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INV ITED

P A P E R

ANovel Approach toMonitor
Rehabilitation Outcomes
in Stroke Survivors Using
Wearable Technology
Accelerometer data is being used to evaluate the success of rehabilitation efforts on

movements, from shoulder to finger tips, for patients who have suffered strokes.

By Shyamal Patel, Richard Hughes, Todd Hester, Student Member IEEE, Joel Stein,

Metin Akay, Fellow IEEE, Jennifer G. Dy, and Paolo Bonato, Senior Member IEEE

ABSTRACT | Quantitative assessment of motor abilities in

stroke survivors can provide valuable feedback to guide

clinical interventions. Numerous clinical scales were devel-

oped in the past to assess levels of impairment and functional

limitation in individuals after stroke. The Functional Ability

Scale is one of these clinical scales. It is a 75-point scale used

to evaluate the functional ability of subjects by grading

movement quality during performance of 15 motor tasks.

Performance of these motor tasks requires subjects to reach

for objects (e.g., a pencil on a table) and manipulate them (e.g.,

lift the pencil). In this paper, we show that accelerometer data

recorded during performance of a subset of the motor tasks

pertaining to the Functional Ability Scale can be relied upon to

derive accurate estimates of the scores provided by a clinician

using this scale. Accelerometer-based estimates of clinical

scores were obtained by segmenting the recordings into

movement components (reaching, manipulation, release/

return), extracting data features, selecting features that max-

imized the separation among classes associated with different

clinical scores, feeding these features to Random Forests to

estimate scores for individual motor tasks, and using a linear

equation to estimate the total Functional Ability Scale score

based on the sum of the clinical scores for individual motor

tasks derived from the accelerometer data. Results showed that

it is possible to achieve estimates of the total Functional Ability

Scale scoremarked by a bias of only 0.04 points of the scale and

a standard deviation of only 2.43 points when using as few as

three sensors to collect data during performance of only six

motor tasks.

KEYWORDS | Random forests; rehabilitation; stroke; wearable

technology

I . INTRODUCTION

Stroke is a leading cause of disability in adults, and its

incidence is expected to increase with the aging population

[1]. Severe impairments and functional limitations affect

stroke survivors. Traditional rehabilitation interventions

have been only partially successful in achieving motor re-

covery in this population. Therefore, a number of inter-

ventions have been proposed in an attempt to improve

functional outcomes. Intensive upper limb exercise [2],

functional electrical stimulation [3], robotic therapy [4],

virtual reality [5], and constraint-inducedmovement therapy
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[6], [7] are some of the approaches recently investigated to

improve subjects’ motor recovery. Unfortunately, clinical

outcomes of upper limb rehabilitation are still unsatisfactory

in a large percentage of stroke survivors [8].

In this context, researchers and clinicians have focused

their attention on the development and clinical application

of assessment techniques aimed to quantify improvements

in motor performance following stroke rehabilitation.

These techniques could potentially serve a critical role in

guiding rehabilitation. The use of quantitative measures of

quality of movement (e.g., smoothness of movement and

intersegmental coordination) have been proposed by many

investigators to address potential limitations of traditional

motor assessment techniques [9]–[12]. Also, emphasis has

been put on the need for developing measures that capture

the impact of rehabilitation interventions on subjects’

functional ability in real-life conditions, i.e., the home and

community settings.

Wearable technology has the potential to provide a

means to address the need for gathering quantitative mea-

sures of movement quality in the home and community

settings [13]. Over the past decade, we have witnessed tre-

mendous advances in the field of wearable technology [14].

Wireless and e-textile systems have been developed to

monitor physiological variables and movement patterns

with application to a wide range of clinical problems in-

cluding monitoring of neurological [15], [16] and cardio-

vascular [17], [18] conditions. However, methods to derive

clinically meaningful information from wearable sensor

data in the context of stroke rehabilitation are still lacking.

In this paper, we present a novel approach to assess

quality of upper limb movements in individuals after stroke

based on the analysis of accelerometer data, a sensing tech-

nology that has been widely used as part of wearable systems

[19]. Specifically, we demonstrate that using information

derived from body-worn sensors (i.e., accelerometers), we

can accurately estimate clinical scores obtained by using the

Functional Ability Scale (FAS) [20]. The FAS is a clinical

scale that allows one to assess quality of upper limb move-

ment in stroke survivors via visual inspection of movement

patterns associated with the performance of a battery of

15 motor tasks. The accuracy of the FAS score estimates

derived via analysis of the accelerometer data was assessed

by comparing such estimates with the actual FAS scores

provided by a clinician.

