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Abstract—Large-scale computer network attacks in their final
stages can readily be identified by observing very abrupt changes
in the network traffic. In the early stage of an attack, however, these
changes are hard to detect and difficult to distinguish from usual
traffic fluctuations. Rapid response, a minimal false-alarm rate,
and the capability to detect a wide spectrum of attacks are the cru-
cial features of intrusion detection systems. In this paper, we de-
velop efficient adaptive sequential and batch-sequential methods
for an early detection of attacks that lead to changes in network
traffic, such as denial-of-service attacks, worm-based attacks, port-
scanning, and man-in-the-middle attacks. These methods employ a
statistical analysis of data from multiple layers of the network pro-
tocol to detect very subtle traffic changes. The algorithms are based
on change-point detection theory and utilize a thresholding of test
statistics to achieve a fixed rate of false alarms while allowing us to
detect changes in statistical models as soon as possible. There are
three attractive features of the proposed approach. First, the de-
veloped algorithms are self-learning, which enables them to adapt
to various network loads and usage patterns. Secondly, they allow
for the detection of attacks with a small average delay for a given
false-alarm rate. Thirdly, they are computationally simple and thus
can be implemented online. Theoretical frameworks for detection
procedures are presented. We also give the results of the experi-
mental study with the use of a network simulator testbed as well as
real-life testing for TCP SYN flooding attacks.

Index Terms—Attack detection, change point detection, denial of
service, intrusion detection, man-in-the-middle, network security,
network traffic, nonparametric detection, port scanning, sequen-
tial tests, service survivability, worm.

I. INTRODUCTION

THE goal of this paper is to show that recent advances in
the change-point detection theory [1], [5], [8], [12], [15],

[28]–[34] can be successfully applied in the design of anomaly
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R. B. Blažek is with Advanced Science and Novel Technology, Rancho Palos
Verdes, CA 92075 USA and the Center for Applied Mathematical Sciences,
University of Southern California, Los Angeles, CA 90089-2532 USA (e-mail:
blazek@math.usc.edu).

H. Kim is with the Department of Mathematics, Korea University, Seoul 136-
701, Korea (e-mail: hongjoong@korea.ac.kr).

Digital Object Identifier 10.1109/TSP.2006.879308

detection systems for the early detection of intrusions in com-
puter networks. We show that the asymptotic theory that has
been developed for change-point detection is useful in intrusion
detection problems; it also allows for the development of ef-
ficient algorithms that are easily implemented and, at the same
time, have certain optimality properties. While change-point de-
tection methods have been extensively used in many branches of
signal processing (such as statistical process control, target de-
tection, and tracking), the application of these powerful methods
to network security is still in its infancy.

Large-scale attacks on computer networks usually cause
abrupt changes (anomalies) in the network traffic. Typical
examples include denial-of-service (DOS) attacks, worm-based
attacks, port-scanning, and address resolution protocol (ARP)
man-in-the-middle (MIM) attacks. In this paper, we develop ef-
ficient adaptive nonparametric sequential and batch-sequential
methods for an early detection of such attacks.

Existing intrusion detection systems (IDSs) can be classified
as either signature detection systems or anomaly detection sys-
tems (see, e.g., [14]). Signature detection systems detect attacks
by comparing the observed patterns of the network traffic with
known attack templates (signatures). If the true attack belongs
to the class of attacks listed in the database, then it can be suc-
cessfully detected and, moreover, identified. Examples of sig-
nature-based IDSs are Snort [26] and Bro [23]. Anomaly de-
tection systems compare the parameters of the observed traffic
with “normal” network traffic. The attack is declared once a de-
viation from a normal traffic is observed. Examples of ad hoc
anomaly IDSs are MULTOPS [11] and D-WARD [19].

The approach we undertake here belongs to the class of
anomaly-based intrusion detection systems (ABIDSs), which
compare the parameters of the observed traffic with normal net-
work traffic. The idea of the approach is based on the observation
that DOS, worm, port-scanning, and MIM attacks typically
lead to relatively abrupt changes in statistical models of traffic
compared to the traffic’s “normal mode.” These changes occur
at unknown points in time and should be detected “as soon as
possible.” Therefore, the problem of detecting an attack can be
formulatedandsolvedasachange-pointdetectionproblem:tode-
tect a change in the distribution (model) with a fixed delay (batch
approach) or minimal average delay (sequential approach),
while controlling the rate of false detections. (See [1], [15], and
[28]–[34] for relevant results of change-point detection theory.)
In addition, we combine both methods (batch and sequential)
in one unit to develop a multistage (batch-sequential) detection
algorithm.
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The developed detection algorithms have several attractive
features. First, they have manageable computational complexity
and thus can be implemented online. Secondly, both algorithms
are self-learning, which enables them to adapt to various net-
work loads and usage patterns. Thirdly, the sequential algorithm
has optimal properties among the totality of algorithms with a
prespecified false-alarm rate (FAR). It is the quickest detection
algorithm in the sense that it minimizes the average delay to
detection of an attack for a given FAR. In addition, when aug-
mented with the feedback about false alarms from an appro-
priate decision-making authority monitoring the quality of the
provided service, these adaptive methods can be used to pre-
dict traffic overflows and resource hogging. This will allow the
system to manage the available resources dynamically to ensure
the survivability of the service.

