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Abstract

In this paper we introduce a new method to expressly use live/corporeal data in quantifying differences of time series data
with an underlying limit cycle attractor; and apply it using an example of gait data. Our intention is to identify gait pattern
differences between diverse situations and classify them on group and individual subject levels. First we approximated the
limit cycle attractors, from which three measures were calculated: dM amounts to the difference between two attractors (a
measure for the differences of two movements), dD computes the difference between the two associated deviations of the
state vector away from the attractor (a measure for the change in movement variation), and dF, a combination of the
previous two, is an index of the change. As an application we quantified these measures for walking on a treadmill under
three different conditions: normal walking, dual task walking, and walking with additional weights at the ankle. The new
method was able to successfully differentiate between the three walking conditions. Day to day repeatability, studied with
repeated trials approximately one week apart, indicated excellent reliability for dM (ICCave . 0.73 with no differences across
days; p . 0.05) and good reliability for dD (ICCave = 0.414 to 0.610 with no differences across days; p . 0.05). Based on the
ability to detect differences in varying gait conditions and the good repeatability of the measures across days, the new
method is recommended as an alternative to expensive and time consuming techniques of gait classification assessment. In
particular, the new method is an easy to use diagnostic tool to quantify clinical changes in neurological patients.
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Introduction

Typically, conventional kinematic analysis of human gait

derives a characteristic pattern for an individual from a few single

stride cycles [1,2]. These approaches are very common in clinical

trials and in clinical practice; however, a major disadvantage of

this method is the neglect of essential information that may be

included in the dynamical sequences of multiple strides during

continuous locomotion [2]. Hence, some researchers have used

other methods to analyze gait data, e.g. methods of non-linear

time series [3]. Especially common is an approach using a non-

linear time series analysis where Taken’s [4] embedding theorem

enables the reconstruction of the phase state and the calculation

and analysis of the maximal Lyapunov exponent [5,6] is

performed. The estimation of local dynamic stability can then

be estimated though the largest Lyapunov exponent [7–12]. Perc

[13] has built on these techniques in his study of human gait.

Non-linear time series approaches seem to have an advantage

over conventional ones. However, while results are significant at

the group level; a rating for an individual does not seem possible.

van Schooten et al. [14] confirmed that depending on the state

space reconstruction, local dynamic stability can be detected

reliably enough to assess differences on the group level. However,

on the individual level, they concluded that local dynamic stability

only measures substantial changes, ‘‘which might not be realistic’’.

Looking at the theory behind this type of analysis, it seems

understandable where problems might arise. The Lyapunov

exponent as a measure for stable or unstable attractors was

developed to examine deterministic chaos, i.e. describing (math-

ematical) systems without random elements involved. Time series,

and gait data specifically, do contain random elements, which

make the calculation of the Lyapunov exponent a tricky endeavor.

A straight forward calculation of the Lyapunov exponent [15] as in

the case of classical deterministic chaos is not possible; instead,

estimation procedures must be applied. Two popular algorithms

are those of Wolf et al. [16] and Rosenstein et al.[17]. However,

these algorithms also have shortcomings [18,19], which lead to the

discussed problems of stability estimates for individuals. Floquet

theory [20] is advocated for ‘‘… the study of the stability of linear

periodic systems in continuous time.’’ In this case as well, theory

works best when applying it to classical deterministic systems.

Our original task was to find a diagnostic tool that allows

quantification of changing conditions in neurological patients,

namely quantifying fatigue in the Multiple Sclerosis (MS) patient.

The rationale is that movement patterns of gait show changes,

when fatigue sets in. Ensuring that fatigue is the only possible

reason for a pattern change in combination with a change in local

variability would make it possible for the first time to quantify

fatigue. The problem is that walking quality/stability of MS

patients is very diverse. Consequently, the stability of the gait does

not tell anything about fatigue, but its change would. Unfortu-
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nately, to the best of our knowledge, there is no method available

allowing quantification of the changes in the movement pattern

that are precise enough to rate the severity of fatigue on an

individual level. Our new approach seeks to fill this gap and

present a way to measure and document changes within the

responses of an individual subject, as well as between subjects.