II . METHODS

Fig. 1 shows a schematic representation of the pro-

posed algorithm, which consists of the following steps:

1) Derive data segments corresponding to movement

components (i.e., reaching, manipulation, and release/

return); 2) estimate accelerometer data features from

each data segment; 3) rank features according to their

ability of achieving separation among classes associated

with different clinical scores; 4) select feature sets that

minimize the overlap among classes associated with

different clinical scores; 5) use Random Forests to estimate

clinical scores of quality of movement for individual motor

tasks; finally, 6) estimate the total FAS score using a linear

equation that relates the sum of estimated scores for

selected motor tasks and total FAS scores. Details con-

cerning the experimental procedures and implementation

of the algorithm are provided below.

A. Data Collection
Twenty-four subjects (57.5 � 11.8 years old, 4.2 �

3.7 years post stroke) with residual upper limb weakness

(hemiparesis) participated in the study after providing

informed consent. The experimental procedures were

approved by the Spaulding Rehabilitation Hospital’s

research review board. Subjects were evaluated by a

clinician using the Functional Ability Scale (FAS) [20].

The FAS is a six-point scale (0–5) to rate movement quality

in stroke survivors via observation of the performance of

the 15 motor tasks of the Wolf Motor Function Test

[20]–[22]. A score of 0 indicates inability to perform the

task while a score of 5 indicates that the task was performed

in an ideal way. Scoring criteria include speed, coordination,

effort, smoothness relative to normal movement, successful

Fig. 1. Flowchart of the proposed algorithm to analyze

accelerometer (ACC) data and derive estimates of the total

FAS score. See text for details.
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task completion, and the presence of pathological synergies

and compensatory strategies. The motor tasks performed

during the FAS assessment include reaching to close and

distant objects, placing the hand or forearm from lap to a

table, pushing and pulling a weight across a table, drinking

from a beverage can, lifting a pencil, flipping cards, and

turning a key. The total FAS score is calculated by taking the

sum of the scores assigned to the 15 individual motor tasks.

The FAS score for the subjects recruited in the study

ranged from 27 to 66 points (mean 47.2 points, standard

deviation 12.3 points).

Although subjects were clinically evaluated for all

15 motor tasks, sensor data was collected for a subset of

eight tasks. We chose eight motor tasks that we

hypothesized would capture the main aspects of the FAS.

Our choice was arbitrary, but it is interesting to notice that

Bogard et al. [23] recently attempted to streamline the

Wolf Motor Function Test and achieved good results by

relying on a subset of motor tasks that largely overlaps with

the eight motor tasks we chose for our study. Table 1

provides a list of the eight motor tasks performed by the

subjects during which accelerometer data was recorded.

Descriptions of the motor tasks and their task numbers are

herein reported as in Wolf et al. [24]. Subjects performed

between 5 and 20 repetitions of each task. The motor tasks

selected for quantitative analysis via accelerometer data

can be looked upon as examples of reaching tasks and

manipulation tasks. Therefore, in the following, we will

refer to the first set of four motor tasks selected for the

study (FAS1: forearm to tableVside, FAS4: extend

elbowVweight, FAS5: hand to table, and FAS8: reach

and retrieve) as the Reaching Tasks and to the second set

of tasks (FAS9: lift can, FAS10: lift pencil, FAS13: flip

cards, and FAS15: turn key in lock) as the Manipulation

Tasks.

Accelerometer sensors were positioned as shown in

Fig. 2 to monitor movements of the hand, forearm, upper

arm, and trunk. The accelerometers positioned on the

index finger, thumb, and trunk were uniaxial, whereas

those on the dorsal side of the hand, forearm and upper

arm were biaxial. Sensor data was recorded using the

Vitaport 3 (Temec BV, the Netherlands) ambulatory

recorder because wireless wearable sensors were not

available at the time the study was started. However, the

accelerometer units used by the Vitaport 3 ambulatory

recorder have characteristics similar to the ones used by

the SHIMMER platform (whose body sensor nodes are

equipped with triaxial accelerometers) [25]. Because of the

marked similarities between the two systems, the methods

and results presented in this paper can be considered

applicable to the SHIMMER platform.

In addition to collecting accelerometer data, we took

video recordings of subjects while performing motor tasks

for later analysis by an expert clinician who provided FAS

scores for each of the tasks performed by the subjects.

Scores were provided for each of the eight motor tasks

during which we recorded accelerometer data as well as

for the additional 7 tasks pertaining to the FAS (which is

based on 15 motor tasks) to obtain total FAS clinical

scores.