In contrast to [9] and [35] and many other works where para-
metric models (including hidden Markov models) have been
considered, we use a nonparametric approach that has much
more robust properties.

This paper is organized as follows. In Section II, we give an
overview of the contemporary quickest detection methods and
relevant results in change-point detection theory. Section III
discusses issues related to the measurable characteristics of the
network traffic and importance of rapid detection of DOS attacks.
In Section IV, we propose two nonparametric detection algo-
rithms, fully sequential and batch-sequential, and discuss their
asymptotic performance for low FAR. In Section V, we evaluate
the performance of the sequential detection algorithm for de-
tecting DOS attacks based on experiments in a network simulator
testbed. The results of Monte Carlo simulations for realistic
scenarios show that the performance of the sequential detection
algorithm is very high. The detector allows for rapid detection of
typicalDOSattackssuchasuserdatagramprotocol (UDP)packet
storm, Internet Control Message Protocol (ICMP) ping of death,
and transmission control protocol (TCP) SYN DOS. The results
are further validated in Section VI, where we test the proposed
sequential nonparametric detection procedure in real environ-
ment in detecting TCP SYN flooding attacks based on data sets
collected by the Massachusetts Institute of Technology (MIT)
Lincoln Laboratory. The results of comparison with two other
efficient detection schemes are also presented in this section.

II. OVERVIEW OF SEQUENTIAL AND BATCH

DETECTION METHODS

Network intrusions occur at unknown points in time and lead
to changes in the statistical properties of certain observables.
Therefore, the problem of detecting attacks can be formulated
and solved as a change-point detection problem: detect changes
in the distributions (models) with fixed delays (batch approach)
or minimal average delays (sequential approach), while main-
taining the FAR at a given level. Choosing the relevant net-
work flow and resource usage characteristic that are to be ob-
served represents a crucial aspect of the development of the local
ABIDS. The observables used for our experiments are discussed
in Section III.

There are two main approaches to detecting abrupt changes in
stochastic models: the fixed-size batch detection (or a posteriori
methods) and sequential change-point detection [1], [5], [28]. In

the latter setting, the problem is formulated as a quickest detec-
tion problem: detect a change in the model as rapidly as possible
after its occurrence, while maintaining the FAR at a given level.
In what follows, we will focus on sequential and batch-sequen-
tial methods for detecting attacks. The latter ones perform fixed
size processing in every stage of a multistage sequential deci-
sion-making process.

The design of the quickest (sequential) change-point detec-
tion procedures involves optimizing the tradeoff between two
kinds of performance measures, one being a measure of detec-
tion delay and the other being a measure of the frequency of
false alarms. There are two standard mathematical formulations
for the optimum tradeoff problem. The first of these is a min-
imax formulation proposed by Lorden [16] and Pollak [24], in
which the goal is to minimize the worst case delay subject to a
lower bound on the mean time between false alarms. The second
is a Bayesian formulation, proposed by Shiryaev [27], in which
the change point is assumed to have a prior distribution and the
goal is to minimize the expected delay subject to an upper bound
on false-alarm probability. Therefore, the sequential detection
methods (both Bayesian and non-Bayesian) involve two perfor-
mance indexes: the rate of false alarms and the detection delay.
In what follows, we will not consider the Bayesian change de-
tection problem, as the prior distribution of the change point is
usually unknown in applications of interest.

Let , , be a sequence of observations that are
being chosen for monitoring. The observed random variables

have a joint probability density function (pdf)
(baseline distribution) until a change occurs

at an unknown point in time , . After the
change occurs, the observations have another distribution

. In other words, it is assumed that
have the conditional pdf for
and the conditional pdf for ,
where and are prechange and postchange pdfs, respec-
tively. Therefore, if the change occurs at time , then
the conditional density of the th observation changes from

to .
A sequential change-point detection procedure is identified

with a stopping time for an observed sequence ,
i.e., the time of alarm , at which it is declared that a change
has occurred, is a random variable depending on the obser-
vations. A good detection procedure should have a low FAR
and small values of the expected detection delay, provided
that there is no false alarm. To be more specific, let and

denote the probability and the expectation that correspond
to the sequence when the change occurs at
time . For the situation when there is no change (i.e.,

), we will use the notation and
, where is a prechange distribution.
When we compute the performance of the detection pro-

cedures, we will be interested in the average detection delay
(ADD) and the FAR, which are defined by

