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Abstract: The continuous uninterrupted supply of Natural Gas (NG) is crucial to today’s economy,
with issues in key infrastructure, e.g., Baumgarten hub in Austria in 2017, highlighting the importance
of the NG infrastructure for the supply of primary energy. The balancing of gas supply from a wide
range of sources with various end users can be challenging due to the unique and different behaviours
of the end users, which in some cases span across a continent. Further complicating the management
of the NG network is its role in supporting the electrical network. The fast response times of NG
power plants and the potential to store energy in the network play a key role in adding flexibility
across other energy systems. Traditionally, modelling the NG network relies on nonlinear pipe flow
equations that incorporate the demand (load), flow rate, and physical network parameters including
topography and NG properties. It is crucial that the simulations produce accurate results quickly.
This paper seeks to provide a novel method to solve gas flow equations through a network under
steady-state conditions. Firstly, the model is reformulated into non-linear matrix equations, then the
equations separated into their linear and nonlinear components, and thirdly, the non-linear system
is solved approximately by providing a linear system with similar solutions to the non-linear one.
The non-linear equations of the NG transport system include the main variables and characteristics
of a gas network, focusing on pressure drop in the gas network. Two simplified models, both of the
Irish gas network (1. A gas network with 13 nodes, 2. A gas network with 109 nodes) are used as a
case study for comparison of the solutions. Results are generated by using the novel method, and
they are compared to the outputs of two numerical methods, the Newton–Raphson solution using
MATLAB and SAINT, a commercial software that is used for the simulation of the gas network and
electrical grids.

Keywords: non-linear system; discrete calculus; gas network model; gas flow equation

1. Introduction

The continuous uninterrupted supply of Natural Gas (NG) is crucial to today’s economy.
The balancing of gas supply from a wide range of sources with various end users can be challenging
due to the unique and different behaviours of the end users, which in some cases span across
a continent [1,2]. NG is one of the strategic primary sources of energy in the world, supplying
approximately 24% of the world’s primary energy in 2016 [3]. This increases to 30% in Ireland, where
on occasion, 80% of peak power demand is provided by NG [4], and in Singapore, where generated
electricity can be up to 95% [5] from NG. Transport of NG via pipeline is the most efficient and
economic and has the lowest carbon footprint [6–8], and in many instances, the gas network is capable
of supplying NG from gas fields directly to the end users (from Well to Wheels; WtW is a common
expression for the life cycle of a product). A gas network includes both transmission and distribution
pipelines, compressor stations to bring the transmission network to its operating pressure and City
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Gas reduction Stations (CGS) and Town Break Stations (TBS) to reduce the NG pressure so that it
can be provided safely into homes and business [9]. Gas systems need a reliable design to ensure
effective operation, and due to the important role of natural gas of supplying primary energy and the
significant investment in the network infrastructure, using a reliable and fast method for solving the
gas flow calculations is essential. Gas network simulation allows for the understanding and forecast
of the behaviour of the gas network under different conditions, and it is useful for decision makers
for installing an optimal system. For the simulation of a gas network, the pipe flow equations that
describe the flow, pressure, compressibility, line-pack capacity, and density of the compressible gas in
the pipelines need to be solved. These equations include variables dependant on the gas composition,
temperature, pipe length and diameter, gas constant, and pipe inclination, along with unknown
variables such as pressure and flow rate. The pressure and flow rate are the most important variables
from all points of view including financial/trading, technical, environmental, and health and safety.
Gas network simulation helps the Transmission System Operator (TSO) understand how the individual
components work together as a system. It is crucial in planning for the development and expansion of
the network, the prevention of faults due to system changes in supply or demand nodes [2], and in
managing crisis events that occur due to catastrophic component failures. Furthermore, deviations
between accurate simulations and measured parameters can be an indication of leakage, which is
important not just due to lost revenue point of view, but also from an environmental [10,11] and
worker safety point of view. Therefore, accuracy is hugely important for simulations, where it can be
the difference between making a profit or loss for both the TSO and the retailer [12]. Validation of the
simulations requires reliable data, and robust reliable metering devices are key to ensuring this; they
are also crucial in custody transfer, which is becoming more important as gas markets are opening up.

Multiple variables affect gas flow through a pipeline, all of which must be accounted for in the
modelling of the gas network; these are pressure, flow rate, density, comparability, friction factors,
inclination of the pipe, the Reynolds number, gas velocity, and pipe length and diameter. The most
important variable in a gas network is pressure, which is the driving force for the transport of the NG
through the pipe. When gas flows, the pressure decreases due to the frictional interaction between the
gas and the pipe wall, exerting a shear force on the gas [2,13–17].

The modelling of the network topology also needs to be accounted for as it affects the gas pressure
and has a major impact on the energy required to pump gas through the network. Each network has
its unique particular distribution/transmission characteristics, and changes at a node (supplier or
demand) will have consequences throughout the NG transport system [18]. In most countries, gas is
distributed by pipeline networks over a vast range of pressures [19]; these are mainly divided into
two, high pressure and low pressure systems, which are specified for transmission and distribution
lines, respectively. However, in some research simulations, e.g., [18], middle-pressure pipelines are
also investigated. Very large users of NG, such as power stations, are supplied directly from the
transmission network, while other users including residential users receive NG via the distribution
network [20]. A gas network is generally represented by a diagram involving branches (pipelines)
and nodes (pipe connections). Facilities and equipment can be divided two groups: active and/or
passive [21]. An active node or branch represents a actively-controlled facility, which is controlled
during operation, e.g., compressors, regulator valves, and town gate stations. On the other side,
the passive equipment will exert an influence on the network; however, its impact is due to the flow
conditions, and the device is not adjusted or controlled. The prime example of passive equipment is
the pipes [13].

Gas networks are large infrastructures with significant interconnection to the other networks,
mainly electrical grids. Therefore, the security of gas supply is important to ensure continuing
electricity supply. The challenge in gas networks is to balance the supply from different sources, with
the changing demand. By controlling the pressure of the network, the TSO can ensure that sufficient
gas is available to supply the end users with sufficient quantities. In this paper, a novel method is
used to solve the non-linear system of algebraic equations. It provides a matrix formulation of the
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non-linear system describing the model, and by using matrix algebra, an alternative linear system
is created. The solution of the alternative linear system can be used as a smooth approximation of
the solutions of the non-linear system. This formulation is ready for software implementation and
may also be used in atomic scale models as an alternative to existing empirical approaches with pair
and cohesive potentials. An illustrative example, analysing a local region of a node, is presented to
demonstrate the model performance.

