A Novel Approach to Modeling Context-Aware
and Social Collaboration Processes

Vitaliy Liptchinsky, Roman Khazankin,
Hong-Linh Truong, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology,
Argentinierstrasse 8/184-1, A-1040, Vienna, Austria
lastname@infosys.tuwien.ac.at
http://wuw.infosys.tuwien.ac.at

Abstract. Companies strive to retain the knowledge about their busi-
ness processes by modeling them. However, non-routine people-intensive
processes, such as distributed collaboration, are hard to model due to
their unpredictable nature. Often such processes involve advanced activ-
ities, such as discovery of socially coherent teams or unbiased experts, or
complex coordination towards reaching a consensus. Modeling such ac-
tivities requires an expressive formal representation of process context,
i.e. related actors and artifacts. Existing modeling approaches do not
provide the necessary level of expressiveness to capture it. We therefore
propose a novel modeling approach and a graphical notation, demon-
strate their applicability and expressivity via several use cases, and dis-
cuss their strengths and weaknesses.

Keywords: Process Modeling, Social Context, Collaboration, Visual
Language.

1 Introduction

Companies strive to retain the knowledge about their business processes by
modeling them. If captured accurately, such knowledge allows us to analyze,
improve, and execute those processes with higher efficiency. Although a variety
of techniques and tools have been introduced for Business Process Modeling
(BPM), nevertheless, modeling of highly dynamic non-routine processes such as
human collaboration is still a subject for discussion in research [16].

While collaboration in general means working together to achieve a goal [§],
the more narrow notion of creative human collaboration implies working together
to design or improve some artifact (a piece of software, a wiki page, a product
design, an article of law, a research paper, etc.). With proliferation of collabora-
tion software, such as groupware or wikis, the manner of such collaboration has
taken the form of incremental contributions to a network of shared documents.
Relations between documents, actors, and other artifacts may influence the col-
laboration process. For example, some tasks should be done by actors chosen
based on social relations, actions on some documents should not be performed

J. Ralyté et al. (Eds.): CAIiSE 2012, LNCS 7328, pp. 565-B80] 2012.
© Springer-Verlag Berlin Heidelberg 2012

http://www.infosys.tuwien.ac.at

566 V. Liptchinsky et al.

before related documents reach certain condition, or a change in a related doc-
ument might force to re-do an activity. Although artifact-based process models
have already been researched [T9)2l[4], existing modeling approaches do not em-
phasize the relations between artifacts as process “driving force”, and, therefore,
either do not provide the needed expressivity to capture this logic, or are inef-
ficient because of the excessive complexity. We thus propose a novel modeling
approach and a graphical notation for collaboration processes, the key principle
of which is to treat each document’s evolution as an individual process which
is explicitly influenced by the states of related documents and patterns in sur-
rounding social network. We propose to formalize the relations in line with the
data from collaboration software, e.g., two developers can be considered related if
they committed code to the same project folder in a source code repository. The
amount of such data will grow with social computing pervading the enterprise
Hﬂ, thus allowing process modelers to create richer models of people-intensive
processes.

The rest of this paper is organized as follows: Section [2 describes motivation
behind the modeling approach and presents a motivating example. In Section Bl
we show the lack of expressivity in existing modeling approaches with regards
to the motivating example. Section Ml describes the proposed modeling paradigm
and the corresponding graphical notation. Section 5l demonstrates the usability of
the approach through sensible use-cases. Disadvantages of the modeling approach
are discussed in Section [6l The paper is concluded in Section [7

2 DMotivation

Collaboration is a recursive [I3] process comprised of human interactions towards
realization of shared goals. Groupware and social software foster collaboration
of individuals who work across time, space, cultural and organizational bound-
aries, i.e., virtual teams [I7]. Using this type of software, people interact through
conversations (e.g., e-mails and instant messages) and transactions (e.g., create/
modify/assign/restructure a document) in order to augment a common deliv-
erable, e.g., documentation of an idea, a technical specification, a source code
file, or a wiki page. Typically, such interactions are chaotic, non-routine, and are
hard to predict and model. However, as side-effects they produce semantical and
social relations between actors and artifacts. Furthermore, artifacts usually are
semantically connected into hierarchical or network structures, i.e., references in
wiki pages, or dependencies between software components.

