
J. Synchrotron Rad. (1998). 5, 23-29 

A Novel Approach to Extract Morphological Variables in 
Crystalline Polymers from Time-Resolved Synchrotron SAXS 
Data 

23 

Benjamin S. Hsiao*l" and Ravi K. Verma~: 

DuPont Centra/ Research and Development, Experimenta/ Station, Wilmington, DE 19880- 
0302, USA. E-mai/: bhsiao@sunysb.edu 

(Received 15 February 1997; accepted 9 July 1997) 

A novel approach to extract morphological variables in crystalline polymers from time-resolved SAXS 
data using the method of correlation and interface distribution functions has been devised. The 
principle of the calculation is based on two alternative expressions of Porod's law using the form of the 
interference function. The approach enables the continuous estimate of the Porod constant, and 
corrections for liquid scattering and finite interface between the two phases, from the time-resolved 
data. A model of lamellar morphology has been implemented to interpret the calculated correlation and 
interface distribution functions. Many detailed morphological variables such as lamellar long period, 
thicknesses of crystal and amorphous phases, interface thickness, and scattering invariant can be 
estimated. An example analysis of isothermal crystallization in PET measured by synchrotron SAXS is 
demonstrated. 

Keywords" time-resolved SAXS; correlation function; interface distribution function; PET; 
interference function; Porod's law; lamellar morphology; crystalline polymers. 

1. Introduction 

Small-angle scattering (via X-ray or neutron) techniques are 
frequently used to characterize the morphological informa- 
tion (50-2000 A) in crystalline polymers. Very often, the 
information can be extracted only after some complicated 
data analysis involving the use of the correlation function 
(Debye & Bueche, 1949; Debye, Anderson & Brauberger, 
1957; Vonk & Kortleve, 1967) and the interface distribution 
function (Ruland, 1977). Calculation of these functions 
requires knowledge of Porod's law parameters at high 
scattering angles (Porod, 1951, 1952a,b) and the interpreta- 
tion requires the assumption of a suitable morphological 
model (Glatter, 1982). 

In the case of time-resolved small-angle scattering 
experiments, particularly with the use of synchrotron 
X-rays (SAXS), calculations of correlation and interface 
distribution functions from the measured intensities are 
usually difficult. The reasons are as follows. (i) A good 
signal-to-noise ratio is usually not available in the Porod 
region (at high scattering angles). This is because the quality 
of the data is often compromised by the aim of obtaining 
decent time resolution. Large noise leads to less confidence 
in determining the Porod parameters. In addition, the 
conventional method for estimating the Porod parameters 
employs a plot of Iq 4 versus q4 [q = (4n'/k) sin 0], which can 
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significantly exaggerate the problem of large noise at high q 
values. (ii) At some incidence the Porod region is simply not 
measured in the full range. The truncation problem is often 
incurred by the limited detector size, and can severely affect 
the calculation of these functions. As a result, most time- 
resolved synchrotron SAXS studies only report apparent 
profile changes (long period and invariant). Very few 
provide a detailed analysis using correlation and interface 
distribution functions. 

In this work we present a novel approach for the 
calculation of the correlation and interface distribution 
functions from time-resolved synchrotron SAXS data. The 
calculation is made possible by using two alternative 
expressions of Porod's law to determine the Porod 
parameters and to correct the liquid scattering and finite 
interface between the scattering phases. Both expressions 
use forms of the interference function (Ruland, 1977) that 
are markedly different from the conventional method. We 
found that the proposed approach is capable of handling the 
data with low signal-to-noise ratios and/or limited Porod 
range. A lamellar model has also been implemented to 
analyze the calculated functions, which reveal morphologi- 
cal variables such as long period, lamellar thicknesses of 
both constituting phases, interface thickness and invariant. 
This analysis is suitable for crystalline polymers. 

2. Theoretical background 
The relationships for calculating the one-dimensional 
correlation function, y l ( r ) ,  interface distribution function, 
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gl(r), and interference function, Gl(q), using the scattering 
intensity measured from a pinhole, slit or fiber geometry are 
summarized as follows. This intensity must be free of 
contributions from liquid scattering and finite interface 
between the constituting phases. Detailed procedures for 
obtaining this intensity from the measured intensity, lob.~, 
will be discussed in the following section. 