In this study, two simplified gas networks were created, each based on the Irish Gas Network.
Network 1 is A gas network with 13 nodes and 14 pipes, and a bigger network, Network 2, has
109 nodes and 112 pipes. Both networks are used for comparison of the novel approach with numerical
solutions. Having a new reliable method for gas network modelling with fast calculation and precise
results can be an option to replace numerical solutions, especially for large gas networks, such as those
in continental Europe or North America, which contain several hundred nodes and pipelines and
where large computation power is required. This new approach is a computational method that helps
in producing faster results, and when the modelling of NG networks is coupled with other energy
systems, for example the electrical network, faster and less computationally-demanding results are of
key importance.

2. Literature Review

Various methods have been published to model a gas network and solve the governing equations
of gas flow through the pipelines, with the vast majority applying numerical methods due to the
non-linearity of the equations. In the literature, a Steady-State Model (SSM) is frequently used where
the pressure (the driving force) and flow rate at the inlet and outlet of the pipeline are assumed
constant. The steady-state equations of gas flow are non-linear algebraic, and in most cases, for
solving this type of equation, numerical solutions are employed. Some valuable studies of SSM have
been published. The principles and fundamentals of graph theory can be used to model a network
along with the empirical flow equations for low-, medium-, and high-pressure flow. Various different
empirical flow equations have been proposed such as Lacey’s equation, the Polyflo equation, the
Panhandle equation, and the Weymouth equation (for high-pressure networks). Osiadacz [19] applied
the Newton–Raphson method to deal with the non-linear equations. In this work, a step-by-step,
Newton–Raphson method using a Jacobian matrix in graph theory was presented to model a horizontal
gas pipe network. The essence of the work is the presentation of a computational method based on
physical and mathematical laws for simplification of fundamental equations. While this work is one
of the leading references in the modelling of gas networks, no specified example for a pipeline with
inclination was presented. Many authors for simplification neglect the inclination term; however,
Matko, Kwabena, and Iterran-Gonzales [22–25] are some authors who have considered inclination
in the pipe flow equation, because of its importance for the validation of models with real-world
data. Simulation of a natural gas network focusing on gas quality using a numerical-iteration method
was carried out by Abeysekera [26]. An important point of this literature is the inclusion of gases
with different density in the network. Varying gas composition will impact gas pipeline system
characteristics such as pressure and flow rate. With a move to decarbonise the NG network, this is
vital in the evaluation of the networks’ ability to store synthetic natural gas or hydrogen. Szoplik [18],
after describing three different gas networks, low, middle, and high pressure, indicated two methods
to run the gas system model, which are the nodal method and loop method. In the nodal method, the
flow rate is the dependent variable, and the pressure drop (differential pressures between two nodes of
a pipe/branch) through each branch is the independent variable Qij = f (dPij), while the loop method
describes that pressure is a function of flow rate (Equation (1)). The article investigates the impact of
ambient temperature on the flow rate.

dPij = f (Qij) (1)
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Debebe’s [27] paper focused on simulation of transmission pipelines in a gas network focusing
on compressor stations. The equations are mainly based on the mass balance, flow principles,
and compression characteristics of gas in pipes. The Newton–Raphson method has been applied to
solve the equation using C++. The model evaluated the energy consumption for various configurations
in order to optimize the transmission pipeline flow and pressure. There are a number of papers that
have implemented the MATLAB-Simulink tool to simulate pipelines: Behbahani and Bagheri [28]
and Herran-Gonzalez in [24] applied the Simulink toolbox in MATLAB to model the gas network.
Behbahani and Bagheri [28] have manipulated the Simulink model of a gas system, and in order to
verify the accuracy, the results have been compared with outputs from the finite difference scheme
(FSM) and experimental test cases. The proposed model can predict the transient response of the
dependent variable (pressure) with a good correlation with the nonlinear finite difference models.
Herran [24] has implemented two models, the characteristic method and Crank–Nicholson, both
using the MATLAB-Simulink library for solving the partial differential equations. The results for a
simple triangle gas network (including two demand nodes and one supplier node) for both models
produced similar results to the Osiadacz model [19]. Mohring [29] applied a numerical method to run
the simplified loop model of a gas network. In this study, the inclination term has been neglected, and
during simplification, the compressibility term was held constant. Matko [25] discussed the non-linear
equations and presented a solution by linearizing the unsteady-state equations where density, viscosity,
and temperature (in adiabatic flow) are constant, but in reality, the non-linear flow equation consists of
a number of interdependent variables, e.g., flow through a pipeline gas flow rate relates the squares of
the inlet and outlet pressures [30].

Yue-Wu [31] believed there were two important aspects in the modelling of gas systems; numerical
solutions and optimization, where a numerical solution is applied to determine the actual behaviour of
gas flow in the pipe. However, it is highlighted that the disadvantage of the numerical method is that
it is not able to put constraints on the system to find minimal cost, which is necessary for optimization.
Furthermore, due to the fact that sizing of pipe diameters depends on the users’ demand, optimization
could lead to significant operational advantages. The aim of optimization is to find the best set of
control variables within a single optimization run. For some recent optimization methods useful for
this we refer to [32–34].

Along with the equation parameters, the solving of non-linear equations is dependent on both the
initial conditions and tolerance level chosen by the programmers, which can increase the computational
time required and impact the convergence of the model (accuracy of the solution). Alternative methods
of solving the pipe flow equations such as the one presented in this work are therefore of interest,
as when a large-scale network is modelled, the numerical iteration method will take more time to solve
the equations.

In recent years, there has been a significant development in using matrix theory to study networks
related to engineering problems [35–38] and the solutions of non-linear algebraic systems [39–45].
The idea is to provide new techniques and methods ready for software implementation in order to
solve non-linear equations, similar to those for modelling gas pipelines.

This paper presents a novel method for solving the equations governing flow and pressure in a
natural gas network using matrix theory to derive a unique theorem.

3. Modelling of a Gas Network

A large amount of NG is transported long distances through the high-pressure pipeline network.
Therefore, modelling/simulating of a gas transmission system with sufficient accuracy and fast
calculations methods is beneficial in understanding how the system will behave. Evaluation of the
feasibility of networks to cope with new customers, as well as the ability to determine the capacity
of the current network, or to forecast the response of the system to any changes in supplying nodes
(decrease/outage), as well as designing new gas network systems are areas where modelling can be
used. The differential equations are used depending on the working pressure of the network and the
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operational conditions [19]. The major equations that must be satisfied in modelling gas flow in a
pipeline are:

• Mass conservation equation (equation of continuity).
• Newton’s second law of motion (conservation of momentum).
• Energy equation (thermodynamic first law) and the equation of state.

