure 3(b), each horizontal
line represents an API call sequence of eachmalware, and the
vertical line shows the common API call subsequence among
malware in the same class. 	e API subsequence is colored
according to the related functionality.

3.2. Dataset Preparation. To create a dataset, we chose 23,080
malware samples randomly from the malware dataset of the
Malicia-project [34] and VirusTotal [35].

We share our dataset used in this paper online. Table 2
shows simple statistics about our dataset. 	e whole dataset
(including malware, benign so�ware, and their call sequence
list) is accessible from the URL (http://ocslab.hksecurity.net/
apimds-dataset).

3.3. Limitation of Using Antivirus Program’s Labeling Infor-
mation. As we mentioned earlier in Sections 1 and 2, many
previous studies on API call analysis classi�edmalware based
on the antivirus program vendors’ labeling. However, such
labeling can lead to an error as shown in Figure 4.

Figure 4 shows that malware in the same label group can
vary in terms of the API call sequence. Malware listed in
Figure 4 is labeled as Trojan-FakeAV.Win32.Security Shield.

Table 2: Dataset description.

Category Subcategory Ratio (%)

Backdoor 3.37

Worm

Worm 3.32

Email-Worm 0.55

Net-Worm 0.79

P2P-Worm 0.3

Packed 5.57

PUP

Adware 13.63

Downloader 2.94

WebToolbar 1.22

Trojan

Trojan (Generic) 29.3

Trojan-Banker 0.14

Trojan-Clicker 0.12

Trojan-Downloader 2.29

Trojan-Dropper 1.91

Trojan-FakeAV 18.8

Trojan-Game	ief 0.63

Trojan-PSW 3.79

Trojan-Ransom 2.58

Trojan-Spy 3.12

Misc. 5.52

For ease of explanation, we divide malware into groups (a),
(b), and (c). While malware in groups (a) and (b) shows a
similar API call sequence pattern within the group, we can
only observe partial similarity between groups (a) and (b).
Malware in group (c) shows a large di
erence in the API call
sequencewithin the group. Group (c) also di
ers signi�cantly
from groups (a) and (b) in the API call sequence pattern.

As described above, malware in the same class can have
quite di
erent call sequences. On the other hand, mal-
ware in di
erent classes can have common call sequen-
ces. For example, in our dataset, the three malware
classes, “HEUR:Trojan.Win32.Generic,” “Trojan.Win32. Fak-
eAV.lhiz,” and “Packed.Win32. Katusha.o,” show high sim-
ilarity among them.

3.4. Categorization of APIs. In our dataset, 2,727 kinds
of API were found; we categorized them into 26 groups
according to MSDN library [36]. Table 3 shows an example
of API classi�cation. For example, CallNextHook API and
SetWindowsHookAPI are categorized as class A, the hooking
functions. Likewise, DeviceIoControl API and DvdLauncher
API are categorized as class Z, the device control. If there
exists an API call sequence such as [CallNextHook, Delete-
File, DeviceIoControl], the categorized API call sequence
becomes [A, B, Z].

3.5. Extraction of Longest Common Subsequence. To extract
the common API call sequence pattern among malware, the
longest common subsequences (LCSs) [37] were used. 	e
formula is shown in (1). In the formula, �� and �� represent
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(a) (b)

Figure 3: Visualization of API call sequences of Trojan.PSW.Win32.Tepfer. (a) Visualization of API call sequence before applying multiple
sequence alignment. (b) Visualization of API call sequences a�er applying multiple sequence alignment.

(a)

(b)

(c)

Figure 4: An example of MSA result of Trojan-FakeAV.Win32.Security Shield.

the �th character of sequences � and �, respectively. For
example, the LCSs of ABCD and ACB are AB and AC:

LCS (��, ��)

=

{{{{{{{
{{{{{{{
{

0 if � = 0,
or  = 0,

LCS (��−1, ��−1) + common character if �� = ��,
longest (LCS (��, ��−1) , LCS (��−1, ��)) if �� ̸= ��.

(1)

Since the LCS shows the longest malware API call sequence
pattern, it can be treated as a malware’s signature.

	e LCS of malware can contain the same API call
sequences that exist in benign programs. 	is occurs when
malware uses generic APIs commonly used in any programs
(e.g., API calls used in GUI). To reduce this kind of false

positive error, we excluded these typical LCSs from our
signature database.

3.6. Critical API Call Sequences of KnownMalicious Activities.
To improve the usefulness of API call sequences as features
for detecting malware more accurately, we employed an
additional feature. We assumed that there exists a speci�c
API call sequence pattern that matches speci�c malicious
activity. If such an API call sequence pattern exists, we can
detect unknown attacks by checking whether a critical API
call sequence pattern exists. To verify the existence of a critical
API call sequence pattern of malware, we created pro�les of
theAPI call sequences of known attacks, which can be further
used for unknown attack detection.