A dynamic system can be described by its state vector [21], and

its undisturbed movement characterized by its attractor. Attractors

represent equilibrium regions in the geometric space that are

formed by the relevant variables describing the undisturbed

movement dynamics [22]. Attractors can differ greatly in

complexity. They can be as simple as a fixed point attractor,

manifest as a limit cycle attractor, quasi-periodic, or be a chaotic

attractor [22]. An example of a fixed point attractor in 3D

coordinate space is the lowest point of a half-sphere shaped bowl at

which a rolling marble will eventually stop moving. More

complicated systems, such as humans walking, do not settle

towards a point, but rather towards a track, which can be multi-

dimensional and e.g. in the case of treadmill walking, is a closed

loop, or limit cycle [13]. The problem with real world systems is

their complexity. Building a model from first principles could

mean the state space dimension could be very large [23]. In such a

case, writing the full state vector seems impossible. We were

looking for an approach, which would be sensitive enough to judge

the differences of movement on an individual level. This requires a

practical approach for such a task; one which need not include the

complete state vector and therefore, is not overly demanding in

terms of measurement and analysis. A part of the state vector and

the respective attractor should characterize the walking movement

sufficiently without being too complex, yet without the lack of

essential information. Any vector coordinate of a point on the

human body can serve as part of the state vector, which can be

compared to the respective parts of its attractor. Points at each

ankle can establish a good option, since from the supporting leg to

the swinging leg we have a long kinematic chain with a high

degree of freedom. Hence the possible movement variability is

very large and can be used to express substantial parts of the

walking characteristics. For a further description of our method

and its use, it will not be necessary to decipher the actual walking

characteristics; it is sufficient to simply calculate the attractor in

different situations and quantify its change.

In this work, we describe a novel method for calculating and

interpreting attractor variations and the differences between the

attractor and state vector when comparing two time series, with

underlying limit cycle attractors. As an example we analyzed data

from a treadmill study examining the influence a dual task (mental

assignment) or an additional physical load has in causing changes

in normal walking. It was hypothesized that the changes in gait

pattern due to the dual task and/or the additional load can be

captured using the changes in the attractor and the change of the

attractor/state vector’s standard deviations, which are each

calculated from the distance between the attractor and the state

vector. While the purpose of the current study was not to directly

examine gait, the index formed from these two variables can be

used to detect the changes in gait pattern both at the individual

level and at the group level. Finally, we tested the reliability of our

new method.

Methods

A time series is a sequence of data points, which can contain

almost any kind of time sequenced data. When dealing with gait,

coordinate positions, velocity, and acceleration data constitute

meaningful choices. An effective description of the attractor can be

given e.g. in coordinate, velocity or acceleration space [23,24],

which are connected via
d2~xx tð Þ
dt2

~
d~vv tð Þ
dt

~~aa tð Þ. For reasons that
will become clear later, we have used the acceleration space.

The following method is valid for movements with an

underlying limit cycle attractor. The time series data are treated

according to the following simple model of the actual movement

parameter: after transient oscillations have stabilized, the acceler-

ation~aa tð Þ is governed by the attractor value ~AA tð Þ plus a fluctuating
contribution~bb tð Þ that varies around the attractor; this value ‘‘b(t)’’

is normally distributed with a zero mean.

~aa t~i:tð Þ~~AA tð Þz~bb t~i:tð Þi refers to the cycle ð1Þ

We measured two such parameters, the 3D acceleration

(~aar tð Þ,~aal tð Þ) of the right and left ankles to allow detection of

asymmetries in gait. The attractors’ ~AAr tð Þ,~AAl tð Þare approximated

as the acceleration at time t (ordering parameter of a complete

cycle) averaged over all loops. ~DDr tð Þ,~DDl tð Þ are the standard

deviations describing the irregularities from the actual acceleration

attractor. The start and the end of a loop are defined as the passing

of~aar tð Þ,~aal tð Þ through a well-defined area A, as shown in Figure 1.