According to forces’ directions in a pipe, the governing equation has been extracted, which is
shown in Figure 1 and from Newton’s second law of motion-momentum Equation (3).

Figure 1. Forces effective on a specific volume of gas flow through a pipeline.

The common equation for the steady-state flow of gas through a pipe is derived from Bernoulli’s
equation of fluid flow, including changing density of gas due to the pressure drop along the pipe in the
direction of flow. The equation of mass conservation from inlet Point (1) to outlet Point (2) is shown in
Equation (2).

ρ1w1 = ρ2w2 (2)

where ρ is density and ω represents flow velocity.

∂ρ

∂t
+

∂(ρw)

∂x
= 0 (3)

Newton’s second law of motion (conservation of momentum) in Equation (4):

∂(ρw)

∂t
+

∂(ρw2)

∂x
+

∂p
∂x

+
f ρw|w|

2D
+ ρgsin(θ) = 0 (4)

where the following terms describe each portion of Equation (4):

∂(ρw)

∂t
: inertia force (acting against the flow direction through the pipe)

∂(ρw2)

∂x
: convective term
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∂p
∂x

: pressure force

f ρw|w|
2D

: shear force

ρgsin(θ): force of gravity

The variable pressure, p, and displacement, x, have been changed to p + dp and x + dx,
respectively, which have been identified in Bernoulli’s Equation (5):

p
ρg

+
w2

2g
+ z =

p + dp
ρg

+
(w + dw)2

2g
+ (z + dz) + dh f (5)

where “dh f ” is the head losses, i and j are sending and receiving nodes, respectively, and “z” is pipe
elevation. The first law of thermodynamics expresses the conservation of energy and for a system may
be written as:

Ω−W = ∆E (6)

where “Ω” is the heat added to the system, “W” is the work done by the system, and “E” is the change
in energy of the system. Energy associated with the mass of the system is customarily separated into
three parts:

E = U +
1
2

mw2 + mgz (7)

where “U” is the internal energy associated with molecular and atomic behaviour, “
1
2

mw2” the kinetic

energy, and “mgz” the potential energy associated with the height. If the rate of work
dW
dt

on the flow
is zero, Equation (6) can be written as [46]:

dΩ =
∂(ρAdx)

∂t
(u +

w2

2
+ gz) +

∂(ρwA)

∂x
(u + pν +

w2

2
+ gz)dx (8)

The final energy equation for gas flow in a pipeline can be expressed in two cases: firstly,
an adiabatic flow (dΩ = 0); secondly, an isothermal flow. In adiabatic flow, the rate of heat change will
be zero, and in the isothermal flow, temperature will remain constant (T = constant and dΩ 6= 0) [47].
The change of temperature within the gas due to heat conduction between the pipe and the ground (if it
is constructed as an underground pipeline) is sufficiently slow to be neglected [48]. This means, due to
the slow flowing gas, it has sufficient time to exchange heat with the ground and its temperature with
the ground temperature (for underground pipes) and for aboveground pipes, with the surrounding
temperature. Therefore, temperature changes can be neglected and assumed a constant temperature
equal to the ground/environment temperature [19,23,24].

∂p
∂x

= −ρn

A
∂Q
∂t
− f ρ2

nZRTQ|Q|
2η2

t DA2 p
− gsin(θ)

ZRT
p (9)

where “ρn” and “Q” are the density at standard conditions and flow rate of the NG. “A” and “D” are
the cross-sectional area and inner diameter of the pipe, and “p” in Equation (9) is the average pressure
between two nodes. “ηt” is the efficiency of pipe friction factor to convert theoretical friction to actual
friction factor (Equation (10)). √

1
f
= ηt

√
1
ft

(10)

Another significant and effective term in a pipe network equation is the compressibility factor,
“Z”. This is a correction factor in the state of gas equations for real gases, which accounts for the
deviation from ideal gas behaviour. “Z” depends on pressure and temperature of gas and can be
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calculated using correlations such as Peng–Robinson, Redlich–Kwong, Soave-RK, the cubic equation,
etc. [49]. In this research “Z” has been approximated by the PAPAY equation, which is applicable for
high-pressure networks [50].

Z = 1− 3.52(
p
pc
)exp[−2.260(

T
Tc

)] + 0.274(
p
pc
)2exp[−1.878(

T
Tc

)] (11)

Due to slow changes of the variable in gas network pipelines, the focus of this study is a
steady-state model. At steady state, outlet flow equals inlet flow, and the first term of Equation (9) is
neglected. The equation then becomes:

∂p
∂x

= − ftρ
2
nZRTQ|Q|

2η2
t DA2 p

− gsin(θ)
ZRT

p (12)

By integrating from Equation (12), the final steady-state equation is presented in Equation (13),
where pressure drop depends on inertia force, frictional force of the pipe, and different elevations of
the pipeline in a gas network.

p2
i − p2

j = aij|Qij|Qij + bij(pi + pj)
2 (13)

where:

aij =
16. fij.ρ2

n.Z.R.T.l
π2.D5 (14)

bij =
g.l.sin(θ)
2Z.R.T

(15)

In the next section only the modelling of the Irish gas network with 13 nodes and 14 branches is
explained step-by-step using the matrix approach, see Figure 2. Due to massive matrices associated
with the larger Network 2, details are shown in Appendix D. Boundary conditions and network details
can be seen in Table 1 and Table A1.

4. Solving the Non-Linear System

In this section we will focus on the case of the Irish gas network of 13 nodes and 14 branches, see
Figure 2. This model consists of two sets of equations. The first set includes the equations for pressure
drop in (13) which are non-linear. Analytically in the case of the under study model, these non-linear
equations are given by (A1). The second set describes the connectivity of the network in Figure 2 and
consists of the linear equations (A2). These two sets of linear and non-linear equations can be written
in the following matrix form:

AX = B + F(X). (16)

where: X =

[
Xp

Xq

]
, B =

[
bp

bq

]
with:
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Xp =



P2
4

P2
5

P2
6

P2
7

P2
8

P2
9

P2
10

P2
11

P2
12

P2
13

Q1,4

Q1,10

Q2,4

Q3,5



∈ R14×1, Xq =



Q4,5

Q5,6

Q5,11

Q6,7

Q6,9

Q7,8

Q8,9

Q9,10

Q11,12

Q11,13


∈ R10×1,

bp =



(1− b1,4)P2
1

(1− b1,10)P2
1

0
0
0
0
0

(1− b3,5)P2
3

0
0
0

(1− b2,4)P2
2

0
0



,∈ R14×1 bq =



L4

L5

L6

L7

L8

L9

L10

L11

L12

L13


∈ R10×1.