B. Data Segmentation
The accelerometer data was digitally low-pass filtered

with a cutoff frequency of 8 Hz to remove high-frequency

noise and then segmented to isolate movement compo-

nents. The segmentation was performed using digital

marks introduced during the data collection to identify the

beginning and end of each repetition of a task. For the

Table 1 Set of Selected Tasks From the FAS Scale Performed by Subjects.

The First Four Tasks Are Referred to as Reaching Tasks and the Last Four

Tasks as Manipulation Tasks

Fig. 2. Schematic representation of the location and orientation of

the accelerometers used in the study. Accelerometers were placed on

the side affected by the stroke. Sensors on the hand, forearm, and

upper arm were biaxial while those on the index finger, thumb, and

sternum were uniaxial.
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Reaching Tasks, the digital marks allowed us to isolate data

segments corresponding to the performance of each re-

petition of each motor task. For the Manipulation Tasks, in

addition to the digital marks at the beginning and end of

each repetition of the motor tasks, we used two additional

digital marks to divide the time series in movement

components. These additional digital marks were derived

using capacitive sensors that allowed us to detect the

contact between the hand of the subject and the object

(e.g., can of soda, pencil, etc.) used during performance of

the Manipulation Tasks. The Manipulation Tasks consist of

three movement components: segment 1 (S1) is the reach-

ing movement component of the task (e.g., a description of

the task to the subject could be Bstarting with your hand in

your lap, reach for a can of soda[); segment 2 (S2) is the

manipulation movement component of the task (e.g., the

subject would be asked to Bpick up the can of soda, pretend

to drink and put it down on the table[); and segment 3

(S3) is the release/return movement component of the task

(e.g., the subject would be asked to Brelease the can of soda

and bring your hand back to your lap[). Fig. 3 shows an

example of segmented accelerometer data. The acceler-

ometer data shown in the figure was recorded while a

subject performed the motor tasks consisting in lifting a

soda can (FAS9).

C. Feature Extraction
Features were derived from the accelerometer data to

capture aspects of movement such as speed, smoothness,

and coordination. Specifically, we estimated the following

eight features: 1) mean value of the accelerometer time

series; 2) root mean square value of the accelerometer

time series; 3) ratio of the energy associated with the

dominant frequency and the signal energy; 4) correlation

coefficient of pairs of accelerometer time series; 5) root

mean square value of the velocity time series (obtained via

integration of the accelerometer data); 6) maximum value

of the velocity time series; 7) jerk metric defined as the

root mean square value of the derivative of the acceler-

ometer data (i.e., jerk data) normalized by the maximum

value of the velocity time series; and 8) entropy of the

accelerometer time series. All the features, except the

mean value of the accelerometer time series, were derived

from a high-pass filtered version of the accelerometer data

(with cutoff frequency equal to 0.5 Hz). All features

(except the correlation coefficients) were derived for each

axis of the six accelerometers used for the data collection

(see Fig. 2), i.e., for all nine channels of accelerometer

data. The following pairs of accelerometers time series

were used for estimating the correlation coefficients:

forearm and upper arm, hand and forearm, thumb and

index finger, thumb and forearm, hand and index finger,

forearm and index finger, sternum and upper arm, and

sternum and forearm. The above-described features were

chosen based on pilot work that allowed us to identify

accelerometer data features showing correlation with

clinical measures of functional capability [26].

For the Reaching Tasks, features were extracted from

the single data segment associated with each of the tasks

thus leading to a total of 87 features. For the Manipulation

Tasks, features were extracted for each of the three

segments (S1, S2, and S3) described above thus leading to a

total of 261 features. Every repetition of each task was

considered an instance or observation. Features derived

from all the repetitions performed by all the subjects for a

particular motor task were combined together to form a

single dataset. Thus eight datasets were formed, one for

each motor task.

D. Feature Selection
Feature selection was performed in two steps. First, we

used the ReliefF [27] algorithm which ranks the features in

decreasing order of importance. The ReliefF feature

selection algorithm is an extension of the original Relief

algorithm proposed by Kira et al. [28]. The ReliefF

algorithm iterates through every instance updating the

weights assigned to a feature at each iteration. For every

instance, it searches for K nearest neighbors from the same

class (called nearest hits H), and K nearest neighbors from

each of the other classes (called nearest missesM). Then, it

updates the quality of estimation W½A� for each attribute A
and moves to the next instance. The number of nearest

neighbors K was set to 10 as suggested by Robnik-Sikonja

and Kononenko [27]. The ReliefF algorithm is computa-

tionally simple. It is more robust compared to the original

Relief algorithm, since it can deal with incomplete and

noisy data. We used the WEKA [29] implementation of the

algorithm.