As a motivating example, let us consider in-house software engineering in
a dot-com company. Projects, or ventures, in such company can be classified
as engineering ventures (development of new functionality), or analysis ventures
(incident investigation, proof-of-concepts). Both types of ventures produce deliv-
erables, such as source code or technical documentation. Figure [Il demonstrates
a snapshot of a collaboration process as a directed graph of venture deliverables

!http://www.gartner.com/it/page.jsp?id=1470115

http://www.gartner.com/it/page.jsp?id=1470115

Modeling Context-Aware and Social Collaboration Processes 567

and collaborating actors. Edges connecting Ventures represent functional de-
pendencies (i.e., venture depends on either an investigation report or a software
component produced by other ventures). Edges connecting Actors depict social
relations, i.e., there is a regular communication over instant messaging channels
between them, or they contribute to the same venture. Analysis ventures, rep-
resenting rather creative and non-routine work, can reside only in two possible
phases, namely In Progress and Finished, while engineering ventures, repre-
senting more structured and long-running work, can reside in more phases, such
as Design, Implementation, Testing, and Finished.

e @ e

In'progress
Engjheer 4
Analy/sjA/enture 1 Anal) enture 2 Assigned
Assigned Assigned L

Depends Finished

In progress [+ Depends

NO Social Relation

Experts Experts EngineerirﬁVenture 3

Depends
Depends
Implementation*—Depends— Design phase
Depends
Engineer% Venture 1 Enginee% ture 2 Design phase
Assigned . "
g Assigned Assigned Enginering Venture &
Assigned
Social Relation Social Relation

Engineer 1

Engineer 2 Engineer 3

Fig. 1. Software engineering collaboration process snapshot

Now, let us consider a process modeler that possesses knowledge of working
environment, culture, and the scale of the company, and aims at modeling the
following rules:

1. A wventure project team should be notified of any changes in the technical
documentation of other ventures it depends on. However, if two functionally
interdependent ventures share any team members, then enforced communi-
cation is not required. This rule ensures proper knowledge sharing between
functionally interdependent ventures while avoiding overcommunication. For
example, any new technical reports of Analysis Venture 2 should be com-
municated to the project team of Engineering Venture 2. However, the
same synchronization between Engineering Venture 2 and Engineering
Venture 4 is not critical, because Engineer 3 is anyway aware of any such
changes.

2. Venture technical documentation (i.e., design, or a report) should be reviewed
by an expert from a functionally dependent venture. Moreover, it is preferable
to assign an expert socially unrelated to the venture team members. This
rule tries to avoid biased reviews by finding a socially unrelated experts. For
example, it is more preferable to assign Engineer 4, than Engineer 1, asa

568 V. Liptchinsky et al.

reviewer of Engineering Venture 2, as Engineer 4 does not have strong
social relations with the Engineering Venture 2 team.

3. An engineering venture can be started if at least one venture, it depends on,
has passed Design phase. This rule defines a balance between total serializa-
tion of dependent ventures Design phases, which results in a longer time-
to-market, and total parallelization of Design phases, which results in more
iterations. For example, Engineering Venture 2 was started upon comple-
tion of Design phase of either Engineering Venture 3 or Engineering
Venture 1.

4. Design phase of a wenture cannot be finished if all ventures, it depends
on, have not passed Design phase. This rule minimizes chances of poten-
tial rework and wasted efforts. For example, Design phase of Engineering
Venture 2 can be finished only after Engineering Venture 4 switches to
Implementation phase.

We refer to such rules as context dependency rules (CDRs). As it can be seen from
the examples above, they allow to capture the knowledge about the impact of social
and structural relations on collaboration processes. Formal specification can help
visualize and improve CDRs, thus reflecting management experience in enterprise.

3 Related Work

In this section we discuss the related works and show their shortcomings with
regard to their ability to model context dependency rules (CDRs), examples of
which are outlined in the previous section. To the best of our knowledge, no
framework is capable of capturing CDRs in a formal and visual manner.
Information-centric modeling approaches, such as Case Handling [2] and
Artifact-centric workflows [4], can capture the evolvement of collaboration
entities into formal models, and capture the relations on a conceptual level us-
ing composite cases and ’is-a’ relationships between Roles in Case Handling, and
Entity-Relationship models in Artifact-centric workflows. However, condition ele-
ments in these approaches do not allow to specify CDRs. Conditions in
case-handling are defined as sets of bindings where a binding is a set of values for
specific data objects. Therefore, it is not possible to define a condition which ex-
amines all the objects in a specific relation to the object at hand (CDR example 3),
or to specify that all the related objects must reside in a specific state (CDR exam-
ple 4). Conditions in Artifact-centric workflows are specified in formulas written in
first-order logic. However, the specification is restricted and does not allow to use
quantifiers, which is crucial for expressing CDRs (e.g., CDR examples 3 or 4).
Traditional activity-oriented business process modeling approaches like
BPMM allow to model dependencies between processes via messages or events.
Asynchronous messaging can be used to partially resemble CDRs, e.g., by send-
ing notifications to related processes. However, it would not provide enough
flexibility to capture such rules. Using external events is another way to model