Furthermore, F(X) =

[
f (X)

010,1

]
, with:

f (X) =



−a1,4|Q1,4|Q1,4 − 2b1,4P1P4

−a1,10|Q1,10|Q1,10 − 2b1,10P1P10

a9,10|Q9,10|Q9,10 + 2b9,10P9P10

a6,9|Q6,9|Q6,9 + 2b6,9P6P9

a6,7|Q6,7|Q6,7 + 2b6,7P6P7

a7,8|Q7,8|Q7,8 + 2b7,8P7P8

a8,9|Q8,9|Q8,9 + 2b8,9P6P9

−a3,5|Q3,5|Q3,5 − 2b3,5P3P5

a5,6|Q5,6|Q5,6 + 2b5,6P5P6

a5,11|Q5,11|Q5,11 + 2b5,11P5P11

a4,5|Q4,5|Q4,5 + 2b4,5P4P5

−a2,4|Q2,4|Q2,4 − 2b2,4P2P4

a11,12|Q11,12|Q11,12 + 2b11,12P11P12

a11,13|Q11,13|Q11,13 + 2b11,13P11P13



∈ R14×1,
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and: A =

[
A11 014,10

A21 A22

]
, with:

A11 =
[

Ã11 014,4

]
∈ R14×14, A21 =

[
010,10 Ã21

]
∈ R10×14, A22 =∈ R10×10,

and:

Ã11 =



1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 1 0 0 −1 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0
1 −1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 0 −1



+



b1,4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 b1,10 0 0 0
0 0 0 0 0 −b9,10 b9,10 0 0 0
0 0 −b6,9 0 0 −b6,9 0 0 0 0
0 0 −b6,7 −b6,7 0 0 0 0 0 0
0 0 0 −b7,8 −b7,8 0 0 0 0 0
0 0 0 0 −b8,9 −b8,9 0 0 0 0
0 b3,5 0 0 0 0 0 0 0 0
0 −b5,6 −b5,6 0 0 0 0 0 0 0
0 −b5,11 0 0 0 0 0 −b5,11 0 0
−b4,5 −b4,5 0 0 0 0 0 0 0 0
b2,4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −b11,12 b11,12 0
0 0 0 0 0 0 0 −b11,13 0 −b11,13



,

Ã21 =



1 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0


, A22 =



−1 0 0 0 0 0 0 0 0 0
1 −1 1 0 0 0 1 0 0 0
0 1 0 −1 −1 1 1 0 0 0
0 0 0 1 0 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 1 0 1 −1 0 0
0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 −1 −1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


.

Then, System (16) can be written in the form:[
A11 014,10

A21 A22

] [
Xp

Xq

]
=

[
bp

bq

]
+

[
f (X)

010,1

]
,
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and be split into two subsystems:
A11Xp = bp + f (X), (17)

and:
A21Xp + A22Xq = bq. (18)

By setting Xp =

[
Zp

Wq

]
with:

Zp =



P2
4

P2
5

P2
6

P2
7

P2
8

P2
9

P2
10

P2
11

P2
12

P2
13


∈ R10×1, Wp =


Q1,4

Q1,10

Q2,4

Q3,5

 ∈ R4×1.

The subsystem (17) can take the form:

Ã11Zp = bp + f (X).

There exists X∗, which satisfies the solution of (16) and can be found through a standard numerical
method like the Newton–Raphson, such that:

f (X∗) = −Ã12Wp − Â12Xq + b̃p. (19)

Then, by replacing (19) in the above expression:

Ã11Zp + Ã12Wp + Â12Xq = bp + b̃p,

or, equivalently,
Â11Xp + Â12Xq = b̂p. (20)

where Â11 =
[

Ã11 Ã12

]
, and b̂p = bp + b̃p. The system (21) with the system (18) will provide a

solution for the non-linear system (16).
The following Theorem is provided.

Theorem 1. Consider the non-linear system (16). Then, an effective linearization of System (16) is:

ÂX = B̂. (21)

where:

Â =

[
Â11 Â12

A21 A22

]
, B̂ =

[
b̂p

bq

]
.

Furthermore:

• The matrix Â11 is defined as:
Â11 =

[
Ã11 Ã12

]
.

where Ã11 is given, and Ã12 is defined in (19);
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• The matrix Â12 is defined in (19);
• The column vector b̂p is defined as:

b̂p = bp + b̃p.

where b̃p is defined in (19).

5. Numerical Example Results

Both of the gas networks modelled include three supplier nodes of natural gas at a 70-barg
pressure set point, which are shown in Figure 2 and Figure A1 (Nodes 1, 2, and 3). No constraint
was placed on the flow of gas, which can be supplied from any of the supply nodes. Details and the
boundary conditions of Network 1 and Network 2 are presented in Table 1 and Appendix D. The load
at the demand nodes was weighted according to approximated town populations at the given node.
These networks were then modelled as isothermal systems at 288.15 K using MATLAB (modelling
the pipe flow equation using the Newton–Raphson method), SAINT (an energy system modelling
software), and the new approach proposed in this paper. Results for Network 1 are presented in
Tables 3 and 4, while those for Network 2 can be found in Appendix D. In both networks, there are
three supply nodes, which represent the current sources of NG for the Island of Ireland Node 1, Moffat
the Irish-Great Britain Interconnector, Node 2 the Corrib Gas field, and Node 3 the Kinsale Gas Field.
Using the estimated gas consumption for each demand node, along with reported NG supplies [4],
with the ZRT term representing the isothermal squared speed of sound in a pipeline, which was nearly
341 m/s in this case, the model was solved for pressure at each node and flow rate in each pipe. Using
Equations (14) and (15), the parameters ”aij and bij” for each pipe have been calculated, for which aij
relates to the friction factor, pipe length, ZRT, normal density of gas, and diameter, while bij relates to
the pipe angle, pipe length, and ZRT. The numbers shown in Table 2 for the smaller network and for
the bigger network can be found in the Appendix D. In the pipe flow Equation (13), bij is a secondary
important term.