2.1. Pinhole geometry 
The scattering intensity, I(q), measured from the isotropic 

three-dimensional object using a pinhole geometry can be 
transformed to the one-dimensional intensity function, I~(q), 
by Lorentz correction (Balt~-Calleja & Vonk, 1989), 

I 1 (q) = c l ( q ) q 2  (1) 

where c is a constant. In this case the correlation and 
interface distribution functions become (Vonk & Kortleve, 
1967; Vonk, 1973; Ruland, 1977; Stribeck & Ruland, 1978) 

O,G 

0 

(2) 

gl(r)=~[Yl(r)]/OrZ--[-fll(q)q2cos(qr)dql/Q, (3) 
(I 

where Q is the invariant defined as 

Q -- / I,(q)dq. (4) 

0 

The interference function, Gl(q), is the Fourier transform of 
the interface distribution function (Ruland, 1977) 

(3,O 

gl  (r) = f a 1 (q) COS (qr) dq. (5) 

0 

In the above equation G~(q) can also be expressed as 

G 1 (q) = lim I l (q)q= - I l (q)q2. (6) 
q---* o c  

2.2. Slit geometry 
If a slit geometry is used, the measured intensity, ](q), 

may be considered as being smeared by a slit of infinite 
height (approximately). The above functions thus become 
(Ruland, 1977; Stribeck & Ruland, 1978) 

o c  

0 

where J,, is a Bessel function of order n, Q is the invariant, 

o c  

Q = f ](q)q dq, (9) 
0 

and the interference function, Gl(q), can be calculated from 

G l ( q )  - lim ](q)q3 _ ] (q )q3 .  (10) 
q--* OC 

2.3. Fiber geometry 
In a highly oriented system, such as high module fiber or 

film, the sliced intensity, I(q), along the meridional direction 
is similar to the one-dimensional integrated intensity profile, 
ll(q) (Hsiao et al., 1995). In this case, equations (2)-(6) can 
be applied directly with the sliced intensity without Lorentz 
correction. 

2.4. Data extrapolation 
In the above expressions all integrations have to be 

carried out over the range 0 _< q _< c~. Experimentally this 
is not feasible since both limits are beyond the resolution of 
any detector. If the limits for the detector are ql and q2 
(larger value), the integration can be divided into three parts. 
For example, the invariant Q [equation (4)] can be written as 
(Russell, 1991) 

ql qp vc 

Q= f I(q)q2dq+ f l(q)q2dq+ f l(q)q2dq. (11) 

0 ql qp 

The first integral is the area of a triangle with base q l and 
l(q~)q~ 2, the second integral is the numerical integral of the 
experimental data, and the third integral can be calculated by 
Porod's law with qp being the starting value of the Porod 
region (qp < q2). In the Porod region the scattering intensity 
has the relationship (Porod's law; Porod, 1951, 1952a,b) 

lim l(q) = K/q 4, (12) 
q - - + ~  

where K is the Porod constant. Thus (4) can be written as 

qp 

Q = lI(q,)q~ + f I(q)q z dq + K/qp. 
ql 

(13) 

The integrations in (2)-(9) are all carried out in a similar 
manner. The first two integrals are straightforward. The last 
integral requires an estimate of the Porod constant, which is 
obtained by an alternative method. 

o o  

gl(r)  : ( f G'(q){3[J°(qr) - J2(qr)] + (qr)[J3(qr) 
0 

- 3J~(qr)]/2} dq)/O, (8) 

3. Alternative approach for Porod analysis 

The typical measured scattering intensity, Iobs(q), includes 
the contributions from liquid-like 'background' scattering, 
Ib(q), and the finite interface between the two constituting 
phases. According to Porod's law this intensity can be 
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expressed by (Koberstein, Morra & Stein, 1980) 

lim lob.~(q) = lt,(q) + ( K / q  4) e x p  ( - ° 2 q 2 ) ,  (14) 
q---+ ~ 

where o" is related to the width of the interface. Instead of 
jr 4 q4 using the conventional method (an obsq versus plot; see 

Glatter, 1982; Baltfi-Calleja & Vonk, 1989) we propose to 
use the following two alternative expressions of Porod's law 
(in the form of interference functions) to calculate the Porod 
parameters 

lim Gl(q) = lim {K - [/obs(q) -- Ib(q)]q 4 exp (a2q2)} 
q-- .~  q---~ ~ 

=0, (15) 

f G l ( q ) d q =  f{K--[ lobs(q)- - lb(q)]qaexp(a2q2)}dq 

0 0 

= 0 .  (16) 

Equation (16) is derived on the basis that if the presence of a 
finite transition zone between the two constituting phases 
has been accounted for, then the interface distribution 
function should start from the origin [ g l ( 0 )  = 0] .  This is 
because gl(r) is the Fourier transform of G~(q), the total area 
of the Gl(q) versus q plot is zero. 