2 http://www.bpmn.org/

http://www.bpmn.org/

Modeling Context-Aware and Social Collaboration Processes 569

such logic, but, it would require the specification of events in natural language.
Moreover, activity-oriented approaches are difficult to apply for collaboration
processes, because it is hard to predefine exact steps to follow [16]. In addition,
explicit communication and coordination entities (i.e., events, message chan-
nels), intended for publishing information, do not convey any functional load
and, therefore, complicate and encumber process models. Agent-based or agent-
inspired approaches for coordination of business processes as [IJI1] also utilize
explicit information publishing entities, thus sharing the same disadvantages.

Context-aware workflows [20] are a generic approach that advocates the aug-
mentation of workflow technology with information about the physical world.
It is an execution framework, and proposes to use an XML-based language to
express context dependencies. Theoretically, CDRs could be implemented using
this framework, however, it would be hardly intuitive to comprehend.

In [3] so-called batch-tasks were proposed to allow for a task that is executed
for multiple workflow instances at the same time. Other similar approaches can
be found in [5]. Partially, CDRs can be covered by batch-tasks, e.g., CDR ex-
ample 4. For more complex rules, however, this approach is not flexible enough.

Team Automata [II0] use communication via shared action spaces. Transi-
tions, which include the same external action, are fired simultaneously in these
Automata. Alike to batch-tasks, it doesn’t provide the needed flexibility.

COREPRO modeling framework [I4] proposes to model the dependencies
between states of related processes via so-called external state transitions. Again,
it provides limited expressivity for describing the dependencies, as it allows to
specify only exact external state transitions.

Futhermore, neither of approaches discussed above focuses on functional or
social relations between actors and artifacts and therefore does not provide cor-
responding modeling elements. This makes it difficult for a modeler to specify
such relations and their impact in a natural way.

4 Modeling Paradigm

In this section we present the modeling approach for collaboration processes,
which allows to express context dependency rules (CDRs, see Sec. 2)). We ex-
plain the design features, outline the modeling paradigm, and present modeling
elements and graphical notation.

The key modeling principles of our modeling paradigm are:

— Information-centric. As described in Sec. 2] collaboration can be seen as a
network of evolving artifacts. In addition, activity-oriented approaches are
difficult to apply to collaboration processes, because it is hard to predefine
exact steps to follow [16]. For instance, people interactions, such as conver-
sations and transactions, in a collaboration process are rather chaotic and
unpredictable, therefore, it is easier to capture collaboration artifacts and
corresponding social and semantic relations as side effects of interactions.
Therefore, the information-centric modeling paradigm is chosen as a basis
for the modeling approach.

570 V. Liptchinsky et al.

— Bottom-up and neighborhood-aware. Modeling an evolvement of a network
of artifacts and people in a holistic view can be a daunting task. Contrar-
ily, neglecting relations completely and modeling the progress of artifacts in
isolation leads to context tunneling, and, therefore ineffective models. We
thus propose to use a bottom-up hybrid approach, which models evolution
of each artifact as an individual process explicitly influenced by its neigh-
borhood. This approach allows to describe behavior at macro level (network
of artifacts) by means of modeling behaviors at micro level (evolvement of
a single artifact). Additionally, it allows to provide simple processes coordi-
nation and secure encapsulation: a process can modify only its own state, it
cannot impact related processes explicitly. This approach was inspired by a
computational model of Cellular Automata(CA) [15].

— Social. Collaboration processes often involve non-routine activities, such as
discovery of socially coherent teams, or complex decision-making by exploit-
ing social hubs and unbiased experts. Therefore, the paradigm promotes
modeling not only a network of evolving artifacts, but also an evolving net-
work of people.

In the following subsection we introduce the modeling framework, which incor-
porates the key principles discussed above.

4.1 Modeling Framework

Our modeling framework is defined as a set of basic modeling elements that a
business process modeler can operate with in order to reflect context dependency
rules (CDRs) within business process models:

1. Collaboration artifacts and their states. Artifacts should represent various
aspects and deliverables of collaboration process (e.g., a software compo-
nent, or a technical design). The states should represent the possible phases
of collaboration. Artifacts and their states may be modeled using existing
information-centric approaches, such as Artifact-centric workflows [4], mak-
ing thus our approach rather complementory, than stand-alone.