To supply the estimated overall demand of Network 1, the Moffat interconnectors supply nearly
53.5 m3/s, and gas flows from Nodes 2 and 3 are 38 m3/s and 88 m3/s, respectively. Based on the
picture of Ireland’s gas network (Figure 2), distributing this flow among the demand nodes resulted
in an maximum pressure drop of 4 barg at Node 10 and and minimum pressure drop of 0.6 barg at
Node 4 when the inlet pressure was 70 barg using SAINT. It is important to note that the maximum
and minimum pressures did not occur at the minimum and maximum elevations, which was 130 m at
Node 1 and 25 m at Node 11, respectively; therefore, the major source of pressure loss in the system
was due to gas flow in the pipelines.

Table 1. Parameters of the gas flow equation in the small network with 13 nodes and 14 branches.

Pipe Number From
Node

To
Node

Pipe Length,
km Pipe Angle Pipe Fraction

Factor
Pipe Diameter,

m

1 1 4 550 −0.009 0.01 0.76
2 1 10 350 −0.016 0.01 0.6
3 9 10 50 −0.063 0.01 0.6
4 6 9 15 0.095 0.01 0.6
5 6 7 20 0.063 0.01 0.6
6 7 8 18 0.003 0.01 0.6
7 8 9 8 0.014 0.01 0.6
8 3 5 25 −0.069 0.01 0.6
9 5 6 70 −0.025 0.01 0.6

10 5 11 65 −0.004 0.01 0.6
11 4 5 150 −0.004 0.01 0.6
12 2 4 135 −0.008 0.01 0.76
13 11 12 15 0.019 0.01 0.6
14 11 13 13 0.331 0.01 0.6
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Table 2. Parameters aij and bij, which come from Equations (13) and (14).

Parameter aij Parameter bij

a14 2,021,152,507 b14 −0.00379
a110 3,825,126,631 b110 −0.0042
a910 603,344,912 b910 −0.0023
a69 180,950,610 b69 0.001046
a67 241,253,384 b67 0.000921
a78 236,922,319 b78 4.19 × 10−5

a89 140,398,411 b89 8.37 × 10−5

a35 272,631,999 b35 −0.00126
a56 766,010,664 b56 −0.00126
a511 710,214,368 b511 −0.00021
a45 1,636,367,083 b45 −0.00042
a24 450,972,262 b24 −0.00084
a1112 196,766,854 b1112 0.00021

A summary of the results from the numerical solutions is shown in Tables 3 and 4, and the results
of Network 2 are shown in Appendix D. The pipelines’ and nodes’ details including pipe diameter,
length, and inclination are shown. In Figure 2, the designed network is illustrated.

Figure 2. A simplified gas network of Ireland with 13 nodes and 14 branches.
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Table 3. Demand and supply nodes’ details with pressure results from SAINT, MATLAB, and the novel
approach at each node.

Node Number
Demand,

sm3/s H, m Node Type P, barg
from SAINT

P, barg
from MATLAB

P, barg
from the Novel Approach

1 0 130 Supply 70 70 70
2 0 60 Supply 70 70 70
3 0 60 Supply 70 70 70
4 40 40 Demand 69.66 69.41 69.10
5 30 30 Demand 68.32 68.27 67.93
6 10 60 Demand 66.26 66.58 66.48
7 5 82 Demand 66.07 66.53 65.93
8 5 83 Demand 66.04 66.51 66.23
9 5 85 Demand 66.02 66.50 66.24

10 60 30 Demand 65.96 66.19 66.00
11 10 25 Demand 67.89 67.89 67.72
12 8 30 Demand 67.85 67.89 67.43
13 7 100 Demand 67.45 67.89 67.79

Table 4. Pipelines’ details with flow rate outputs through the pipes from SAINT, MATLAB, and the
novel approach models.

Pipe Number Pipe Length, km Flow Rate, sm3/s,
from SAINT

Flow Rate, sm3/s,
from MATLAB

Flow Rate, sm3/s
from The Novel Approach

1 550 21.62 18.99 18.89
2 350 34.83 34.53 34.23
3 50 25.16 25.46 24.53
4 15 23.78 23.73 22.39
5 20 16.38 16.73 16.22
6 18 11.38 11.73 11.64
7 8 6.38 6.73 6.63
8 25 85.80 88.13 88.11
9 70 50.16 50.46 50.39

10 65 25 25 25
11 150 29.35 27.33 27.10
12 135 37.73 38.34 38.03
13 15 8 8 8
14 13 7 7 7

6. The Novel Approach Results and Discussion

By applying Theorem 1 (see Appendix C), the following outputs are shown in Tables 3 and 4 for
the results generated for Network 1. The outputs’ tables of the smaller network are presented in this
section; however, all outputs for the bigger gas network are shown in Appendix D. The two variables
of pressure and flow rate are the main outputs from the three models and used for the benchmarking
of the proposed method. As can be observed from Tables 3 and 4, there was a slight deviation
between the results generated using the MATLAB and SAINT model for Network 1. Applying initial
approximations for the non-linear part (F(X)) of linearized Equation (16) provided the outputs of the
novel method of pressure and flow rate, which can be compared with the results from the SAINT and
MATLAB models and the novel approach. As an example, the pressures at Node 5 from different
solution methods were 68.32, 68.28, and 67.93 barg from SAINT, MATLAB, and the novel approach,
respectively. The comparison between flow rates from the numerical methods and the novel method
is shown in Table 4. As a result, The explored flow rates of Pipe Number 5 were 16.38, 16.73, and
16.22 sm3/s using SAINT, MATLAB, and the novel approach, respectively.

The comparison of outputs between the new method calculations and numerical solution using
MATLAB for Network 1 showed 0.32% deviation of pressures and 1.38% deviation between flow rates
in Table 5 and 0.3% and 2.95% average deviations of pressure and flow rate from the outputs of SAINT.
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Furthermore, for the bigger network with 109 nodes, the average deviations of pressure and flow rate
were 0.07% and 1.23%, respectively, using MATLAB, and the average deviations between the novel
approach and SAINT software for pressure and flow rates were 0.77% and 3.48%. The comparisons
are shown in Appendix D, Table A2. Along with accuracy, the time taken for each of the simulations
was measured for both modelled networks. The proposed new method was significantly faster, taking
0.31 s, while 1 s was taken for the solution in SAINT and 2.80 for the MATLAB solution of the bigger
network. This time is even less for the smaller network, with 0.058 s, shown in the Table 6. This method
can be used for much bigger networks at continental scales with fast calculations.

Table 5. Deviations of the novel method from the MATLAB and SAINT outputs.

SAINT MATLAB
Pressure

Deviation %
Flow Rate

Deviation %
Pressure

Deviation %
Flow Rate

Deviation %
13 Nodes (small network) 0.3 2.95 0.32 1.38
109 Nodes (big network) 0.77 3.48 0.07 1.23

Table 6. Elapsed for calculations in seconds for each model.