Fig. 3. Example of raw accelerometer data recorded from

one subject while the subject performed the ‘‘lift can’’ task.

Three segments are shown using shaded areas. Segment 1

(S1)Vreaching for the soda can; segment 2 (S2)Vlifting the soda can,

drinking, and placing the soda can back on the table; and segment 3

(S3)Vbringing the hand back to the starting position.
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The second step of the feature selection procedure

consisted of selecting an appropriate number of top ranked

features provided by the ReliefF algorithm in step 1. We

adopted the criterion of selecting the top N ranked features

that provided the maximum class separation among classes

associated with different clinical scores defined in the

reduced feature space. This was achieved by calculating

the Davies-Bouldin (DB) cluster validity index [30].

Instead of utilizing the DB index to assess cluster quality,

we applied it to assess the discriminatory ability of our

candidate feature subsets for distinguishing the different

classes. The DB index measures how well-separated data

samples belonging to different classes are and how similar

samples in the same class are. It is a function of the ratio of

the sum of within-class scatter to between-class separation.

Thus, smaller values of the DB index indicate better class

separation and vice versa. The DB index was calculated by

incrementally adding, one at a time, features ranked

according to the ReliefF algorithm. We determined an

optimal cutoff point for the two groups of motor tasks (i.e.,

the Reaching Tasks and the Manipulation Tasks) beyond

which adding more features led to no significant improve-

ment in the DB index.

E. Classification
To estimate the FAS scores associated with each of the

motor tasks listed in Table 1, we chose to train Random

Forests [31], [32] (RFs) with accelerometer data features

derived and selected as summarized above. RFs are en-

sembles of weakly correlated decision trees that Bvote[ on

the classification of a given input. These ensembles im-

prove the generalization performance of individual deci-

sion trees. In constructing each tree of a RF, a Bbagged[

training sample is selected by drawing a random subset of n
instances from the N sample training set, with replace-

ment after each draw. Then, at each node of the tree, a

subset of m features is selected as candidates for splitting,

and the best of the candidates is used. This contrasts with

the usual practice in decision tree construction in which

the best of all feature variables is selected for splitting.

Training RFs involves selecting the number of random

features used at each node for splitting and the number of

trees in a forest. We set the number of random features

selected at each node to be the first integer less than

log2Mþ 1 where M is the total number of features. The

number of trees in the RFs was determined by minimizing

the percentage classification error affecting the estimation

of the FAS scores. We derived the percentage classification

error by performing a ten-fold cross-validation. We used

the WEKA [29] machine learning toolbox implementation

of RF and cross-validation algorithms.

F. Total FAS Score Estimation
Estimates of the FAS scores for individual motor tasks

derived from the RFs were added up and applied as input

to a linear equation. This equation was defined as the

linear regression between the total FAS scores provided

by the clinician following visual observation of the

subjects’ movement quality and the sum of the FAS

scores derived from the accelerometer time series for the

eight motor tasks selected in the study for the collection

of sensor data. Before deriving the equation, the scores

provided by the clinician and the ones derived from the

accelerometer data were normalized. The scores provid-

ed by the clinician were expressed as percentage of the

75 points of the FAS scale. The sum of the FAS scores

derived from the accelerometer data for each subject

were expressed as percentage of the 40 points pertaining

to the eight motor tasks of the FAS for which we recorded

accelerometer data. The estimation error was character-

ized by deriving its root mean square value, bias, and

standard deviation.

In addition to the case in which all six accelerometer

sensors and all eight selected motor tasks were used to

derive estimates of the total FAS scores, we also considered

the effect on the estimation error of using a reduced

number of sensors and a reduced number of motor tasks.

We derived estimates of the total FAS scores for all

possible combinations of sensor locations and motor tasks.

The total number of possible combinations was

ð2N � 1Þ � ð2M � 1Þ ¼ 16 065, where N ¼ 6 is the number

of sensor locations and M ¼ 8 is the number of motor

tasks. Then, we attempted to identify the minimum

number of sensors and motor tasks necessary to achieve

accurate estimates of the total FAS scores. Consideration

was paid to the convenience of attachment of the sensors

to the body segments as this appears to be critical to

achieve clinical application of the proposed technique.