2. Relations. Relations can be pre-defined (e.g., functional or structural depen-
dency) or dynamic (e.g., temporal or social relations), i.e., produced as side
effects of interactions and transactions. Proliferation of groupware and so-
cial software boosts the quantity and quality of dynamic relations data, thus
empowering process modelers.

3. Context-aware state transitions. Context-aware state transitions define what
Relations and Artifacts are relevant for a business process at various steps
of its execution.

In order to better demonstrate how the framework basic modeling elements can
be put together to model a business process, we present a graphical notation
for the modeling framework. The notation is an extension of the conventional
statecharts visual formalism [7]. The choice of statecharts is justified by their
information-centric nature and widespread adoption as part of Unified Modeling

Modeling Context-Aware and Social Collaboration Processes 571

Language (UML)E‘. Being a natural visual representation of state machine math-
ematical model, statecharts include the following basic elements: (i) Clustered
and refined states; (i) State transitions comprised of events (external happen-
ings such as user input or timeout), conditions (boolean expressions over events
and state) and actions (e.g., sending an e-mail, or assigning a person to a task).

Our graphical notation, dealing with explicit modeling of relations, extends
conventional statecharts with a new element Context, graphically depicted as a
hexagon. Context element, being inseparable to State element, defines relations
and artifacts, relevant to a particular state. Each Context element contains a
query against the neighborhood of the artifact (i.e., related artifacts and peo-
ple) asking for the presence of a specific pattern. Each Context can have several
Transition elements attached: if the context query finds the corresponding pat-
tern, then all transitions attached to this Context element are enabled, otherwise
disabled. Similarly to State elements in statecharts, Context elements can be
clustered using logical AND/OR/XOR operations.

Figure 2l demonstrates the overall integration of Context element into state-
charts (the context queries are omitted in this figure for the sake of simplicity).
Two of three transitions in the figure are enabled by Context elements. By default,
we assume that transitions attached to Context elements have a higher priority
over other transitions, but generally it is up to a modeler to define the priorities.
Below are enlisted possible transitions in the default prioritization order:

1. If a pattern described in Context 2 is found, then the state machine switches
to state D. Here we can see that an event element is optional, and if absent,
then the transition is activated at once.

2. If Event 1 is fired and a pattern described in Context 1 is found, then the
state machine switches to state B.

3. If Event 1 is fired and a pattern described in Context 1 is not found, then
the state machine switches to state C.

When modeling the behavior of multiple interdependent concurrent process in-
stances, a modeler should assume that state transitions are synchronized, i.e.,
every Context element is evaluated before activation of any state transition in
any process. Thus, if some process switches to state A and then instantly to some
other state, the fact that it has been in state A will be considered.

We believe that graphs a priori are rather a natural visual medium for describ-
ing artifact networks and relations. Therefore, we define a visual graph query
language, which is used to specify queries in Context elements. Queries expressed
in the language can easily be mapped to a First-Order Logic expressions, but
vice versa does not hold. A query in the visual language is a directed connected
multigraph with labeled edges and nodes. Labels can either denote atomic re-
lations/states/types, or expressions over atomic entities based on propositional
calculus expressions. Additionally, labels may be absent in general, denoting a
placeholder (e.g., any relation/state/type). An edge direction in a graph is used
to depict a non-commutative relation.

3http://www.omg.org/spec/UML/

http://www.omg.org/spec/UML/

572 V. Liptchinsky et al.

State B

Context 1

State A Event 1 State C

Context 2

Fig. 2. Integration of Context elements into statecharts

v

Interpretation of a graph query naturally corresponds to the way we read
First-Order Logic expressions. Query graphs always have one initialized primary
element, therefore, graph queries should be interpreted outwards: starting from
the central primary element towards most distant nodes. For example, graph
queries depicted in Fig. Bl can be interpreted as follows:

— Context 1: if the primary document is in state A, and there are no docu-
ments, related by content or author to the primary one, residing either in
state A or state B, then the attached transition is enabled.

— Context 2:if the primary document is in state A, and every single document,
related by content to the primary one, must reside in state B and have two
socially unrelated Authors that contributed to it, one of which is Active,
then the attached transition is enabled.

As depicted in Fig. Bl single line edges correspond to existence quantifiers, while
double line and crossed dashed edges correspond to universal quantifiers. Nodes
in query graphs may be labeled with variables, that can later be reused in Con-
ditions and Activities of corresponding Transitions. Since multiple occurrences
of a context pattern may be found in the neighborhood, Activities/Conditions
may be also extended with quantifiers, i.e., send e-mail to any/every related
contributor.