Elapsed for Calculations, Seconds
Novel Method MATLAB Model SAINT Model

13 Nodes (small network) 0.058 0.4 0.25
109 Nodes (big network) 0.32 2.8 1

7. Conclusions

Currently, there are several numerical methods along with commercially-available software
to solve the non-linear equations describing the compressible gas flow through the gas network.
In this paper, a novel, unique mathematical method has been developed for simulating a steady-state
non-linear gas network to quantify the main characteristics, pressure and flow rate through the
transmission pipeline system.

Using two approximate models of the Irish natural gas transmission network as a case
study the novel method was compared and benchmarked against a numerical modelling solution
using the Newton–Raphson method carried out in MATLAB and the commercial software SAINT.
The comparison of the results from all solutions showed that the new model is much faster than the
alternative methods, and the average deviation between the methods was less than 0.31% (0.3% and
0.32%) for pressure and less than 2.1% (2.95% and 1.38%) for flow rate. Based on these key findings,
the new method can be applied as a reliable fast method to model various conditions in a gas network
even when there is a large number of nodes and branches. The method also lends its self ideally to
the modelling of integrated energy systems as it is fast, simple, and can be easily integrated with
linear models of electrical networks. The networks presented here only contain boundary conditions
associated with pressure for supply nodes and load for demand nodes; in reality, there may be other
real-world constraints that impact gas supply or demand. These constraints need to be included when
modelling real-world systems, so that in the future, the results from the novel method can be validated
with accurate data from a real gas network.
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Abbreviations

The following abbreviations are used in this manuscript:

CBI Cross Border Import
CGS City Gas Station
ODE Ordinary Differential Equation
PDE Partial Differential Equation
SSM Steady-State Model
TBS Town Board Station
A cross-sectional area of the pipe
A matrix system of variables
D pipe inner diameter
E energy
f friction factor
ft theoretical friction factor
g gravitational acceleration
dh f head losses
i sender note punctuation
j receiver node punctuation
L nodal load (demand)
l pipe length
p nodal pressure
pb basic pressure
pc critical pressure
dp differential pressure
∆ p pressure drop
U internal energy
x pipeline coordinate
Xp pressure variable matrix
Xq flow rate variable matrix
z elevation
Z compressibility factor
θ inclination
ρn normal density
ρ density
η pipe efficiency
τ shear stress
ω velocity
Ω heat energy
ν volume
W work
Q flow rate
R gas constant
Re Reynold’s number
t time
T Temperature
Tb basic temperature
Tc critical temperature
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Appendix A. Non-Linear Equations

The non-linear equations of the model are the following:

(b1,4 + 1)P2
4 = (1− b1,4)P2

1 − a1,4|Q1,4|Q1,4 − 2b1,4P1P4

(b1,10 + 1)P2
10 = (1− b1,10)P2

1 − a1,10|Q1,10|Q1,10 − 2b1,10P1P10

(1− b9,10)P2
9 − (1 + b9,10)P2

10 = 0 + a9,10|Q9,10|Q9,10 + 2b9,10P9P10

(1− b6,9)P2
6 − (1 + b6,9)P2

9 = 0 + a6,9|Q6,9|Q6,9 + 2b6,9P6P9

(1− b6,7)P2
6 − (1 + b6,7)P2

7 = 0 + a6,7|Q6,7|Q6,7 + 2b6,7P6P7

(1− b7,8)P2
7 − (1 + b7,8)P2

8 = 0 + a7,8|Q7,8|Q7,8 + 2b7,8P7P8

(1− b8,9)P2
8 − (1 + b8,9)P2

9 = 0 + a8,9|Q8,9|Q8,9 + 2b8,9P6P9

(b3,5 + 1)P2
5 = (1− b3,5)P2

3 − a3,5|Q3,5|Q3,5 − 2b3,5P3P5

(1− b5,6)P2
5 − (1 + b5,6)P2

6 = 0 + a5,6|Q5,6|Q5,6 + 2b5,6P5P6

(1− b5,11)P2
5 − (1 + b5,11)P2

11 = 0 + a5,11|Q5,11|Q5,11 + 2b5,11P5P11

(1− b4,5)P2
4 − (1 + b4,5)P2

5 = 0 + a4,5|Q4,5|Q4,5 + 2b4,5P4P5

(b2,4 + 1)P2
4 = (1− b2,4)P2

2 − a2,4|Q2,4|Q2,4 − 2b2,4P2P4

(1− b11,12)P2
11 − (1 + b11,12)P2

12 = 0 + a11,12|Q11,12|Q11,12 + 2b11,12P11P12

(1− b11,13)P2
11 − (1 + b11,13)P2

13 = 0 + a11,13|Q11,13|Q11,13 + 2b11,13P11P13

(A1)
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Appendix B. Linear Equations

The linear equations of the model are the following:

L4 = Q1,4 + Q2,4 −Q4,5

L5 = Q4,5 + Q3,5 −Q5,6 −Q5,11

L6 = Q5,6 −Q6,7 −Q6,9

L7 = Q6,7 −Q7,8

L8 = Q7,8 −Q8,9

L9 = Q8,9 + Q6,9 −Q9,10

L10 = Q9,10 + Q1,10

L11 = Q5,11 −Q11,12 −Q11,13

L12 = Q11,12

L13 = Q11,13

(A2)

Appendix C. Matrices and Tools for the Numerical Example

Substituting the data in the model as described in the matrix equations in Theorem 1, we have:

Â11 =



0.99621 0 0 0 0 0 0 0 0 0 K1 0 0 0
0 0 0 0 0 0 0.9958 0 0 0 0 K2 0 0
0 0 0 0 0 1.0023 0.9977 0 0 0 0 0 0 0
0 0 0.99895 0 0 −1.00105 0 0 0 0 0 0 0 0
0 0 0.99908 −1.00092 0 0 0 0 0 0 0 0 0 0
0 0 0 0.99996 −1.00004 0 0 0 0 0 0 0 0 0
0 0 0 0 0.99992 −1.00008 0 0 0 0 0 0 0 0
0 0.99874 0 0 0 0 0 0 0 0 0 0 0 K3
0 1.00126 −0.99874 0 0 0 0 0 0 0 0 0 0 0
0 1.00021 0 0 0 0 0 −0.99979 0 0 0 0 0 0

1.00042 −0.99958 0 0 0 0 0 0 0 0 0 0 0 0
0.99916 0 0 0 0 0 0 0 0 0 0 0 K4 0

0 0 0 0 0 0 0 0.99979 −0.99979 0 0 0 0 0
0 0 0 0 0 0 0 0.99685 0 −1.00315 0 0 0 0


where K1 = −54,730,788,737.1; K2 = −137,782,182,351; K3 = −17,806,184,141.6; and
K4 = −21,014,390,336.9.