ADD FAR

There are two major competitive sequential change-point de-
tection algorithms: Page’s cumulative sum (CUSUM) detection
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procedure and the Shiryaev–Roberts–Pollak detection proce-
dure [1], [24], [28]. Both approaches utilize the log-likelihood
ratio (LLR) for the hypotheses that the change occurred at the
point and that there is no change at all , which is
defined as

Page’s CUSUM procedure is motivated by a maximum like-
lihood argument. It is based on the comparison of the maximum
LLR statistic with a threshold

(1)

Note that under the condition and in the case
of independent identically distributed (i.i.d.) obser-
vations when and

, the statistic in (1) can
be replaced by the statistic which obeys the recursion

(2)

with the initial condition . This latter representation is
a basis for the nonparametric detection algorithm proposed in
Section IV-A.

The Shiryaev–Roberts–Pollak procedure is motivated by
Bayesian, rather than maximum likelihood, considerations.
Specifically, define the statistic ,
which can be regarded as an average likelihood ratio. The cor-
responding detection algorithm is identified with the stopping
time

(3)

It is known [1], [16], [24], [28] that in the i.i.d. case both
detection methods minimize the worst case average detection
delay ADD among the detection algorithms for which
the FAR is fixed at a given level , i.e., FAR FAR.
The threshold values should be chosen from the conditions

FAR and . In the prelimi-
nary engineering computations, one can set ,
which guarantees the inequalities FAR and
FAR .

However, the i.i.d. assumption is very restrictive for intru-
sion detection applications. Recent advances in general change-
point detection theory (see Lai [15], Tartakovsky [31], and Tar-
takovsky and Veeravalli [33], [34]) allow us to conclude that
the detection procedures (1) and (3) are also optimal for general
statistical models when the FAR is low ( is small). While
being asymptotically optimal, the corresponding sequential pro-
cedures have manageable computational complexity. The latter
features make them very attractive for intrusion detection appli-
cations where the observed data are usually correlated and non-
stationary, even bursty, due to substantial temporal variability.

Another restrictive feature of the optimal detection proce-
dures described above is that they require complete prior infor-
mation regarding the prechange and postchange distributions.

Parametric modifications and corresponding detection proce-
dures that are based on the generalized likelihood ratio, the
likelihood ratio mixtures, and the adaptive likelihood ratio [1],
[8], [16], [24], [33] are useful for many applications but do not
solve the problem when the distributions are not known. Sev-
eral nonparametric procedures that have been proposed in the
literature are somewhat different in nature [2], [5], [12], [18].
They usually use a sequence of statistics based on signs or ranks.
For instance, in [18], a CUSUM procedure based on ranks has
been proposed, and in [12], a Shiryaev–Roberts–Pollak proce-
dure based on the sequential vectors of signs and ranks has been
studied for the i.i.d. observations. Nonparametric sign-rank like-
lihood ratio detection methods are extremely efficient from a
statistical standpoint. However, they are not quite computation-
ally feasible for our applications.

In contrast to the sequential change-point problem in which
the “homogeneity” hypothesis is tested online in the process of
data acquisition, the a posteriori change-point problem is con-
sidered on the fixed-time interval . In this case, a good
detection procedure is based on the comparison of the statistic

with a threshold at moment .
The decision that a change occurred is made if . The
threshold is chosen from the condition ,
i.e., such that the false-alarm probability is equal to a given value

. If the change occurs at the point , then any fixed-size (batch)
method detects this change with the fixed delay , which
is large in all cases where is large and is small. The advan-
tage of the sequential methods is obvious.

In many applications, it can be beneficial to combine both
methods by grouping the data obtained in the fixed size inter-
vals and first performing an intraprocessing of the data in these
fixed-size intervals. Then, the results of this intraprocessing are
further processed sequentially. The resulting procedure repre-
sents a multistage sequential procedure with batch processing
within individual stages. The idea is similar to group sequen-
tial tests. The corresponding detection method will be called the
batch-sequential method.

In Section IV-A, we propose a simple CUSUM-type non-
parametric fully sequential detection algorithm and evaluate its
asymptotic operating characteristic for the low FAR. The perfor-
mance is evaluated under general conditions that are not con-
fined to the restrictive i.i.d. assumption. This algorithm is ex-
tremely simple and computationally inexpensive. At the same
time, it performs very well in a variety of intrusion detection
scenarios, as shown in Sections V and VI. In Section IV-B, a
nonparametric batch-sequential algorithm is discussed.