With n being the number of measured cycles, the two expressions

have the following form:

~AAa,C tj
� �

~
1

n

X

n

i~1

~aaa,C i:tj
� �

z
1

n

X

n

i~1

~bba,C t~i:tj
� �

&
1

n

X

n

i~1

~aaa,C i:tj
� �

with lim
n??

1

n

X

n

i~1

~bb i:tj
� �

~0

ð2Þ

Da,C tj
� �

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n{1

X

n

i~1

~AAa,C tj
� �

{~aaa,C i:tj
� �

h i2

s

a~r or l and C~B or E

ð3Þ

For the actual calculation of the attractors (equation (2)), the

number of data points in cycles varies slightly. We term a data

point of an attractor as valid, if the number of elements ~aaa,C is at

least 20% the number of elements of the first attractor point. This

procedure is carried out via the software StatFree Version 7.0.3.1

(VietenDynamics, University of Konstanz, Germany; freely

available on the Internet). Now the gait data can be compared

at two different time intervals – index B: = begin, E: = end (e.g. one

minute measuring at the beginning and at the end of treadmill

walking). We define three parameters, wherein

m~min mr,B,mr,E ,ml,B,ml,Eð Þ denotes the number of data points

within the attractor with the fewest data points, v the walking

speed and S:::T denotes average of the included expression:

Quantifying Gait Pattern Differences

PLOS ONE | www.plosone.org 2 August 2013 | Volume 8 | Issue 8 | e71824



dM~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m:v2

X

m

j~1

~AAr,B tj
� �

{~AAr,E tj
� �

� �2

z ~AAl,B tj
� �

{~AAl,E tj
� �

� �2
� �

v

u

u

t

~
1

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

3

i~1

S Ar,B,xi
{Ar,E,xi

� �2
TzS Al,B,xi

{Al,E,xi

� �2
T

h i

v

u

u

t

ð4Þ

dD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m

X

m

j~1

Dr,B tj
� �

{Dr,E tj
� �� �2

z Dl,B tj
� �

{Dl,E tj
� �� �2

h i

v

u

u

t

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S Dr,B{Dr,Eð Þ2TzS Dl,B{Dl,Eð Þ2T
q

ð5Þ

dF~dM:dD ð6Þ

dM is the velocity normalized (see explanation below) square root

of the squared average distance between two attractors, which can

account for the change in the movement pattern of a person

walking. dD identifies the fluctuation change of the state vectors

around the two attractors, which quantifies a change in movement

precision. The third definition (dF) is the product of the first two,

which is an index being of interest in the event the changes affect

the movement style and the movement quality simultaneously.

dM, dD, and dF are invariant under rotation which easily can be

shown. Let dM’ be calculated in terms of a rotated coordinate

system S0. Any term of the form

~AA0
r,B tj
� �

{~AA0
r,E tj
� �

� �2

~ ~AAr,B tj
� �

{~AAr,E tj
� �

� �T

<T a,b,cð Þ< a,b,cð Þ ~AAr,B tj
� �

{~AAr,E tj
� �

� �

~ ~AAr,B tj
� �

{~AAr,E tj
� �

� �T
~AAr,B tj

� �

{~AAr,E tj
� �

� �

~ ~AAr,B tj
� �

{~AAr,E tj
� �

� �2 ð7Þ

is invariant under rotation. Here the rotation matrix < a,b,cð Þ
represents an arbitrary rotation and <T a,b,cð Þ~<{1 a,b,cð Þ the

transposed inverse matrix respectively. Both matrices can be

functions of tjas well. All three expressions are combinations of

those kinds of terms and therefore, are rotationally invariant.