The success of a modeling approach depends, to a great extent, on the level of
simplicity offered. Therefore, we favor simplicity over completeness and impose
following constraints on the queries expressed in the visual language:

— Only basic operators from proposition calculus are allowed as literal expres-
sions attached to edges and nodes: conjunction, disjunction and negation.
Even though, conditional and biconditional operators may be expressed via
the former ones, more complex operators may decrease understanding and
make reasoning about the model more difficult.

— Under Open World Assumption [I8] negation may introduce ambiguity,
therefore only negation as a failure is allowed, i.e., negation on an edge
can be used only if nodes connected by the edge are transitively connected
to the central node with non-negative edges.

Modeling Context-Aware and Social Collaboration Processes 573

Context 1

Similar Content
OR Same Author | o AOR
X, ate B

[State A

[~ user
Contributed
For Any X send message—
Contributed NOT Socially Related
User
Active
Legend
o R There are no artifacts of type T, related by
D S relation R to Doc, that reside in state S
R T "\ Exists an artifact of type T, related by relation R

to Doc, that resides in state S

o R Every artifact of type T, related by relation R to
o¢ Doc, resides in state S

Fig. 3. Example of context queries in Context elements

— Edges with universal quantification can be adjacent only to the primary node.
During our experiments with the modeling notation we observed that
universal quantification can introduce ambiguity and would require assigning
priorities to edges thus unnecessary complicating the modeling process. Nev-
ertheless, implicit prioritization is still necessary: edges with universal quan-
tification should have implicitly higher priority, than edges with existential
quantification, in order to avoid ambiguities in case of cyclic query graphs.

A formal definition of our modeling notation is given below. In order to keep the
definition succinct, we omit a formal definition of Statecharts, as it is available
elsewhere, e.g., in [12].

Definition 1. Labels L in a query graph representing relations R, types T and
states S of artifacts are defined as:

Label L <" Atomic Condition| Placeholder |L A L |L VvV L|-L,

Placeholder denotes any value (no condition)

Definition 2. Edges in a query graph, along with adjacent vertices, are inter-
preted in First-Order Logic as follows:

(A) S (T,5) % 3X : R(4, X) AT(X) A S(X) 2)
(A) 2o (1,5) % vX . R(A, X) AT(X) — S(X) (3)
(A) o (T,9) % AX : R(A, X) AT(X) A S(X) (4)

574 V. Liptchinsky et al.

Where, given that graph queries are interpreted outwards from the central pri-
mary element (vertex), A denotes an already interpreted vertex. Predicates T
and S describe type and state of suitable artifacts respectively. Result of query
graph interpretation is a logical conjunction of the First-Order Logic formulas
corresponding to graph edges. Higher priority of edges with universal quantifi-
cation ensure that the corresponding to these edges formulas always appear at
the beginning of the resulting logical conjunction.

Definition 3. Query graph Q is a quadruple defined as follows:

Q et (a,CE,V,EV), graph @ is connected,
a is the predefined central primary vertex (artifact),
V is a set of vertices (T, S),a ¢ V, (5)
CFE is a set of edges CE C {a} x {—e, =», -xo} X V,
EV is a set of edges EV CV x {—e} x V

Definition 4. Context element C'T'X in the modeling notation is a composition
of query graphs CQ:

def

cQ % Q Q' AND CQ"| CQ' OR CQ" | CQ' XOR CQ",
CQ/ — (a/,CE/, V/,EV/)7CQ// — (a”,CE”, V”,EV”), (6)
ad=d ,CE'NCE" =0,V nV"=0,EV' NEV" =0

Definition 5. Transition element C'T', attached to Context element CT X, can
be defined as:

def

CT = (CTX,E,C,AC),

F is an external event,

C' is a condition, C' : QU x ID — {true, false},

AC is an activity, AC : QU x ID — (),

ID is a set of identifiers attached to vertices in CT X graph,

QU is a set of quantifiers, QU = {Any, Every, All}
Our visual graph querying language was inspired by Graphlog language [0].
Graphlog is more complex, because it was designed as an execution language, as
opposed to our language which aims rather at modeling. Our language assumes
that central artifact is always present and exploits that to simplify universal
quantification notation with special types of edges, while in Graphlog universal

quantification is represented by a conjunction of existential quantification and
negation.