III . RESULTS

Fig. 4 shows DB index aggregate data for the Reach-

ing Tasks (box-plot on the left side) and the Manipu-

lation Tasks (box-plot on the right side). For the

Manipulation Tasks, the results were derived using fea-

tures estimated from all three data segments (S1V

reaching, S2Vmanipulation, and S3Vrelease/return).

The features were first ranked using the ReliefF algorithm

and then used in that order to derive the DB index for 2 to

50 features at increments of 1 feature. Fig. 4 shows also

the average value of the DB index for different numbers of

features. The average value curve is overlaid on the box-

plots, which are shown onlyVfor the sake of clarityVfor

a subset of the feature number values.

A choice of 20 features corresponded to a minimum in

the DB index mean value curves for both the Reaching

Tasks and the Manipulation Tasks, thus indicating that

optimal separation among the classes associated with

different clinical scores can be achieved by using the first

20 features selected by the ReliefF algorithm. The box-

plots show considerable variability in the DB index values

for a given number of features. Such variability is due to
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differences across tasks. However, similar trends in the DB

index plots were observed across all tasks generally

demonstrating a minimum when we used 10 to 20 of the

features selected by the ReliefF algorithm. The same

trends were also observed when features from only one of

the data segments (S1Vreaching, S2Vmanipulation, and

S3Vrelease/return) were used to derive the DB index

plots for the Manipulation Tasks.

The sets of 20 features selected for the Reaching Tasks

as described above were largely dominated by two features:

the mean value of the low-pass filtered accelerometer data

and the correlation coefficient of pairs of accelerometer

time series. In fact, 40% to 45% of the features for all the

Reaching Tasks were mean values of low-pass filtered

accelerometer data. Also, 40% to 45% of the features for

the first three tasks of this group (i.e., FAS1: forearm to

tableVside, FAS4: extend elbowVweight, and FAS5:

hand to table) were correlation coefficients for various

pairs of accelerometer time series. For the fourth of the

Reaching Tasks (i.e., FAS8: reach and retrieve), only 15%

of the selected features were correlation coefficients. This

is not surprising because the reach and retrieve task does

not require major coordination of movement of different

body segments. No other feature appeared to be dominant

for the determination of well-separated classes (for

different clinical scores) for the reach and retrieve task.

Features (excluding correlation coefficients) derived from

distal body segments (hand and forearm) were selected

more often (accounting for 53% to 67% of the total

features excluding the correlation coefficients) than

features derived from proximal segments (sternum and

upper arm). Correlation coefficients derived from hand

and forearm accelerometer time series accounted for 30%

to 50% of the correlation coefficient features thus

indicating the relevance of handVforearm movement

coordination for the determination of the clinical scores

for the Reaching Tasks.

The sets of features selected for the Manipulation Tasks

were also dominated by the mean value of the low-pass

filtered accelerometer time series (which accounted for

50% to 75% of the features with the exception of the fourth

task of the groupVturn key in lockVfor which this feature

accounted for 7 out of the 20 features selected by the

above-described algorithm). Correlation coefficients ac-

counted for 10% to 20% of the selected features. This was

the case when features from all three data segments

(S1Vreaching, S2Vmanipulation, and S3Vrelease/return

as shown in Fig. 3) were used to derive a set of features for

the estimation of the clinical scores for the Manipulation

Tasks. A slightly larger number of correlation coefficients

were selected when analyses were performed for each of

the data segments separately. In the latter case, correlation

coefficients accounted for 20% to 50% of the selected

features. However, the analysis performed by pulling

together features from all three data segments indicated

that the manipulation data segment (S2) and the reaching

data segment (S1) are more important than the release/

return data segment (S3) to achieve optimal results. In

fact, 47.5% of the features were derived from the

manipulation data segment (S2), 35% of the features

were derived from the reaching data segment (S1), and

only 17.5% of the features were estimated from the

release/return data segment (S3). This is not surprising

because the release/return data segment (S3) is not subject

to visual observation by the clinician assessing quality of

movement in stroke survivors. However, the results

indicate that characteristics of movement captured during

performance of the release/return data segment correlate

with the clinical scores. Features derived from distal body

segments (hand and forearm) appeared to be more

important than features derived from proximal body

segments (sternum and upper arm) for the estimation of

clinical scores related to the following tasks: FAS9Vlift

can, FAS10Vlift pencil, and FAS15Vturn key in lock. For

these tasks, 65% to 75% of the features were derived from

accelerometer data recorded from the hand and forearm.