Â12 =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 14470338876 0 0
0 0 0 0 4537806372 0 0 0 0 0
0 0 0 3355083140 0 0 0 0 0 0
0 0 0 0 0 2110164511 0 0 0 0
0 0 0 0 0 0 548431109 0 0 0
0 0 0 0 0 0 0 0 0 0
0 33692825938 0 0 0 0 0 0 0 0
0 0 17756489575 0 0 0 0 0 0 0

55106533277 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1574235048 0
0 0 0 0 0 0 0 0 0 1194214105


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B̂ =



4955.2837
4959.1798
−19.7939

9.0515
7.9353
0.3440
0.6876

4918.0644
−11.1695
−1.8961
−3.9177

4912.2529
1.8828

28.0765
40.0
30.0
5.0
5.0
5.0
5.0

60.0
10.0
8.0
7.0


With the above result, we arrive at the results in Table 5.

Appendix D. Table of Outputs

Table A1. Parameters of the gas flow equation in the bigger network with 109 nodes and 112 branches.

Pipe Number From Node To Node Pipe Length,
km

Diameter,
m

1 1 89 75 0.9
2 89 88 5 0.7
3 89 86 150 0.7
4 88 87 80 0.8
5 87 90 70 0.8
6 90 91 5 0.8
7 86 51 70 0.7
8 51 52 5 0.7
9 51 49 20 0.7
10 49 50 5 0.7
11 49 47 10 0.7
12 47 48 10 0.7
13 47 46 15 0.7
14 46 45 15 0.7
15 45 43 10 0.7
16 43 44 5 0.7
17 43 30 10 0.7
18 2 41 20 0.8
19 41 42 10 0.7
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Table A1. Cont.

Pipe Number From Node To Node Pipe Length,
km

Diameter,
m

20 41 39 15 0.7
21 39 40 10 0.7
22 39 36 15 0.7
23 36 37 10 0.7
24 36 38 5 0.7
25 36 33 10 0.7
26 33 34 5 0.7
27 33 35 5 0.7
28 33 31 15 0.7
29 31 32 5 0.7
30 31 30 3 0.7
31 30 28 5 0.7
32 28 29 5 0.7
33 28 26 5 0.7
34 26 27 3 0.7
35 26 25 10 0.7
36 25 24 15 0.7
37 24 22 5 0.7
38 22 23 3 0.7
39 22 14 10 0.7
40 14 17 10 0.7
41 17 21 10 0.7
42 17 20 10 0.7
43 17 18 10 0.7
44 18 19 10 0.7
45 14 15 5 0.7
46 15 16 10 0.7
47 3 4 20 0.7
48 4 5 3 0.7
49 4 6 5 0.7
50 6 8 10 0.7
51 8 7 10 0.7
52 8 9 10 0.7
53 8 10 10 0.7
54 4 11 20 0.7
55 11 12 10 0.7
56 12 13 10 0.7
57 12 14 8 0.7
58 53 54 5 0.8
59 54 55 3 0.7
60 54 60 5 0.7
61 60 56 10 0.7
62 56 57 15 0.7
63 57 59 5 0.7
64 57 58 10 0.7
65 11 82 15 0.7
66 82 83 5 0.7
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Table A1. Cont.

Pipe Number From Node To Node Pipe Length,
km

Diameter,
m

67 82 84 10 0.7
68 84 85 10 0.7
69 82 78 15 0.7
70 78 81 5 0.7
71 78 79 15 0.7
72 79 80 15 0.7
73 78 76 3 0.7
74 76 77 3 0.7
75 76 75 5 0.7
76 75 74 10 0.7
77 74 73 5 0.8
78 73 72 5 0.7
79 72 71 10 0.7
80 71 70 5 0.7
81 70 69 5 0.7
82 72 69 5 0.7
83 69 68 5 0.7
84 68 66 5 0.7
85 66 67 3 0.7
86 73 61 10 0.7
87 61 62 3 0.7
88 62 63 3 0.7
89 62 64 3 0.7
90 62 65 3 0.7
91 61 60 3 0.8
92 61 66 2 0.7
93 60 55 3 0.7
94 90 53 5 0.8
95 53 92 10 0.8
96 92 94 10 0.8
97 94 95 3 0.8
98 92 93 3 0.7
99 93 97 10 0.7

100 97 98 10 0.7
101 93 96 10 0.7
102 91 99 20 0.7
103 99 100 20 0.8
104 100 101 15 0.8
105 101 102 3 0.7
106 101 103 5 0.8
107 103 104 5 0.8
108 103 105 5 0.8
109 105 106 10 0.8
110 106 107 5 0.8
111 106 108 15 0.8
112 108 109 15 0.8
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Table A2. SAINT, MATLAB, and the novel method outputs for a 109-node network.

Pressure, barg Flow Rate, sm3/s
Node

Number
SAINT MATLAB Novel

Approach
Pipe

Number
SAINT MATLAB Novel

Approach
1 85 85 85 1 152.27 142.83 142.83
2 85 85 85 2 113.33 107.67 107.49
3 85 85 85 3 38.93 35.17 35.09
4 82.15 82.24 82.22 4 113.33 107.67 107.21
5 82.22 82.22 82.21 5 113.33 107.67 107.21
6 81.86 82.14 82.10 6 65.00 65.00 64.98
7 81.69 82.13 82.09 7 38.93 35.17 35.01
8 81.68 82.13 82.09 8 5.00 5.00 5.00
9 81.66 82.13 82.09 9 33.93 30.16 30.13