5 Use Cases

This section describes three collaboration process use-cases which demonstrate
the application of our modeling approach to various collaboration issues. As it

Modeling Context-Aware and Social Collaboration Processes 575

can be witnessed, the approach allows to easily express the dependency of a
process on complex relations in its environment, and to compactly capture the
dynamic co-influence between instances of the same process in one model. For
clarity, in the use cases we attach to each Context element a free text description
of its query.

5.1 Use Case - Design Game

Goal. The goal in this use case is to coordinate a design of a complex system
consisting of interrelated projects. A set of expert virtual teams thus collaborate
to reach a consensus. Assignment relation between teams and projects is one-
to-one, but teams can share members. As some projects are dependent, it can
happen that changes in the design of one project can be the reason for changes
in the design of others. Finally, all project designs should be consistent with
dependent ones.

Model. Each project of this system is regarded as a separate process (See Figure
[M). In the beginning, it is in In Progress state which means the team is currently
working on its design. When the team makes some changes to the design and
commits it, the process goes into Updated state. If no changes to the design
were made, i.e., the existing version was examined and considered valid, then
the process switches to Finalized state. These two states represent superstate
Wait Input which means that the project design is currently awaiting for some
external actions. If the team suddenly decides to update the design (e.g., a better
idea emerged), the process goes back into In Progress state.

Now, if the process is in Wait Input state, and if all the related projects are
also in Wait input state and at least one is Updated, then the team should
check the design of their project against inconsistencies with updated projects.
Thus, the updated documents are sent to the team and the state is switched to
In progress. An exception is the case when the project team shares a common
expert with the team of an updated project(relation Socially related), who is
expected to foresee any inconsistencies beforehand. Waiting the related projects

Better design idea emerged

No changes @

Changes to document to document

Project
Wait Input IRz

Send updated documents
to contributors

Wait Input

Belong to the

esBmjeat; same system
Updated Related T desi
Updated IRt Finalized Finalized

NOT Socially related
When all related projects are waiting,
Check if any of them were updated.
Exception: socially related projects

Set finalized, If all related

documens were finalized If all the documents of

the system are finalized

Fig. 4. Use case - design game

576 V. Liptchinsky et al.

to be in “Wait input” ensures that all the updates of related documents will be
taken into account.

When in Updated state, and if all the related projects are finalized, the process
goes into finalized state, which ensures that if a document spawned no updates
among related documents, it will not stay in Updated state.

The system may be considered in the final state when all the projects are in
Finalized state.

Advantages. This use case demonstrates the modeling of collaboration as or-
dered iterative communication of project teams towards reaching a consensus. It
shows that our modeling approach, as opposed to existing modeling approaches
(See Sec. B), is capable of expressing universal and existential quantification.

5.2 Use Case - Social Selection

Goal. The goal of this use case is to support a software development process
with the selection of appropriate actors (e.g., developer, adviser, reviewer) based
on relations with the other tasks and among the actors. Tasks are related if they
belong to the same project, employees are related if they collaborated before.

Model. Figure [l depicts the software development process. At first, the task is
Ready for implementationstate and is waiting for an appropriate developer to
be assigned. Any available developer from a related task is assigned for this role,
as he/she expected to be more productive because of being familiar with some
related concepts. Alternatively, a manual assignment is performed. In either case,
the process goes to Implementation in Progress state. An impediment can oc-
cur during the implementation (Impediment pending state), in which case an

Ready for
Review

Contributed

Manually assigned Implementation

Finished

Get any avalable developer from related tasks

Assign any X
Was assigned as developer i
Ready for Related a5 develgper P In progress
! Task Employee X L prog

Available

: T
——Impediment self-resolved Resolved

——Impediment occurred Contributed

1 1
——Impediment not resolved Impediment E:\DI:YZT A\ E:]I?l :Lle B
Get any related to developer employee resolution in @EJ -Val able
i rogress
who contributed to the task prog NOT related

Employee Related Employee X
f Available priority: 1 Assign

- any X
Assigned Contributed as agviser
as developer
-

Task Assign .
) Related@ any X Assign any A,B
Impediment ——as adviser as reviewers
'y

Related

&K Contributed Employee X
- Available |)Priority:2 I;eview in
rogress
Otherwise any employee who 9

contributed to a related task

Get 2 unrelated reviewers, each
of whom worked on a related task

Fig. 5. Use case - social selection

Modeling Context-Aware and Social Collaboration Processes 577

adviser is needed for assistance. An adviser is preferably selected as a related to
the developer employee who contributed to a related task, because of joint work
experience. Otherwise, any related task contributor is chosen. If the adviser is
found, the process goes into Resolution in Progress state, from where it can
either go either back to Implementation in Progress or Impediment pending
states, depending on whether the impediment has been resolved. Also, the devel-
oper can resolve the impediment by him /herself if no adviser was found. After
the implementation is finished, the reviewers are selected (Ready For Review
state): they are desired to have experience with related tasks but be unrelated
to each other, which assures unbiased reviews. After the review process (Review
In Progress state), either the implementation needs to be revised, or the task
is considered finished.