Conversely, accelerometer data recorded from proximal

body segments (sternum and upper arm) were used to

Fig. 4. Effect of the number of features on the DB index. The DB index was derived on a task-by-task basis and the results shown are

averaged across the tasks. The trend line represents the average value of the DB index for each number of features.
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estimate 72% of the features selected for the flip cards task

(FAS13). These numbers do not include correlation

coefficient features, whichVas stated aboveVwere not

dominant in the feature sets selected for the Manipulation

Tasks.

The selection of features before the application of the

classification algorithms based on RFs was key to

minimizing the percentage classification error on a task-

by-task basis. Fig. 5 shows that a significant reduction in

percentage classification error values was achieved when

20 features were selected (according to the results of DB

index analysis based on features ranked using the ReliefF

method as described above) and fed to the RFs compared

to the case when all the features were used. Fig. 5 shows

also the effect on the percentage classification error of

using different numbers of trees in the RFs. Results are

displayed for 10, 20, 50, and 100 trees. Irrespective of the

number of trees used by the RFs, the classification error

was reduced by approximately 50% when we used the

20 top features according to the ranking provided by the

ReliefF algorithm compared to when the full feature set

was used. The improvement was slightly larger for the

Reaching Tasks than for the Manipulation Tasks. The

average percentage classification error was also slightly

larger for the Reaching Tasks than for the Manipulation

Tasks. The percentage classification error for each task

and across all tasks appeared to reach a plateau value when

RFs with 50 trees were used. The improvement in

percentage classification error compared to when 10 or

20 trees were used appeared to be substantial, but no

further substantial improvement was observed when

100 trees were used. Based on this observation, we chose

to use RFs with 50 trees. This choice is also justified by

the observation that unnecessarily increasing the number

of trees in RFs could potentially lead to increasing the

correlation among trees thus affecting the classifier

performance [31].

Tables 2 and 3 show the numerical results achieved

when RFs with 50 trees were used to process 20 features

selected according to the ranking provided by the ReliefF

algorithm for each of the tasks utilized in the study. The

classification error for the Reaching Tasks was on average

4.27%. For the Manipulation Tasks, the error was on

average 3.49% when all data segments were used to derive

the data features to be fed to the RFs. Slight variations

were observed when only features for one of the data

segments (S1Vreaching, S2Vmanipulation, and S3V

release/return) were used. Interestingly, the percentage

classification error achieved when we used only data from

the release/return data segment (S3) was larger on average

(9.19%) than the error characterizing estimates derived

using only features estimated from the reaching data

segment (S1) and the manipulation data segment (S2) for

which the average (across tasks) classification error was

5.35% and 3.89% respectively.

Fig. 5. Percentage classification errors for different numbers of

trees of the RFs for the eight FAS tasks during which we collected

accelerometer data. Results are shown for the case in which all

features were fed to the RFs (before feature selection) and for the

case in which we used only the 20 features selected using the

ReliefF method and the DB index analysis discussed in the text

(after feature selection). The size of the circles represents the

percentage classification error.

Table 2 Classification Error (%) for the Reaching Tasks After

Feature Selection and Using RFs With 50 Trees

Table 3 Classification Error (%) for the Manipulation Tasks After Feature Selection and Using RFs With 50 Trees
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Next we estimated the total (i.e., over 15 motor tasks)

FAS score for each subject. We calculated the sum of the

scores estimated for the eight selected motor tasks (four

Reaching Tasks and four Manipulation Tasks) for each

subject. We normalized the total FAS score and expressed

it as percentage of the 75 points of the FAS scale. Also, we

normalized the sum of the estimates derived from the

accelerometer data and expressed the values as percentage

of the 40 points pertaining to eight motor tasks of FAS

during which we collected sensor data. We then derived

the regression equation relating the total FAS scores pro-

vided by the clinician and the sum of the scores for the

eight selected motor tasks estimated via analysis of the

accelerometer time series. We then used the regression

equation to estimate the total FAS score for each subject

based on the analysis of the accelerometer data and char-

acterized the estimation error by deriving the percentage

RMS error as well as bias and standard deviation of the

estimates. The percentage RMS error was normalized by

the score range spanned by the data collected from the

group of subjects who participated in the study. Bias and

standard deviation values were derived as actual points on

the FAS.