Measurements can be done with a digitizing system giving the

coordinates of a track, which permits approximating the attractor

in coordinate space. However, using a kinematic tracking system

requires a large degree of experimental effort and expense. A

cheaper, simpler, and less work intensive system is an acceler-

ometer. Mounted onto the human body, without using a

gyroscope, it will not give acceleration data in the well-defined

laboratory coordinate system, but since our three parameters are

rotationally invariant this is not a hindrance. Furthermore, an

additional argument for choosing acceleration over coordinate

data is that the position on the treadmill results in some

ambiguity; e.g. the subject’s position could be at the front of the

treadmill throughout the first measurement and at the rear

during the second measurement. This automatically would result

Figure 1. Three dimensional view of the acceleration data in mNs22 illustrating the path of the state vector and cutting point to
determine the start and end of a loop. Depicted is the side view of the area A (in blue) defining the start and the end of a cycle. All traces of the
state vector must pass through and be perpendicular to the rectangle.
doi:10.1371/journal.pone.0071824.g001
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in a huge dM even without being caused by a change in the

walking style. This difference in measurement may be of interest

if coordinate position is relevant in a study. Otherwise this

variation can be removed by using the velocity instead of

coordinate data as shown in the following equation.

~vv0~
d~xx0

dt
~

d ~xxz~xx0ð Þ
dt

~
d~xx

dt
~~vv

(no difference if walking at the front or rear; ~xx0 constant)

ð8Þ

By taking the acceleration data instead of the velocity data, one

is not even restricted to constant speed treadmill walking (see

equation (9)).

~aa0~
d~vv0

dt
~

d ~vvz~vv0ð Þ
dt

~
d~vv

dt
~~aa

(independent of the choice of the inertia system; ~vv0 constant)

ð9Þ

To differentiate coordinate data twice causes a substantial ratio

of high frequency noise in the signal [25]. Therefore, a low pass

filter must be applied when using data from a digitizing system.

Temporary accelerometers are not free of such noise problems

either and thus a low pass filter is required here as well. From these

statements it is clear that the described method analyzes the low

frequency information of our example time series. However, this is

not a principal feature of our method. If data with a low noise ratio

is available the full information content, with the high frequency

part included, can be accessed.

A few remarks on normalization: dM as well as dD contains a

factor 1= ffiffiffim
p , which accounts for the different time intervals and

sampling frequencies of different measuring situations, equipment,

and subjects. The factor 1=v within dM is included to make results

from measuring subjects at different walking speeds comparable.

This can be understood in the following way:

The subject is walking at a speed v. While a foot is on the

ground/treadmill it has the relative velocity of zero. The foot in a

swing phase must accelerate to make up for the time during stance.

Hence, the average walking speed of one cycle is equal to the

average velocity of the foot.

~vv~

ð

full cycle

~aa tð Þ dt ð10Þ

To compensate for different walking velocities we normalize to

the walking/treadmill speed.

v̂v~

ð

full cycle

~aa tð Þ
v

dt ð11Þ

For a normalized walking speed the parameter ~AA must be

substituted by
~AA
.

v. As a last step the average velocity v is moved to

the front of the equation. Thus it might be possible to use our

method in the case of a non-constant walking speed, making the

measuring situation once again simpler. If possible, v can be

substituted by vi the average velocity of a cycle and the velocity

would still be under the summation sign. However, we did not test

this even more general procedure within the current study. In any

case, dM and dD are abstract expressions and the dimensions are

not of particular importance since they are not used for further

calculations. However, we have used SI units to make sure the

numbers can be compared; dM is given in s21 while dD has the

dimension mNs22.