III. NETWORK TRAFFIC FLOW OBSERVABLES AND

SCOPE OF DETECTION

A. Observables

While monitoring network traffic, one can observe various
kinds of information related to the headers, sizes, and other char-
acteristics of the received and transmitted packets, as well as the
usage of system resources, service quality, and similar aspects
associated with the utilization of the network and available re-
sources. For example, for the purpose of detecting DOS attacks,
port-scanning, and worm attacks, we observe in the transport
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layer the number of TCP packets categorized by size or type
(ACK, SYN, URG, etc.), the number of UDP packets and their
sizes, the source and destination port for each packet, etc. In
applications related to insider attacks, it is also important to ob-
serve information relevant to local-area network (LAN)-related
protocols, e.g., occurrences of media access control (MAC) and
Internet protocol (IP) assignment changes via ARP.

The methods described in this paper are general, and the
choice of the particular set of observed characteristics depends
on the application at hand. In our simulation experiments, we
focus on classical DOS attacks and utilize information related
to the transport layer of the network protocol and to system
usage; namely, we observe the numbers of received packets
categorized by size and type and monitor the size of buffers
related to received and transmitted SYN packets. In particular,
we consider a sequence of nonoverlapping (relatively short)
time intervals; then for each packet type among ICMP, UDP,
or TCP, we categorize the received packets by their size into

size bins . In the case of the UDP and
ICMP attacks, we observe the total number of packets of
type with sizes in the th bin received during the th time
interval. For the purpose of detection of the TCP SYN attack,
we observe the SYN packet induced buffer size at the end
of the th time interval. In the testbed, we observe the statistics

and simultaneously. Note that, in general, the sizes of
the bins , as well as the sizes of the time
intervals, can vary. In our simulations, we used constant size
time intervals with and bins with unequal sizes.

B. Scope of Detection—Importance of Rapid Detection of
DOS Attacks

We now argue that despite the fact that in many cases DOS at-
tacks are obvious, there are very important scenarios when DOS
attacks represent a serious threat to the service provided by the
network infrastructure and there is the need for early DOS at-
tack detection. In fact, DOS flooding attacks remain the subject
of intensive research, as can be seen in [11], [13], [19], [20],
[22], and [37]. We first describe DOS detection practices that
are currently used in the network security community.

There are three basic ad hoc approaches that are currently
used for DOS attack detection: 1) observing network perfor-
mance degradation or outage; 2) monitoring link saturation or
number of flows per a host and port; and 3) signature-based de-
tection. In the first case, network centers may receive phone calls
from users who are unable to access their e-mail or experience
many dropped or sluggish connections. It is also common for
the network centers to notice these problems themselves, e.g.,
by monitoring the number of dropped connections. The second
approach is to monitor some reasonable network characteristic,
e.g., the link saturation. One suspects that a DOS attack takes
place if a customer’s rented link becomes, e.g., 98% utilized.
Another example is monitoring the numbers of flows at the
router of a LAN and trigger an alarm if a host has too many con-
nections on a single port. The third approach—signature-based
detection—only detects selected sets of DOS attacks. Besides
tremendous false-alarm rates, it suffers from frequently missed
detections, especially of unknown attacks. Its nature is different
than the other approaches and is not considered in this paper.

The first two approaches are intuitively attractive in that they
observe very reasonable and informative network characteris-
tics. However, their ad hoc nature results in the following most
important common drawbacks.

1) It is often too late when the detection occurs (i.e., the net-
work performance has already been degraded).

2) The FAR becomes unacceptably high when trying to in-
crease the speed of detection.

Therefore, a rigorous framework is necessary to control the
tradeoff between two requirements: a low FAR and a min-
imal detection delay. Our approach directly addresses these
issues—it controls the average FAR at a prescribed low level
while minimizing the average detection delay for the given
FAR. Therefore, we do perceive our method as an important
general tool for intrusion detection, including DOS attacks.
In addition to detecting DOS flooding attacks (examples of
which are presented in this paper), the method can be applied
to the data that are commonly monitored by network experts to
provide control for FAR and detection delays of the intrusion
system.

Let us now focus on the scenarios where DOS attacks rep-
resent a serious threat. The first situation is related to mission-
critical network services that must be protected from any kind
of outages and degradation. Examples of such mission-critical
services are the federal reserve, stock exchanges, and various
tactical military networks. Another very important example is
governmental and industrial networks that monitor and control
real-time processes that are critical for the public, e.g., con-
trol of manufacturing processes in chemical industry to prevent
dangerous accidents or monitoring the power grid to prevent
large-scale power outages.

It is important to point out that not all DOS attacks start
abruptly. Many attacks start gradually, as illustrated in Section V
and described in [13], where the authors analyze the onset fea-
tures of a large number of real DOS attacks. In these situa-
tions, early detection at a stage when the attack is still subtle
(i.e., long before network performance degrades) is crucial and
may represent the only realistic chance for effective DOS attack
prevention.