Fig. 6 summarizes the results achieved when using

different numbers of tasks and sensors to derive the FAS

score estimates. When using only a few motor tasks, the

estimation error appeared to be strongly affected by the

quantization error associated with the limited number of

discrete levels that can be attributed to the performance of

each motor task. Therefore, adding sensors had virtually

no effect on the quality of the estimates. When con-

sidering more than four motor tasks, it appeared that

adding sensors provided a benefit to the quality of the

estimates, but still the number of tasks used for the

analysis seemed to have a larger effect on the estimation

error. Interestingly, the RMS error ranged between 5%

and 6% for estimates of the clinical scores derived using

six to eight tasks and features extracted from three to

six sensors.

For all the cases using six to eight tasks and three to six

sensors, we observed a good linear fit between the total

FAS scores provided by the clinician and the sum of the

scores estimated for the eight motor tasks selected for the

accelerometer-based analysis. Results in Fig. 7 are shown

for eight motor tasks and six sensors. The estimation error

in this case was characterized by a bias of 0.15 points and a

standard deviation of 2.36 points of the FAS. The results

showed moderate variability across subjects. No major

increase in the estimation error was observed when we

used data recorded using only three sensors compared to

when we used all six sensors. The smallest error for

three sensors and eight motor tasks was achieved by using

the sensors on the thumb, upper arm, and sternum. In

this case, the bias affecting the estimates was equal to

0.10 points and the standard deviation was 2.25 points.

However, even a more convenient combination of three

sensors (e.g., the sensors positioned on the hand, forearm,

and upper arm which are more convenient for self-

application of the sensors than the ones positioned on the

sternum and the thumb) led to estimates marked by bias

smaller than 0.01 points and standard deviation equal to

2.45 points.

A closer look at the results indicated that the number of

tasks used to derive total FAS score estimates could be

decreased slightly, thus making the test more convenient

to administer. For instance, when we chose to use six

motor tasks to derive estimates of the clinical scores, we

Fig. 6. Effect of the number of tasks and number of sensors on

the estimation of the total FAS score. The size of the circles represents

the relative RMS error (%) affecting the estimation of the total

FAS score over the range of 39 points spanned by the data related to

the subjects who participated in the study. The results shown in

the plot are for the minimum error achieved for each number of

sensors and tasks.

Fig. 7. Plot of normalized total FAS score versus normalized sum of

the scores for the eight FAS tasks selected for accelerometer data

collection. Each circle represents data for one subject.

Patel et al. : A Novel Approach to Monitor Rehabilitation Outcomes in Stroke Survivors

Vol. 98, No. 3, March 2010 | Proceedings of the IEEE 457



found that the following tasks led consistently to low

estimation errors irrespective of the number of sensors

that were used to derive accelerometer data features:

extend elbowVFAS4, hand to tableVFAS5, reach and

retrieveVFAS8, lift canVFAS9, lift pencilVFAS10, and

turn key in lockVFAS15. When using these six motor tasks

and three sensors (positioned on the hand, forearm, and

upper arm) to derive total FAS score estimates, we

achieved a bias of 0.04 points and standard deviation of

2.43 points.

IV. DISCUSSION AND CONCLUSIONS

The results presented in this paper show that recordings

of accelerometer data gathered during performance of a

set of motor tasks can be used to derive data features that

capture characteristics of movement patterns in stroke

survivors that are associated with quality of movement.

They also show that such features can be used to accu-

rately estimate clinical scores of quality of movement such

as the FAS score.

Reliable results were obtained analyzing data recorded

using as little as three sensors during performance of as

few as six motor tasks. The hand, forearm, and upper arm

were found to be suitable locations of the sensors used to

monitor movement patterns and derive data features of

quality of movement. These locations are convenient for

self-application of the sensors and therefore of interest

from a practical application standpoint. Recording and

analyzing accelerometer data during performance of the

following six motor tasks was found to lead to reliable

estimates of FAS scores: extend elbowVFAS4, hand to

tableVFAS5, reach and retrieveVFAS8, lift canVFAS9,

lift pencilVFAS10, and turn key in lockVFAS15. When

using three sensors positioned on the above-mentioned

body segments and analyzing data collected during per-

formance of the above-listed six motor tasks we derived

estimates of the FAS score marked by bias equal to

0.04 points and standard deviation equal to 2.43 points.

These results were achieved by segmenting acceler-

ometer data in movement components (reaching, manip-

ulation, release/return), selecting data features suitable to

obtain a clear separation among classes associated with

different clinical scores for individual motor tasks,

applying classifiers implemented using RFs, adding up

the estimated scores for the selected motor tasks, and

using such value as input to a linear equation that provided

an estimate of the total FAS score for each individual.