Advantages. This use case demonstrates expressiveness of the modeling ap-
proach when visualizing social network environment, allowing thus to model
processes that require discovery (e.g., compose a socially coherent team), unbi-
asedness (e.g., involve independent people), and negotiation (e.g. by exploiting
of social hubs). It shows expresiveness of the graphical notation with regards to
modeling patterns in a surrounding social network. Contrarily, existing model-
ing approaches do not model social relations between actors, therefore, are not
capable of capturing such patterns (See Sec. [3)).

5.3 Use Case - Dependent Components

Goal. The goal is to coordinate the development and testing of a software prod-
uct, which consists of manifold components, some of which depend on others (we
assume no cyclic dependencies). The development a component should proceed
only when the components it depends on have reached certain progress.

Model. Figure[@l depicts the process which corresponds to a single component. It
starts in Open state and switches over to Implementation Phase in either of two
cases: it does not depend on any components, or at least one component which it
depends on is in Testing Phase. This ensures some minimal basis for the devel-
opment. After Implementation phase, the component is ready to switch over
to Testing Phase, but, first, it should wait for all the components it depends on
to be implemented, so the testing covers the combined functionality. The testing
phase can reveal some flaws so the component will return into Implementation
Phase for fixing those. If, while the component is in Testing Phase, any of the
components it depends on suddenly goes into Implementation Phase, then the
testing should be stopped in order not to waste the testing effort on outdated
components. Lastly, if the component is in Ready to Finalize state, and all the
components it depends on are Finalized, then the component can be finalized.

Advantages. This use case demonstrates the suitability of the modeling ap-
proach for expressing of coordination of project teams towards ensuring con-
sistency and correctness of a complex product. It shows expressiveness of our
modeling notation comparing to existing modeling approaches that would cap-
ture process coordination either in a text form or via events (See Sec. [).

578 V. Liptchinsky et al.

Implementation phase
Assign developer

Depends upon at least one in
testing phase, or no dependence Ready For Implementation
Depends Implementation In progress
OR 3 |

Depends upon at least one Testing phase
Depends/”_Component switched back to |mplementat|on (e.g., change of 9P
. requlrements)
Testing phase Componem or testlng fail Depends upon only
Implementatlon implemented
Depends phase

v

Implementation
done

Depends

External event

Testing phase

Ready for testing T:;'g: Liztg"rlgslsn Testing Tested OK Appovement

Depends upon only finalized
components

Ready to finalize

Fig. 6. Use case - dependent components

6 Discussion

Advantages of the modeling approach were demonstrated in the previous sec-
tion. However, we perceive that our model also has particular disadvantages.
Absence of explicit communication entities (events or messages) in the modeling
approach is a strength, but also a weakness. A modeler cannot immediately see
what parts of a business process (states) other processes rely upon. Given that
definitions of events and messages represent a process interface, a modeler will
not be able to remove or change process states without a risk of affecting other
models. However, this problem can be remedied with State clustering available
in statecharts.

We envision, that the discussed visual query language might need additional
elements for greater expresiveness. For instance, aggregation elements to express
query of exact number of neighbors residing in particular state, or aggregated
state of all neighbors. However, in this paper we focused on fundamental con-
cepts, thus trying to keep the appropriate level of detail.

7 Conclusion

This paper proposes a modeling approach and a corresponding graphical
notation for creative human collaboration processes. The applicability of the
approach was demonstrated through several use-cases, and its strengths and
weaknesses were discussed.

Comparing to existing approaches, our contribution has two main distinguish-
able features: it is capable of capturing specific conditions in form of patterns in

Modeling Context-Aware and Social Collaboration Processes 579

related artifacts of the process, and it advocates a communication model where
a process can modify only its own state and cannot explicitly impact the related
processes. We have shown that these features are naturally suitable for modeling
of collaboration processes. Although our approach was designed with this focus,
we do not exclude its applicability in other areas.

Our future work includes the development of an associated execution frame-

work and the integration with existing business process technologies and collab-
orative software.

References

10.

11.

12.