The second scenario where efficient detection of DOS attacks
plays a critical role is when large Internet service providers
(ISPs) with huge high-speed networks provide relatively low-
capacity links to many customers. This scenario includes large
corporate and governmental networks that provide services to
many small departments and divisions. In such a setup, a DOS
attack that overwhelms the customer’s link is essentially invis-
ible to the ISP. The attack is only obvious to the customer who
is defenseless. Therefore, the detection and prevention of the
attack have to be performed at the level of the ISP, not at the
customer’s site. As a real-life example, it has been reported (see
[10]) by the Gibbson Research Corporation (GRC) that it took
their ISP more than two hours to react to their request to protect
their link after it was attacked by a TCP SYN flood attack in
January 2002. The ISP was not aware of the attack at all. The
GRC engineers had to provide the ISP with detailed analysis
and a detailed request for a defensive action. The prevention of
the attack would have been delayed much more in the case of
an ordinary, less affluent customer of the ISP.
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The above example underlines the importance for ISPs to be
able to detect subtle DOS attacks rapidly but with a low FAR.
However, in cases with huge numbers of ISP customers, it is im-
possible to monitor all customer links separately. Segments of
the networks or whole subnets have to be monitored in aggre-
gate fashion where the DOS attacks are not as subtle as at the
global level, but are by no means obvious. Our detection method
is able to detect low-intensity attacks with reasonable detection
delays and FARs and therefore promises a tool for this purpose.

IV. DETECTION ALGORITHMS

Next we describe the two developed detection algorithms: the
purely sequential algorithm and the batch-sequential algorithm.
Both algorithms are nonparametric versions of the CUSUM-
type method adapted to detect changes in multiple bins. We also
present the results of asymptotic analysis and optimization of
the sequential algorithm.

It is worth noting that while in the rest of this paper the ob-
servables are associated with DOS attacks, all or almost all
of the results are valid in a more general context where the ob-
servations , , are identified with some
random variables monitored by a multichannel sensor system.

A. Sequential Detection Algorithm and Its Asymptotic
Performance

1) Algorithm Description: If both the prechange and the
postchange distributions are exactly known, then the optimal
procedure represents a thresholding of either the CUSUM
statistic or the Shiryaev–Roberts statistic [see (1)–(3)]. In our
applications, however, it is very difficult, if not impossible, to
build an exact model. As a result, these distributions are usually
unknown. For this reason, we will use a nonparametric approach.

Let and denote probabilities when the change occurs in
the th bin and when there is no change. When these probabili-
ties are unknown, the LLRs

are also not known. Therefore, the LLRs should be replaced
by appropriate score functions that have a
negative mean before the attack and
a positive mean , after the
attack starts. Here and stand for the expectations when
there is no attack and when the attack starts at the time (

, ) in the th bin. In this case, the CUSUM-type
statistic

remains close to zero or slightly negative in normal conditions,
while under the attack it starts drifting upward until it crosses a
threshold . More specifically, the stopping time (the time of
alarm) is defined as

(4)

Fig. 1. An illustration of the behavior of the decision statistic for one particular
run of a simulated UDP DOS attack and for ICMP normal traffic.

The score functions can be chosen in many ways. One pos-
sible solution is based on the observation that in many cases the
attack leads to abrupt changes of mean values; therefore, the
score functions should be sensitive to changes in mean values.

Let and denote the prechange
and postchange mean values of the corresponding packet sizes
in the th bin for the packet type . The value of can be es-
timated quite accurately in advance; hence, it is supposed to be
known. Once in a while, however, it is reestimated, as discussed
later (see Fig. 1). The value of is unknown and should be es-
timated on line. We suppose that the attack leads to a change in
the mean value of the number of packets for some packet
size bin . In other words, the problem of de-
tecting an attack can be regarded as the quickest change detec-
tion in the mean , where is known and is
unknown. In the rest of this section, we suppose that .
It is worth noting that we do not assume that the attack leads
only to a change of the mean. Other statistical parameters can
also change along with the mean values. These parameters, how-
ever, will be treated as nuisance factors.

For the UDP and ICMP attacks, the score functions are

where is a tuning parameter belonging to the interval (0,1)
and is an estimate of the unknown mean . The partic-
ular choice of this estimate will be discussed at the end of this
section.

If the threshold is positive (which is usually the case),
then the detection algorithm (4) is essentially equivalent to the
detection algorithm that performs simultaneous thresholding of
the statistics

(5)

with reflection from the zero barrier [compare with (2)]. If any
statistic exceeds the threshold , then an alarm message is
sent to the decision making engine, i.e., the detection algorithm
(4) can be rewritten in the form

(6)
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In the case of the observed buffer sizes (to detect a TCP SYN
attack), we use a similar statistic with replaced by . Note
that the detection algorithm of (5) and (6) is sensitive to changes
in the average intensity of the observed traffic. This algorithm
represents a “multichannel” version of the CUSUM-type non-
parametric adaptive detection procedure that is adapted to detect
changes in the mean values of packet sizes in multiple size bins.
In what follows, this algorithm will be referred to as the multi-
channel nonparametric adaptive CUSUM detection algorithm,
and the abbreviation MNA-CUSUM will be used throughout the
paper.