Thus, we can define the following two residual terms 
from (15) and (16), 

Y ~ R ~ = k ( { K - - [ I o b , ~ ( q ) - - l b ( q ) ] q 4 e x p ( a 2 q 2 ) } 2 ) ,  
q=qp 

(17) 

q2 ) 2  

~ = Z {  K -[/ob~(q) --/h(q)lq 4 exp(a2q2)} • 
q=0 

(18) 

If liquid scattering can be assumed as an even-powered 
polynomial function (Ruland, 1977; Wendorff & Fisher, 
1973a,b; Rathje & Ruland, 1976) 

lb(q) = a + bq 2 + cq 4 + dq 6, (19) 

we can minimize the following equation to obtain the values 
for parameters (K, a, a, b, c, d), 

V" V" ~sum - -  W I ~ + W2 ~ (2O) 

where w~ and w2 are the fractions of two residues. 

4. Data smoothing 

It is found that noise migration in the Porod region by the 
alternative approach is considerably less than by the 
conventional method (Iq 4 versus q4). However, for measure- 
ments involving a short acquisition time, the signal-to-noise 
ratio may still be too low to warrant a successful analysis. In 
this case noise reduction has to be implemented. We 
recommend the following smoothing procedure but caution 

readers to take two points into consideration. (i) The 
procedure should not introduce any artifacts in the Porod 
region. (ii) More smoothing is required at higher angles 
where the signal-to-noise ratio is lower. Our recommended 
smoothing procedure is as follows. For a linear array of 
points (yl, Y2, Y3. • • Yi  • • • Yn), the smoothed array is taken as 

Yi-,, + Y,-n+l + . . .  + Yi-1 +Y,+1 + Yi+2 + " ' "  + Yi+n 
Yi = 2 n + l  

(21) 

where Y refers to the value of y in the smoothed array. For 
consideration (ii), the value of n can be continuously 
increased with scattering angle. One way to implement this 
is to have n vary as 

n = a o + alq, (22) 

where a0 and a l are two arbitrary constants. If both 
constants are zero, there will be no smoothing applied. 

5. Calculation and analysis of correlation and 
interface distribution functions 

The selection of the Porod region is extremely sensitive to 
the accuracy of the calculation for correlation and interface 
distribution functions. Usually we begin the analysis with a 
transitional SAXS profile showing a distinctive scattering 
maximum. The range for the Porod region will be adjusted 
interactively such that the condition of (20) can be 
minimized in this profile. Once the limits for the Porod 
region are determined, the same values will be applied for all 
scattering profiles. In this regard we assume that the Porod 
region is identical for all scattering profiles. After the 
analysis involving (17)-(20) is carried out, the parameters 
K, a, b, c, d and a can be obtained. The corresponding 
correlation and interface distribution functions are thus 
calculated using (2)-(6). There is a point of caution to be 
addressed here: any uncertainty in the Porod region of the 
interference function will manifest itself as Fourier ripples in 
the resultant interface distribution function. (Such an effect 
is usually negligible in the correlation function.) This 
problem can be minimized by choosing a narrower range of 
the Porod region to reduce the uncertainty in the interference 
function. 

Lamellar morphology variables can be estimated from the 
correlation and interface distribution functions using a two- 
phase model. This analysis is suitable for most crystalline 
polymers and may also be for some block polymers. The 
analysis of the correlation function by the two-phase model 
has been demonstrated in detail previously (Vonk, 1973; 
Strobl & Schneider, 1980; Santa Cruz, Stribeck, Zachmann 
& Baltfi-Calleja, 1991). The thicknesses of the two 
constituent phases (crystal and amorphous) can be extracted 
by several approaches described by Strobl & Schneider 
(1980). For example, one approach is based on the following 
relationship, 

xlx2 = B/L'~, (23) 
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where x~ and x2 are the linear fractions of the two phases 
within the lamellar morphology, B is the value of the 
abscissa when the ordinate first equals zero in yl(r) ,  and Lff 
represents the long period determined as the first maximum 
of yl(r). Although this analysis reveals two thicknesses of 
the constituent phases, it cannot distinguish which repre- 
sents the lamellar crystal or amorphous thickness. Informa- 
tion from other techniques [transmission electron 
microscopy (TEM), wide-angle X-ray diffraction (WAXD), 
differential scanning calorimetry (DSC) and density] is 
required for this purpose. 