Adaptation to a specific measuring situation and
calibration
dM, dD and dF represent relative results, which means a first

measurement sets a baseline and the deviation between the base

and the second measurement is calculated. This is a major

difference compared with the calculation of the Lyapunov

exponent that gives a kind of stability measure, an absolute

quantity [7–12,26]. However, for practical use the outcome still

must be interpreted for both cases. For our method an

interpretation schema can be established in two ways. If no

known or appropriate classification is available, a given spectrum

can be divided into subsections with increasing numbers denoting

more crucial changes. If groups are definable, using well-known

conventional methods [1,2], medians of dM, dD, or dF are

calculated for each group. While conventional methods are not

sensitive enough to judge individuals, they do produce adequate

group results. Also, by calculating the median, not the mean, we

avoid the substantial influence of outliers. The group intervals are

obtained by calculating the upper a-quantile of the group with

the smaller median and the lower a-quantile of the group with

the bigger median as consecutive non-overlapping areas. For the

next two consecutive groups we calculate upper b-quantile and

lower b-quantile connected with the next set of medians and so

on for all adjacent groups (see Figure 2). These resultant numbers

– e.g. dMGroupMedian+
upperb{quantile
lowera{quantile - serve as a calibration for

our method. Once this procedure is done, individuals can be

sorted into categories by calculating the appropriate dM, dD or

dF.

Method inherent aberration
As with all measurements, the outcome depends on the

sensitivity and accuracy of the measuring equipment. In addition

the method can cause extra deviations. This method’s inherent

deviations from an exact numerical value are extremely small.

However, there are two reasons for errors: 1) The first data

point within a cycle is defined as the first measurement after

passing the area A (Figure 1). These can be located within a

volume A: 0,
dai

dt
: 1

fs

� �

, not directly on the area A. For this

reason we do have a subtle dependence of the outcome on the

definition of the cycle’s start, which can be decreased by raising

the sampling frequency fs. 2) The attractor’s standard errors

along the attractor path are dependent on the number of cycles

analyzed. For each data point on the attractor path we have the

real attractor ~AA? tj
� �

~ lim
n??

1

n

X

n

i~1

~aa i:tj
� �

located (one sigma

probability) within an interval defined by ~AA tj
� �

+~ssA tj
� �

with

~ssA tj
� �

being the standard error. This induces the error margins

for dM, which we calculate using the error propagation of

independent variables.
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sdM~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

j~1

L dMð Þ
LAr,B,x tj

� �

 !2

:s2Ar,B,x
tj
� �

z:::z
L dMð Þ

LAl,E,z tj
� �

 !2

:s2Al,E,z
tj
� �

8

<

:

9

=

;

v

u

u

u

t

~
1

mv2 dM

P

m

i~1

Ar,B,x tið Þ{Ar,E,x tið Þð Þ
� �2

:P
m

j~1

s2Ar,B,x
tj
� �

zs2Ar,E,x
tj
� �

h i

z:::

:::z
P

m

i~1

Al,B,z tið Þ{Al,E,z tið Þð Þ
� �2

:P
m

j~1

s2Al,B,z
tj
� �

zs2Al,E,y
tj
� �

h i

0

B

B

B

B

B

@

1

C

C

C

C

C

A

1
2

~

ffiffiffiffi

m
p

v2 dM

SAr,B,x{Ar,E,xT
2: Ss2Ar,B,x

TzSs2Ar,E,x
T

h i

z:::

:::zSAl,B,z{Al,E,zT
2: Ss2Al,B,z

TzSs2Al,E,y
T

h i

0

B

@

1

C

A

1
2

ð12Þ

The complete expression consists of 6 terms (right and left side

with three components each). The deviation of dD appears to

depend via D(tj) on the standard error~ssA tj
� �

as well, but it does

not. Formally the deviation is

sdD~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

j~1

L dDð Þ
LDr,B tj

� �

 !2

:s2Dr,B
tj
� �

z:::z
L dDð Þ

LDl,E tj
� �

 !2

:s2Dl,E
tj
� �

8

<

:

9

=

;

v

u

u

u

t

ð13Þ

with

sDa,C
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

j~1

X

3

i~1

LD

LAa,C,xi
tj
� �

 !2

:s2Aa,C,xi
tj
� �

v

u

u

t ð14Þ

and a= r or l and C=B or E.