In contrast to the likelihood ratio-based CUSUM test, gener-
ally the MNA-CUSUM algorithm (6) is not optimal. Certain op-
timization is possible based on the training data, if the adaptive
estimation of post-change parameters is applied. This important
problem will be considered elsewhere.

To fix the FAR, the threshold is chosen from the condi-
tion , where is a given positive number
that characterizes the admissible FAR. An argument provided in
Section IV-A2 shows that under certain regularity conditions

where (see also Tartakovsky et al. [32]). An
alternative way of stabilizing the FAR is to fix the probability of
a false alarm in the fixed-length time interval at a given level.

As shown in Fig. 1, the information about the patterns of
regular traffic flow is updated when a statistic reaches and
departs the zero barrier. If the decision-making engine reports
that a previously issued alarm message was a false alarm, then
the information about regular traffic patterns and thresholds
will be updated accordingly, and the traffic monitoring starts
all over again. In particular, the prechange mean values are
reestimated.

We now briefly discuss a selection of the estimators.
Choosing the estimators is not a straightforward task. For
example, the estimate

(7)

which is natural for , is not a good choice for . This
estimate works well only when the attack occurs from the very
beginning, but for large , the performance degrades dramati-
cally. A good choice would be estimators that “forget” the past
depending on the behavior of the statistic . For example,
adaptive exponentially weighted estimators perform fairly well
[8]. These estimators have a similar structure to that of a sample
mean (7), where the current sample size is replaced with the
adaptive number ; is set to zero (renewed) whenever the
statistic hits the zero level. This allows us to forget the ob-
servations that are not consistent with the traffic change. Further
details are omitted and will be presented elsewhere.

2) Asymptotic Operating Characteristics: In this section, we
provide an asymptotic analysis of the MNA-CUSUM detection
algorithm(6).Recall thatweareinterestedinthetwoperformance
indexes—the false-alarm rate FAR and the av-
erage detection delay ADD .

The value of can be evaluated when the estimates
depend only on 1 previous observations at the th stage. In
other words, one has to use one-stage delayed estimates, as was
suggested by Robbins and Siegmund [25] for the analysis of
one-sided sequential tests. Another possibility is to replace the
estimates by design constants . A reasonable choice is
the minimal expected values of the postchange mean for which
the attack is still detectable (see below).

It can be shown that under very general conditions that in-
clude correlated and nonstationary data

(8)

where and are constants (see [5] and [32]). It is difficult
to compute these constants if no assumptions are made on the
models. In practice, the FAR should be evaluated experimentally
for different threshold values. The important fact is that the FAR
decays exponentially fast with the threshold value.

We now evaluate ADD for large values of the threshold
, i.e., for low FAR. Recall that and stand for the

probabilities that correspond to the true statistical models when
there is no attack, and the attack occurs at time in the th size
bin, respectively.

Assume that sample means converge almost surely (a.s.) to
their expected values, i.e., the following conditions hold:

and moreover, that for all and

The latter two conditions determine the rate of convergence in
the strong law of large numbers. If these conditions are not sat-
isfied, i.e., if there is no convergence of sample means to the
corresponding mean values of traffic with an appropriate rate,
one cannot expect “nice” properties of any detection scheme.

Finally, for the sake of simplicity, in the rest of this section we
assume that in the decision statistic (5), in place of the estimates

the constants are used, i.e., , where are the
design nonnegative constants.

Then arguments similar to those used in the proof of [33,
Theorem 1] (see also [34]) can be applied in order to show that
asymptotically as ,

ADD (9)

whenever . The detailed proof of the
asymptotic approximation (9) is quite tedious and is given in
Tartakovsky et al. [32].
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We now discuss how the constants have to be selected in
order to guarantee the high performance of the algorithm. The
first important fact is that should be positive.
Indeed, it can be shown that if , then the average
detection delay is on the order of the square of the threshold, in
which case the ADD can be large. The situation becomes even
worse when . Therefore, a minimum require-
ment is , where .

On the other hand, we cannot choose too small, e.g.,
is not a good choice. The reason is that the constants

and in (8) and, as a result, the FAR, depend on :
the smaller the , the bigger the FAR. Hence the threshold

depends on the FAR constraint
and the constants . This means that there is a tradeoff between
the growth of the numerator (the threshold) and the denominator
(the value of ) in (9); they compensate each other, giving
an optimal value of the constants provided that .