Analysis of the interface distribution function, gl(r), is 
relatively straightforward. The profile of gl(r) can be 
directly calculated from the Fourier transformation of the 
interference function or by taking the second derivative of 
the correlation function. In the physical sense the interface 
distribution function represents the probability of finding an 
interface along the density profile. A positive value indicates 
an even number of interfaces within a real space distance 
with respect to the origin. A negative value indicates an odd 
number of interfaces within the corresponding distance. In 
the case of lamellar morphology, odd numbers of interfaces 
correspond to integral numbers of long period. The shape of 
the probability distribution with distance for a given 
interface is manifested as the shape of the corresponding 
peak on the interface distribution function. These distribu- 
tions can be deconvoluted to reveal more detailed 
morphological parameters (Stribeck, 1993). 

In general, we find that the long-period values calculated 
from different methods, such as conventional analysis by 
Bragg's law, correlation function and interface distribution 
function, are quite different. However, their trends as 
functions of time and temperature are usually similar. The 
ordering of these long periods indicates the heterogeneity of 
the lamellar distributions in the morphology. This issue has 
been addressed previously (Santa Cruz et al., 1991; Verma 
& Hsiao, 1996). 

6. Isothermal crystallization of poly(ethylene 
terephthalate) 

The chosen example for this study is the time-resolved 
synchrotron SAXS measurement during isothermal crystal- 
lization of poly(ethylene terephthalate) (PET). Measure- 
ments were carried out at the X3A2 beamline at the National 
Synchrotron Light Source, Brookhaven National Labora- 
tory. The experimental conditions included the use of a 
pinhole collimator (Chu et al., 1994), a one-dimensional 
position-sensitive wire detector (MBruan), 1.54 A wave- 
length and a dual-temperature jump cell (Song et al., 1988). 
The PET sample was first equilibrated above its melting 
point (553 K) for 5 min and then rapidly cooled to four 
different temperatures (493, 503, 513 and 523 K) for 
measurement. The equilibration time to reach the measured 
temperature was about 60 s. Two sets of collection times 
were used: the first 48 frames were collected every 5 s, the 
last 52 frames were collected evcry 30 s. 

Typical time-resolved SAXS profiles atter the removal of 
background scattering (air and windows) at 503 K are 
illustrated in Fig. 1. Two distinguishable stages are seen, i.e. 
the intensity in the second stage is about six times higher 
than that of the first stage, which correspond well with the 
two collection times used. It is seen that crystallization 
begins at the first stage of the measurement. We have chosen 
the Porod region to be 0.09 < q < 0.14A -1 for the 
calculation. The resultant Lorentz-corrected intensity profile 
(Iq 2 versus q, free of contributions by liquid scattering and 
finite interface boundary), interference function, G(q), 
correlation function, y(r), and interface distribution func- 
tion, g(r), are illustrated in Figs. 2-5, respectively. These 
profiles reveal many subtle changes during isothermal 
crystallization of PET. In Fig. 3 the values of the 
interference function in the Porod region are near to zero, 
which bears the characteristics of the single maximum in the 
scattering profile of PET. In the case of block copolymers or 
other crystalline polymers (such as PE and PEO) where 
multiple SAXS maxima (due to higher orders of scattering) 
are detected, the behavior of the interference function in the 
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Time-resolved SAXS profiles during isothermal crystallization 
(503 K) of PET. The first 48 scans were collected with 5 s scan 
time, the last 52 scans were collected with 30 s scan time. The 
'wiggles' in the scattering profiles are caused by smoothing using 
equation (22) with ao = 1, at = 5. 
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Figure 2 
Lorentz-corrected intensity profiles calculated from data in Fig. 1. 
The Porod region was chosen as 0.09 < q < 0.14 ,&-i for all 
analyses. 
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Porod region exhibits an oscillation with decay along the 
abscissa. 

Morphological results extracted by the two-phase lamellar 
model are shown in Figs. 6 and 7, respectively. It is seen that 
all three long periods calculated by Bragg's law, the 
correlation function and the interface distribution function 
are different (L~ > L~ t > L3. The trends in Lu and L~ are 
similar, decreasing with time, but the value of L: remains 
almost unchanged. This relationship indicates that the 
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Figure 3 
Calculated time-resolved interference functions, G(q), from Fig. 1. 
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Figure 4 
Calculated correlation functions, y(r) (normalized by the invariant 
Q), from Fig. 1. 

morphological development during PET isothermal crystal- 
lization deviates from the ideal two-phase model (Santa 
Cruz et al., 1991; Verma & Hsiao, 1996). We have 
interpreted this behavior as due to the space-filling of 
thinner secondary crystal lamellae after the initial formation 
of thicker primary lamellae during isothermal crystallization 
of semi-stiff-chain crystalline polymers (Hsiao et al., 1995). 
The mass-average lamellar thicknesses of crystalline and 
amorphous phases can also be estimated from the correla- 
tion function (and from the interface distribution function, 
which is not discussed here due to its complexity for 
interpretation). The two calculated thicknesses along with 
the invariant are shown in Fig. 7. As indicated earlier, from 
the calculation itself it is impossible to determine which 
thickness represents the crystalline one. We have often relied 
on other methods (such as TEM and WAXD) and determine 
that the larger value in this study is the crystalline thickness. 
The detailed analysis and physical implications of these 
variables have been discussed by several authors (Santa 
Cruz et al., 1991 ; Stribeck, 1993; Verma & Hsiao, 1996). 
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Figure 6 
Comparison of long periods calculated using Bragg's law, L~, the 
correlation function, L,M, and the interface distribution function, L~. 