Examples of critical API call sequence patterns found in
our sample malware are shown in Table 4. It should be noted
that round brackets represent the OR relation. For example,
in the case of IAT hooking, one possible critical API call
sequence pattern is [LoadLibrary, strcmp, VirtualProtect].
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Table 3: Description, example, and the number of APIs by API class.

Class Description Example Number of APIs

Class A Hooking functions CallNextHookEx, SetWindowsHookEx 22

Class B Files and directories DeleteFile, CopyFile, CreateDirectory 360

Class C Registry modi�cation RegCreateKey, RegDeleteValue 77

Class D Synchronization CreateMutex, CreateMutexEx 225

Class E Memory allocation HeapAlloc, GlobalMemoryStatus 126
... ...
Class Z Device management DeviceIoControl, DvdLauncher 37

Total 2,727

Table 4: Malicious activities and their critical API call sequence pattern.

Malicious activity Critical API call sequence

DLL injection using
CreateRemote	read

OpenProcess, VirtualAllocEx, WriteProcessMemory, CreateRemote	read

IAT hooking LoadLibrary, (strcmp, strncmp, stricmp, strnicmp), VirtualProtect

Antidebugging (IsDebuggerPresent, CheckRemoteDebuggerPresent, OutputDebugStringA, OutputDebugStringW)

Screen capture
(GetDC, GetWindowDC), CreateCompatibleDC, CreateCompatibleBitmap, SelectObject, BitBlt,
WriteFile

In this case, strcmp can be replaced with strncmp and it
becomes another possible critical API call sequence pattern
[LoadLibrary, strncmp, VirtualProtect].

	e following descriptions explain how certain malicious
activities are carried out using the critical API call sequence
pattern found.

(i) DLL injection: various methods for injecting
Dynamic Link Library (DLL) into a target process
exist, the most popular of which is to use Crea-
teRemote	read API, introduced by Je
ery Ritcher
in the 1990s [38]. First, the method gets a handle of
the target process by using OpenProcess. 	en, it
allocates some space in the target process’ memory
using VirtualAllocateEx and writes the DLL’s name,
including full path, to the allocated memory by using
WriteProcessMemory. Finally, it makes the target
process reload the DLL using CreateRemote	read.

(ii) IAT hooking: the Import Address Table (IAT) con-
tains the API’s start address. By modifying the
address, a di
erent API can be called although the
legitimate API is called. 	e process is as follows.
First, it loads the target library using LoadLibrary.
A�er �nding the DLL from the IAT by comparing
related APIs (e.g., strcmp), it modi�es an attribute of
the memory to be writable by using VirtualProtect
and changes the address of the DLL.

(iii) Antidebugging: there are many methods of detecting
a debugging process using the API. For example,
if the return value of the IsDebuggerPresent API is
1, this means that the program is being debugged.
Antidebugging itself may not be a malicious activity,
but it is o�en observed in malware.

Table 5: Scanning result of malicious behavior.

Malicious
behavior

Number of detections
for malware

Number of detections
for benign programs

DLL injection 23 0

IAT hooking 5,481 0

Antidebugging 16,385 51

Screen capture 14 0

(iv) Screen capture: backdoor o�en captures the screen
and saves it as an image �le. 	e process is as follows.
First, it gets a handle of the window using an API,
such as GetDC. 	en, it creates a compatible space
for saving the image using CreateCompatibleDC and
CreateCompatibleBitmap. A�er choosing the image’s
pointer using SelectObject, it copies the image to
the memory space using BitBlt. Finally, it writes the
captured image as a �le using WriteFile.

We checked whether such critical API call sequence
patterns and related malicious activities found in malware
distinguish malware from benign programs. As shown in
Table 5, we can observe that DLL injection, IAT hooking, and
screen capture activities and their related API call sequences
are found only in malware. However, antidebugging activity
was found both in malware and benign programs. 	is
activity was detected in malware much more frequently. 	is
result shows the existence of unique behaviors ofmalware and
their related critical API call sequence. We believe that this
behavior-based malware classi�cation can be e
ective in the
dynamic analysis of API call sequences.

3.7. Overall Process. To summarize, our overall process is
described in Figure 5. In the creating signature process,
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Figure 5: Overall process of our methodology.
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Figure 6: Overview of the proposed malware detection system,
APIMDS.

the API call sequence of malware is extracted and stored in
the signature database. MSA is applied to extract the LCS.
	e preanalyzed critical API call sequence is also stored in
the signature database.

In the analysis process, the extracted API call sequence
of a newly inserted program is compared with the API
signatures in the database. If any LCS is matched with the sig-
natures, the newly inserted program is classi�ed as malware.
In addition, when the newly inserted program has a matched
critical API call sequence, the detected functionalities are
reported as well.