10 82.06 82.13 82.09 10 5.00 5.00 5.00
11 81.23 81.16 81.11 11 28.93 25.16 25.13
12 81.19 81.16 81.12 12 5.00 5.00 5.00
13 80.70 81.16 81.09 13 23.93 20.16 20.09
14 80.77 81.17 81.16 14 23.93 20.16 20.00
15 80.84 81.17 81.13 15 23.93 20.16 20.00
16 80.84 81.17 81.19 16 5.00 5.00 5.00
17 80.81 81.13 81.12 17 18.93 15.16 15.11
18 80.80 81.12 81.13 18 115.71 119.14 119.00
19 80.77 81.12 81.12 19 5.00 5.00 5.00
20 81.05 81.12 81.11 20 110.71 114.14 113.23
21 81.12 81.12 81.12 21 5.00 5.00 5.00
22 81.32 81.29 81.28 22 105.71 109.14 109.01
23 81.32 81.29 81.29 23 5.00 5.00 5.00
24 81.39 81.36 81.35 24 5.00 5.00 5.00
25 81.60 81.55 81.55 25 95.71 99.14 99.00
26 81.73 81.69 81.67 26 5.00 5.00 5.00
27 81.73 81.69 81.68 27 2.00 2.00 2.00
28 81.81 81.76 81.74 28 88.71 92.14 92.12
29 81.81 81.75 81.74 29 50.00 50.00 50.00
30 81.89 81.84 81.82 30 38.71 42.14 42.12
31 81.92 81.87 81.80 31 57.64 57.30 57.27
32 81.89 81.82 81.80 32 5.00 5.00 5.00
33 82.56 82.42 82.42 33 52.64 52.30 52.01
34 82.56 82.42 82.41 34 2.00 2.00 2.00
35 82.56 82.42 82.41 35 50.64 50.30 50.30
36 83.02 82.85 82.83 36 50.64 50.30 50.28
37 83.02 82.85 82.84 37 50.64 50.30 50.23
38 83.02 82.85 82.84 38 2.00 2.00 2.00
39 83.86 83.60 83.60 39 48.64 48.30 48.25
40 83.86 83.60 83.57 40 35.00 35.00 35.00
41 84.77 84.41 84.40 41 5.00 5.00 5.00
42 84.77 84.41 84.39 42 5.00 5.00 5.00
43 81.95 81.85 81.79 43 5.00 5.00 5.00
44 81.95 81.84 81.81 44 5.00 5.00 5.00
45 81.98 81.86 81.85 45 7.00 7.00 7.00
46 82.03 81.88 81.87 46 5.00 5.00 5.00
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Table A2. Cont.

Pressure, barg Flow Rate, sm3/s
47 82.08 81.91 81.90 47 175.03 181.03 181.00
48 82.08 81.91 81.89 48 0.00 0.00 0.00
49 82.16 81.93 81.90 49 75.00 75.00 75.00
50 82.16 81.93 81.90 50 15.00 15.00 15.00
51 82.29 82.00 81.98 51 5.00 5.00 5.00
52 82.29 82.00 81.98 52 5.00 5.00 5.00
53 78.89 78.09 78.00 53 5.00 5.00 5.00
54 78.87 78.09 78.00 54 100.03 106.03 106.04
55 78.84 78.08 78.00 55 1.64 1.30 1.29
56 78.85 78.09 78.00 56 5.00 5.00 5.00
57 78.83 78.08 78.00 57 6.00 6.30 6.20
58 78.97 78.08 78.09 58 42.33 36.67 36.99
59 78.83 78.08 78.04 59 40.08 39.89 39.89
60 78.87 78.10 78.01 60 2.25 3.23 3.21
61 78.89 78.14 78.00 61 15.00 15.00 15.00
62 78.88 78.14 78.01 62 15.00 15.00 15.00
63 78.88 78.14 78.11 63 5.00 5.00 5.00
64 78.88 78.14 78.11 64 5.00 5.00 5.00
65 78.88 78.14 78.11 65 101.67 107.34 106.23
66 78.89 78.15 78.09 66 2.00 2.00 2.00
67 78.89 78.15 78.09 67 5.00 5.00 5.00
68 78.92 78.19 78.29 68 5.00 5.00 5.00
69 78.94 78.22 78.30 69 94.67 100.34 100.12
70 78.94 78.22 78.19 70 5.00 5.00 5.00
71 78.94 78.22 78.22 71 5.00 5.00 5.00
72 78.96 78.24 78.20 72 5.00 5.00 5.00
73 79.00 78.29 78.20 73 84.67 90.34 90.32
74 79.09 78.41 78.39 74 2.00 2.00 2.00
75 79.45 78.90 78.89 75 82.67 88.34 88.30
76 79.64 79.15 79.09 76 82.67 88.34 88.30
77 79.64 79.15 79.06 77 82.67 88.34 88.30
78 79.79 79.30 78.93 78 38.20 40.93 40.90
79 79.78 79.30 79.12 79 14.44 15.68 15.23
80 79.78 79.30 79.13 80 9.44 10.68 10.00
81 79.89 79.30 79.03 81 4.44 5.68 5.52
82 80.49 80.18 80.00 82 23.76 25.25 24.56
83 80.49 80.18 80.03 83 28.20 30.93 30.89
84 80.49 80.18 80.00 84 28.20 30.93 30.89
85 80.49 80.18 80.12 85 5.00 5.00 5.00
86 82.90 82.32 82.29 86 44.47 47.41 47.30
87 81.25 80.28 80.16 87 15.00 15.00 15.00
88 83.78 82.71 82.68 88 5.00 5.00 5.00
89 84.10 83.00 82.97 89 5.00 5.00 5.00
90 78.96 78.09 78.09 90 5.00 5.00 5.00
91 78.90 77.98 77.89 91 52.67 58.33 57.23
92 78.92 78.09 78.00 92 23.20 25.93 24.54
93 78.92 78.09 78.00 93 39.92 40.11 40.01
94 78.92 78.09 78.03 94 48.33 42.67 42.62
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Table A2. Cont.

Pressure, barg Flow Rate, sm3/s
95 78.92 78.09 78.01 95 6.00 6.00 6.00
96 78.92 78.09 78.02 96 2.00 2.00 2.00
97 78.92 78.09 78.02 97 2.00 2.00 2.00
98 78.92 78.09 78.05 98 4.00 4.00 4.00
99 78.47 77.05 77.00 99 2.00 2.00 2.00

100 78.30 76.57 76.56 100 2.00 2.00 2.00
101 78.23 76.20 76.15 101 2.00 2.00 2.00
102 78.12 76.17 76.16 102 65.00 65.00 65.00
103 78.16 76.17 76.16 103 65.00 65.00 65.00
104 78.16 76.14 76.09 104 65.00 65.00 65.00
105 78.16 76.17 76.09 105 50.00 50.00 50.00
106 78.16 76.16 76.18 106 15.00 15.00 15.00
107 78.16 76.16 76.14 107 5.00 5.00 5.00
108 78.15 76.16 76.15 108 10.00 10.00 10.00
109 78.15 76.16 76.11 109 10.00 10.00 10.00

110 5.00 5.00 5.00
111 5.00 5.00 5.00
112 5.00 5.00 5.00

Appendix E. Figures

Figure A1. The 109-node map of Ireland’s gas network.
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