Figure 5 
Calculated interface distribution functions, g(r) (normalized by the 
invariant Q), from Fig. 1. 

~.'~'~":'"" .......... "'"'-'"',"",--. ] 0.014 

o ~."" Q t 0.012 

to.o,o 

1 o.(~)6 

0.004 

~ l p  uo,~ ...... "a ,1 0.002 

0 5(X) I(X)0 15(X) 2000 

Time (s) 

Figure 7 
Lamellar morphological variables extracted from the correlation 
functions in Fig. 4: invariant Q, long period L~, crystal lamellar 
thickness, l,, and interlamellar amorphous thickness, l,,. 
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In fact, the identification of the two calculated thicknesses 
can also be made by evaluating the effect of the crystal- 
lization temperature, To The values of  L~, Ii and 12 as a 
function of  Tc are shown in Figs. 8(a)-8(c). In Fig. 8(a) the 
value of  L~ is seen to increase with increasing Tc. This 

behavior is well known in most polymers. Since the effect of 
Tc on 11 (Fig. 8b) is similar to that on Ly but the effect on 12 
is minimal, it is logical to assign Ii (the larger value) as the 
crystal lamellar thickness. This is because the decrease in 
the degree of  supercooling (higher Tc) should always 
produce a larger crystal thickness. 

300 

2OO .<  
v 

L " ° "  * . 4 8 3  K 
° 493 K 

"° t * • 503 K 
• 513 K 

o ~ ooooOOOoo.ooOOOo.ooo.oo * 
° o o o o o o o  

• " o o o o o o o o o o  [ . . . .  . . . . . . .  o . .  

f i l l  i i  • • • • i i  i i i i  i i  • • i i i i  i i  • 

I0O 
+ 
r 
t 

Oil . . . .  I . . . .  £ , l , ' I ' , l ' 

o 500 1ooo 1500 

Time (s) 
(,+) 

2000 

300 

200 ° 

• 483 K 
o 493 K 
• 503 K 
* 513 K 

o 

~ I D ~  °°°°°°°°ooo°OO°oOooooOoOooooOO ° c * * * * * * * * * *  

1oo ! ~ o o • . . . . . . . . . . . .  . . . .  . . . . . . . . .  : : : : : * : : . : . = g  
ue-u-ee~==~=eueuI i~6B~66e66= ioo~ho°°°ooBo=S=noo 

0 . . . . .  t 

0 5o0 I()00 1500 

Time (s) 

2000 

300 

• ~ 200 

e - 4  

100 

• 483 K 
° 493 K 
• 503 K 
* 513 K 

::::::::::::::::::::::::::::::::::::::::::::::::::: 1 • o 

0 . . . .  

0 500 1()00 I5OO 2000 

Time (s) 
(c) 

Figure 8 
Lamellar morphological variables as a function of  crystallization 
temperature: (a) long period Ly,  Ib) crystal lamellar thickness, l,., 
and (c) interlamellar amorphous thickness, I, (the y-axis scale was 
kept at the same range for comparison). 

7. Conclusions 

We have demonstrated that the detailed morphological 
variables in crystalline polymers can be extracted from time- 
resolved synchrotron SAXS data using a novel approach to 
calculate the correlation and interface distribution functions. 
This novel approach is based on two alternative expressions 
of  Porod's law, which provides several advantages over the 
conventional method. These advantages include the ability 
to analyze data with a poor signal-to-noise ratio and/or a 
limited Porod region. An example study of  the isothermal 
crystallization of  PET is shown for this purpose. However, 
we caution that the proposed approach does not add 
precision nor accuracy to the calculation of  correlation 
and interface distribution functions, which still depends on 
the noise level and the correct selection of  the Porod region. 
Finally, we add that the correlation and interface distribution 
functions have to be interpreted with a suitable morpholo- 
gical model. In crystalline polymers we assume that a 
lamellar two-phase model is representative of  the true 
morphology which may not be true for other systems. 
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