3.8. Prototype Implementation. We implemented our mal-
ware detection system, API-based malware detection system
(APIMDS) based on API call sequence analysis. As can be
seen in Figure 6, when a new program needs to be traced,
the hooking process monitors and tracks the program’s API
call sequences. A�er extracting the API call sequences from
the program, the system compares them with our API call
sequence database of APIMDS. If matched, APIMDS alerts
the security administrator.

3.9. Accuracy Test. We used 70% of the malware and benign
programs to train the process and tested the accuracy using
the remaining 30%. 	e test results are shown in Table 6.
	ere is no false positive because the benign LCS sequences
were excluded, as explained in Section 3.5.

Table 6: Confusion matrix of classi�cation result.

Category
Predicted class

Malware Benign

Actual class

Malware 6,910 (TP) 8 (FN)

Benign 0 (FP) 26 (TN)

FPR (False Positive Ratio) = FP/(FP + TN) = 0.
FNR (False Negative Ratio) = FN/(FN + TP) = 0.0011.
Recall = TP/(TP + FN) = 0.998.
Precision = TP/(TP + FP) = 1.
�1 score = 2TP/(2TP + FP + FN) = 0.999 (where TP is true positive, TN is
true negative, FP is false positive, and FN is false negative).

To summarize, the precision is 1, and recall is 0.998. 	e
�1 score is 0.999. 	is implies that our proposed malware
detection method is highly reliable.

3.10. Limitations and Future Works. DNA sequence align-
ment algorithms consume much resources and time. MSA is
known asNP-Complete, and computing LCS is known asNP-
hard problem.	erefore, the computing cost ofMSAandLCS
is not negligible. However, most malicious programs’ size is
relatively smaller than benign programs. In our experiment,
computing MSA of 1,000 sequences took around 30 seconds
under Intel i5 core and 8GB memory PC environment.

In addition, to overcome such complexity issue, we
adopted blacklist andwhitelist based �ltering, which excludes
well-knownbenign ormalicious programs. In order to reduce
the computing cost, we recommend updating well-known
benign programs or malicious programs list continuously
from trustable sites. For example, this so�ware list can be
retrieved from the National So�ware Research Library [39].

Recent malware can hide their activities by using logic
bomb or checking the defender’s presence (e.g., checking
the debugger process). Furthermore, they tend to adopt
the obfuscation techniques. 	erefore, detecting malware’s
hiding functionalities becomes challenging. Although several
works try to detect logic bomb [40, 41] by using the symbolic-
execution method, this method is not cheap. Our system can
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detect the antidebugging functionality that includes the API
calls such as Sleep, GetLocalTime, and IsDebuggerPresent.
However, there are other patterns to hide malware’s activities.
We need to enhance our system to better detect antidebug-
ging functionality in the future.

	e hooking process used in this study can only trace
user-level APIs, and, therefore, the API call sequences cannot
be logged if malware uses kernel-level APIs. In future work,
we will consider malware using kernel-level APIs. We expect
that this will improve the accuracy of the proposed system.

In the future, with the proliferation of mobile platform
and the introduction of IoT (Internet of 	ings), we need to
adjust our system for the use in those eras.

Our prototype is not well elaborated for practitioners.
Hence, further study or elaboration is needed in the future.

4. Conclusion

In this paper, we proposed a novel method of API call
sequence analysis. We found that antivirus vendors’ labeling
of malware could be less accurate to be applied in the
dynamic analysis of API call sequences. 	erefore, instead of
extracting API call sequence for each class, we extract API
call sequence patterns from malware in di
erent categories,
focusing on commonmalware functions.	en, we developed
a signature database and the proposed APIMDS for detecting
malware based on the signature. Experimentally, our system
showed promising detection results with high accuracy and
extremely low error rate.

Manymalware detection systems rely on the signature of a
malware’s static information, such as �le size, process, and its
artifacts.	erefore, they fail to detect new unknownmalware
until the signature has been updated. In contrast to the
signature of the malware’s static information, our signature
database of dynamic information of critical API call sequence
patterns allows us to generalize malware behavior and facil-
itates the e
ective detection of new unknown malware. Our
method can be applied to both of the traditional PCs and new
smart devices if the devices can extract and send the extracted
API call sequence information to the analysismodule outside.
Because API call sequence is well abstracted behavioral data
that can be extracted from most of the device, therefore, our
method can detect the attack by analyzing the big data that are
extracted from the ubiquitous devices such as sensors, smart
devices, PCs, and servers.

We believe that our proposed system can be applied in a
new type of cyber security intelligence system that is required
to investigate ever-evolving malware.
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