The manipulation and reaching data segments were

shown to carry most of the information of interest to

achieve reliable estimates of the total FAS score. The mean

value of the accelerometer data and the correlation co-

efficient of pairs of accelerometer time series were found

to be the features most relevant to obtain well-separated

classes of feature sets for datasets associated with different

clinical scores on a task-by-task basis. This observation

suggests that the orientation of body segments and the

coordination of movement across body segments are key

factors for the determination of the quality of movement in

stroke survivors at least for those aspects of the movement

patterns that are captured by the FAS. With appropriate

selection of feature sets and the use of RFs, we achieved

reliable estimates of FAS scores for individual motor tasks

that in turn led to estimates of the total score marked by

bias smaller than one point and standard deviation smaller

than three points of the FAS for several combinations of

motor tasks and sensors.

The fact that we were able to use a subset of the

motor tasks pertaining to the FAS to estimate the total

score provided by this scale is in line with recent work

by Bogard et al. [23] that attempted to streamline the Wolf

Motor Function Test by selecting a subset of the motor

tasks used for the Wolf Motor Function Test to derive the

total Wolf Motor Function Test score. Interestingly, there

is overlap between the tasks selected by Bogard et al. [23]
and the six tasks that we selected to achieve reliable

estimates of FAS scores. However, it must be emphasized

that Bogard et al. [23] attempted to derive estimates of the

Wolf Motor Function Test, i.e., the time required to perform

a set of motor tasks, whereas in this paper we demonstrated a

methodology to estimate FAS scores. These two tests are

related (i.e., they use the same set of motor tasksVwith the

exception of tasks to assess strength that are used in theWolf

Motor Function Test and not in the FAS) but they focus on

different aspects of the performance of a given set of motor

tasks: the time necessary to perform the tasks (Wolf Motor

Function Test) and the quality of the movement patterns

observed during performance of these tasks (FAS).

Since we designed the proposed data analysis method

leveraging data features derived from data recorded during

performance of movement components (i.e., reaching and

manipulation) that are part of a variety of motor tasks

associated with activities of daily living, it is conceivable that

the technique could be modified so that estimates of FAS

scores could be derived via analysis of recordings of accele-

rometer data gathered in the home settings while subjects

are engaged in activities of daily living. The implementation

of this approach would leverage the observation that reliable

estimates of FAS scores can be achieved (as shown by our

study) via processing accelerometer data recorded using as

few as three sensors positioned on body segments that make

easy the self-application of sensors such as the dorsal side of

the hand, the forearm, and the upper arm. Further work is

needed to assess the reliability of results derived from field

data and their dependence on factors (e.g., self-application

of the sensors) that cannot be fully controlled in the home

and community settings.

In future applications of the technique based on pro-

cessing data gathered in the home and community settings,

we envision that one would employ methods to detect the

performance of specific motor tasks (e.g., using algorithms

such as the one recently proposed by Giuffrida et al. [33]),
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isolate data segments associated with movement compo-

nents (e.g., reaching, manipulation, and release/return),

and then apply the algorithm presented in the manuscript

to derive total FAS scores. This approach would allow one

to assess quality of movement in the home and community

settings and feed this information back into the clinical

decision process to optimize the rehabilitation interven-

tion on an individual basis.

We envision future scenarios in which subjects are

monitored in the home using wearable technology to

assess their response to rehabilitation interventions.

Recent advances in wearable technology [34] make these

scenarios possible. The proposed methodology provides a

way to assess individual responses to rehabilitation in

stroke survivors that is attractive because of the ease of

gathering data and because data would be collected in the

field (i.e., home and community settings). Data gathered

in the field would provide a means of direct observation of

the impact of rehabilitation interventions on the ability of

stroke survivors to perform motor tasks in real-life

conditions. The assessment of quality of movement

derived using wearable technology according to the

methodology presented in this manuscript could in the

future become part of the clinical assessment of stroke

survivors undergoing rehabilitation. The estimates derived

using wearable sensor data would complement informa-

tion gathered using sporadic clinical evaluations using

traditional scales of impairment and functional assess-

ment, data collected using survey-based tools, and data

collected during the rehabilitation sessions. The results of all

these evaluations would be merged to confirm the subject’s

responsiveness to ongoing interventions or to detect

situations in which the subject either does not respond or

responds inadequately to the ongoing rehabilitation inter-

vention. These tools as a whole have the potential to improve

the efficacy of rehabilitation interventions by providing

means to Bprescribe[ individualized interventions, namely,

rehabilitation interventions that lead to maximum improve-

ments in subjects’ motor recovery. h
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