Choosing the optimal values of is complicated by the fact
that , , are unknown. The following strategy
can be proposed to choose the values of the design constants.
Usually one can evaluate the minimal expected values of
for typical attack scenarios. These minimal values are used to
obtain the trivial upper bounds . Next, note that
the attack should be detected within a certain prespecified time
interval or it will be missed. Thus, the approximation (9) with
the minimal values can be used to obtain

The values of and may change dramatically at large
time scales (night, day, morning, afternoon). Therefore, the pro-
cedure requires parameter estimation at least at large scales.

B. A Batch-Sequential Algorithm

There are many reasonable detection methods currently em-
ployed in the signal-processing and networking communities
that utilize batch statistics based on various kinds of important
network characteristics. These batch methods utilize a single
batch of data that is observed during a fixed time interval .
Obviously, the sensitivity of the detection method can be im-
proved by increasing the length of the time interval. However,
in this case, a subtle anomaly that is very consistent in time (over
several time intervals ) might either be undetected or be de-
tected too late.

As a remedy, we propose a batch-sequential (multistage) de-
tection method in which both batch and sequential parts are
combined in one unit. The main advantage of this approach is
that the batch-sequential statistics retain enough relevant past
information to detect network intrusions quickly, while main-
taining the FAR below a selected level.

To illustrate our batch-sequential method, we outline a modi-
fication of a special version of the popular batch statistics to
obtain a batch-sequential detection method for detecting anoma-
lous departures from regular network traffic patterns. More pre-
cisely, the method is designed to detect increase or decrease in
the expected number of packets that are observed in all possible
sets of size bins.

For the sake of simplicity, we will concentrate on the statistic

(10)

which in this particular form measures the departure of the
network traffic from the prechange distribution under
which the expectation simultaneously for all

. In this case, the mean value has the form
, where is the -probability of a packet

size to fall into the th size bin and . It is
worth emphasizing that in the batch-sequential method, the
number of packets is computed in the fixed-size intervals
of the lengths ; these intervals are much bigger compared to
the values of used in the sequential method. For example,

, where is a large number. This is equivalent
to the grouping of the data obtained from the sequence of
intervals , .

It is well known that if the observed packet sizes are i.i.d., and
if the total number of packets of type observed during
the time interval is sufficiently large (and independent of the
observed packet sizes), then the batch statistic (10) has asymp-
totically the distribution with 1 degrees of freedom.
This fact is the basis of the traditional goodness-of-fit test of the
hypothesis that the distribution of the packet sizes over the bins

corresponds to regular network traffic.
The modified batch-sequential algorithm consists of the fol-

lowing multistage procedure. In the th stage, we group and
process the data observed during the interval and form a
batch statistic defined by (10). We then apply our se-
quential approach to the sequence to detect a
change in the mean . For each packet type
(i.e., ICMP, UDP, or TCP) at stage , we use for thresholding
CUSUM-type statistics that obey the recursions

In this recursion, is a number that is estimated based on
the recent history of the network traffic and is, in general, larger
than the prechange mean . The attack is declared at the time
moment , where the threshold is
chosen from the given FAR.

Due to space limitations, a comprehensive study of the batch-
sequential algorithm will be presented elsewhere.

V. EXPERIMENTAL RESULTS: DOS ATTACK DETECTION IN THE

TESTBED

In this section, we present the results of experimental analysis
of the MNA-CUSUM detection algorithm that was described in
Section IV-A. For simulations, we have used a testbed network
simulator1 with a network consisting of 100 nodes config-
ured into a transit-stub topology (depicted in Fig. 2). The net-
work contained one transit domain, four transit nodes, and 12
stub domains with 96 nodes.

1More information on the can be found at http://www.isi.edu/nsnam/ns/.
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Fig. 2. Transit-stub network topology used in simulations.

Under regular conditions, the traffic consisted of approxi-
mately 5% ICMP packets, 15–20% UDP packets, and 75–80%
TCP packets. The attacker’s activity represented less than 1% of
traffic. After a 120 s period (measured using the simulator time)
of regular traffic, we initiated one of the following three kinds
of DOS attacks targeted at the victim node: TCP SYN flooding,
UDP packet storm, and ICMP ping flooding DOS attacks.

During a DOS attack, the attacker’s traffic rapidly increased,
reaching20%ofall traffic.Weconsideredtwoscenariosfor theat-
tacker’s traffic increase: linear and abrupt. In the former case, the
level of 20% of all traffic was reached in a linear manner during
a 60 s interval, while in the latter situation the traffic increased
to the 20% level immediately after the beginning of the attack.

In the experiments, we simultaneously observed the statistics
and with the sampling rate 1 Hz (i.e.,
). As shown in Fig. 1 (see Section IV-A-1), the MNA-

CUSUM detection algorithm detected the attack in its early
stage. In this particular simulation of a UDP packet storm with
linear traffic increase and the threshold of 84.66, the detection
delay was 35 s.