. van der Aalst, W.M., Barthelmess, P., Ellis, C., Wainer, J.: Workflow modeling us-

ing proclets. In: Scheuermann, P., Etzion, O. (eds.) CoopIS 2000. LNCS, vol. 1901,
pp. 198-209. Springer, Heidelberg (2000)

. van der Aalst, W.M., Weske, M., Grnbauer, D.: Case handling: a new paradigm for

business process support. Data & Knowledge Engineering 53(2), 129-162 (2005)

. Barthelmess, P., Wainer, J.: Workflow systems: a few definitions and a few sug-

gestions. In: Proceedings of Conference on Organizational Computing Systems,
COCS 1995, pp. 138-147. ACM, New York (1995)

. Bhattacharya, K., Hull, R., Su, J.: A data-centric design methodology for busi-

ness processes. In: Handbook of Research on Business Process Modeling, ch. 23,
pp. 503-531 (2009)

. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Conceptual Modeling of Workflows. In:

Papazoglou, M.P. (ed.) ER 1995 and OOER 1995. LNCS, vol. 1021, pp. 341-354.
Springer, Heidelberg (1995)

. Consens, M.P., Mendelzon, A.O.: Graphlog: a visual formalism for real life recur-

sion. In: Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, PODS 1990, pp. 404-416. ACM, New York
(1990)

. David Harel: Statecharts: a visual formalism for complex systems. Science of Com-

puter Programming 8(3), 231-274 (1987)

Dickson, G.W., DeSanctis, G.: Information Technology and the Future Enterprise:
New Models for Managers. Prentice Hall PTR, Upper Saddle River, NJ, USA
(2000)

Ellis, C.: Team automata for groupware systems. In: Proceedings of the Interna-
tional ACM SIGGROUP Conference on Supporting Group Work: the Integration
Challenge, GROUP 1997, pp. 415-424. ACM, New York (1997)

Engels, G., Groenewegen, L.: Towards Team-Automata-Driven Object-Oriented
Collaborative Work. In: Brauer, W., Ehrig, H., Karhumaéki, J., Salomaa, A.
(eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 247-255. Springer,
Heidelberg (2002)

Hagen, C., Alonso, G.: Beyond the black box: event-based inter-process commu-
nication in process support systems. In: Proceedings of 19th IEEE International
Conference on Distributed Computing Systems, pp. 450-457 (1999)

Latella, D., Majzik, I., Massink, M.: Towards a formal operational semantics of
uml statechart diagrams. In: Proceedings of the IFIP TC6/WG6.1 Third Interna-
tional Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS), p. 465. Kluwer, B.V. (1999)

580

13.

14.

15.

16.

17.

18.

19.

20.

V. Liptchinsky et al.

Martinez-Moyano, I.: Exploring the dynamics of collaboration in interorganiza-
tional settings. In: Creating a Culture of Collaboration: The International Associ-
ation of Facilitators Handbook 4, p. 69 (2006)

Miiller, D., Reichert, M., Herbst, J.: Data-Driven Modeling and Coordination of
Large Process Structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I.
LNCS, vol. 4803, pp. 131-149. Springer, Heidelberg (2007)

Neumann, J.V.: Theory of Self-Reproducing Automata. University of Illinois Press,
Champaign (1966)

Nurcan, S.: A survey on the flexibility requirements related to business processes
and modeling artifacts. In: Proceedings of the Proceedings of the 41st Annual
Hawaii International Conference on System Sciences, HICSS 2008, pp. 378-388.
IEEE Computer Society, Washington, DC (2008)

Powell, A., Piccoli, G., Ives, B.: Virtual teams: a review of current literature and
directions for future research. SIGMIS Database 35, 6-36 (2004)

Reiter, R.: On closed world data bases, pp. 300-310. Morgan Kaufmann Publishers
Inc., San Francisco (1987)

Sanz, J.: Entity-centric operations modeling for business process management
- a multidisciplinary review of the state-of-the-art. In: 2011 IEEE 6th Interna-
tional Symposium on Service Oriented System Engineering (SOSE), pp. 152-163
(December 2011)

Wieland, M., Kopp, O., Nicklas, D., Leymann, F.: Towards context-aware work-
flows. In: CAISE 2007 Proceedings of the Workshops and Doctoral Consortium.
Citeseer (2007)

	A Novel Approach to Modeling Context-Aware and Social Collaboration Processes
	Introduction
	Motivation
	Related Work
	Modeling Paradigm
	Modeling Framework

	Use Cases
	Use Case - Design Game
	Use Case - Social Selection
	Use Case - Dependent Components

	Discussion
	Conclusion
	References