The results of the experimental study for the abrupt attacks
are shown in Fig. 3. Fig. 3(a) illustrates the operating character-
istic (ADD versus FAR) obtained by simulations (dashed line)
and by theoretical formulas (8) and (9) (solid line) for the UDP
packet storm attack. Fig. 3(b) shows similar plots for the ICMP
ping flooding DOS attack. The plots of theoretical estimates of
ADD versus FAR are straight lines with slopes that are
equal to . It is seen that the experimental
estimates of ADD are always bigger than the theoretical esti-
mates. This is not surprising, since asymptotic formulas (9) ig-
nore excesses over the thresholds of the decision statistics. In
the figures, the average detection delay is measured in terms of
the number of samples.

Tables I and II, respectively, summarize the operating charac-
teristic for the UDP and ICMP attacks with the abrupt traffic in-
crease. Tables III and IV illustrate the same performance for the
linear traffic increase. In the tables, the average detection delay
is shown in terms of the number of samples, the total number
of observed packets, and the number of spoofed packets. The
FAR is measured as the average number of false alarms per one
sample. In addition, in the last column, we show the optimal
values of the threshold , which depend on the FAR.

Fig. 3. Operating characteristic of the MNA-CUSUM detection algorithm for
the UDP and the ICMP flooding attacks: abrupt traffic increase. (a) Operating
characteristics for the UDP attack; (b) operating characteristics for the ICMP
attack.

TABLE I
UDP PACKET STORM ATTACK: ABRUPT TRAFFIC INCREASE

TABLE II
ICMP FLOODING ATTACK: ABRUPT TRAFFIC INCREASE
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TABLE III
UDP PACKET STORM ATTACK: LINEAR TRAFFIC INCREASE

TABLE IV
ICMP FLOODING ATTACK: LINEAR TRAFFIC INCREASE

Fig. 4. Packet interarrival times for the neptune TCP SYN attack: observe that
the attack is not visible to the naked eye.

VI. EXPERIMENTAL RESULTS: DETECTION OF REAL TCP SYN
DOS ATTACKS

We now illustrate the efficiency of the MNA-CUSUM detec-
tion algorithm using resampling techniques to obtain the oper-
ating characteristics in detecting real network intrusions, specif-
ically the neptune TCP SYN flooding attack [7]. The data sets
have been created by the MIT Lincoln Laboratory as a part of
a DARPA Intrusion Detection Evaluation study in 1998. These
data sets are available at http://www.ll.mit.edu/IST/ideval/.

In order to make the detection of the neptune attack more
difficult, the intensity of the attack was reduced by rescaling
the interpacket arrival times. The resulting data set is shown in
Fig. 4. Clearly the attack cannot be seen to the naked eye.

Fig. 5. Operating characteristics of the MNA-CUSUM algorithm.

Fig. 6. Comparison of the MNA-CUSUM algorithm with the adaptive
threshold and EWMA algorithms.

We have observed the data with sampling period 0.1 s and
used the optimized MNA-CUSUM detection algorithm with

. Note that in this case, the pre- and postchange
mean values are estimated as and . The
value of in the decision statistic is equal to .
The operating characteristics obtained by Monte Carlo resam-
pling techniques for several values of are shown in Fig. 5.
The optimal value was obtained by minimizing
the growth rate of curves fitted through the experimental values
of FAR in Fig. 5.

Fig. 6 compares the MNA-CUSUM algorithm with the adap-
tive threshold algorithm and exponentially weighted moving av-
erage (EWMA) algorithm. In this figure, we plot the detection
delay in a particular run versus FAR. The FAR has been evalu-
ated by the Monte Carlo experiment using resampling methods.
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The adaptive threshold algorithm recently proposed in [36]
triggers an alarm at time if ,
where is a parameter that indicates the number of succes-
sive threshold violations, is a parameter for the alarm
threshold, and is the mean rate estimated from measure-
ments. It is updated by , where
is the EWMA factor. We have used and and
varied from 0 to 0.5.

The EWMA algorithm is very popular in the statistical
process control community. In the network security applica-
tions of interest, it is controlled by the four parameters , , ,
and , where is a smoothing constant that determines event
intensity, is the smoothed variance of the one-step-ahead
prediction error, determines the width of the EWMA control
zone, and determines the effective memory of the EWMA
filter. See [38] for further details. In our experiments we used

, , and . The parameter was
varied from 0 to 0.1 to obtain different FAR values.

The experiments illustrate that the MNA-CUSUM algorithm
detects the TCP SYN attack much faster than both other algo-
rithms for all FAR values. The MNA-CUSUM identified the at-
tack at least 200 s prior to the adaptive threshold algorithm or
EWMA. In some applications, this difference in detection speed
may be extremely important in protecting mission critical net-
work resources.
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