First we calculate the derivative of D(tj) in regard to one

component of ~AAa,C tj
� �

LD tj
� �

LAa,C,x tj
� �~

L

LAa,C,x tj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n{1

X

n

i~1

~AAa,C tj
� �

{~aaa,C i:tj
� �

h i2

s

~

nAa,C,x tj
� �

{
P

n

i~1

aa,C,x i:tj
� �

n{1ð ÞD tj
� � ~0

ð15Þ

As a consequence sdD is identically zero

sdD:0 ð16Þ

since all derivatives have the same result. This might look strange,

but it is a consequence of the definition of D, in which attractor

inaccuracies cancel each other. dF’s deviation is simply

sdF~
L dFð Þ
L dMð Þ

:sdM~dD:sdM ð17Þ

Experimental procedures
Thirty healthy subjects (11 female, age: 31611 years, height:

1.7060.07 m, mass: 6069 kg; 19 male, age: 29611 years, height:

1.8260.05 m, mass: 82612 kg) participated in the study. The

study protocol and informed consent process were approved by

the local ethics committee of the University of Konstanz, Germany

and was conducted in accordance with the Declaration of

Helsinki. All subjects gave written informed consent according to

this approval.

The participants performed a walking test on a treadmill under

three different conditions: 1) five minutes walking without any load

(N); 2) five minutes walking with an additional mental task (M);

and 3) five minutes walking with a two kilogram weight on each

ankle (W). Each of the combinations NM, NW and MW were

done using equations (4) and (5) with B and E equal to N, M or W

respectively. The treadmill speed was set to 1.39 mNs21 and kept

constant throughout the test. Thus one minute of walking was

equivalent to about 60 cycles. Gait data were recorded while

walking on the treadmill for one minute, for each subject, after

each of the five minute conditions. This test was performed on two

different days to check the repeatability.

Data were recorded using the RehaWatch 4.1.9.0 (HASOMED

GmbH, Magdeburg, Germany). The equipment includes two

inertial sensors, which were mounted on the lateral aspect of each

ankle, and a data logger. Output data were internally corrected for

data shift. The inertial sensors contain tri-axial accelerometers for

measuring acceleration and tri-axial gyroscopes for measuring the

angular velocity; the data of the latter were not used in this study.

Data analysis
Analyses were limited to the acceleration data of the two foot

sensors which were taken at a sampling rate of 500 Hz. We filtered

the data with a 4.5 Hz low-pass filter [27] after performing a

residual analysis [28] to find the optimal cutoff frequency. All

statistical tests and numerical calculations were performed using

StatFree, SPSS v19.0 (IBM, Armonk, NY, USA), and Microsoft

Excel 2010 (Microsoft Office Professional Plus 2010). All group

parameters were tested for normal distribution. Reliability

estimates for dM and dD for each of the three conditions were

performed by determining the day to day Intraclass Correlation

Figure 2. Illustration of example categories used to allow the
creation of Quantiles from the medians of different groups.
doi:10.1371/journal.pone.0071824.g002
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Coefficient (ICC; 3, k) and differences between days via a paired t-

test. Differences in normally distributed parameters between N

and M, between N and W, as well as between M and W, were

detected using a one-way Repeated Measures ANOVA. Bonfer-

roni adjustment was applied to account for multiple comparisons,

and the significance level for all statistical tests was set a priori to

a=0.005.

Results

The numerical values of all measurements of dM were between

0 and 7.1 s21, while the variation of dD was between 0 and

2.5 mNs22 (Figure 3). This graph shows the clustering of the data

for each of the three conditions. Figures 4 and 5 illustrate the

individuals’ data points for dM and dD for all three conditions on

both days.

The comparison of all three situations normal to mental, normal

to weight, and mental to weight walking show significant

differences (see Figure 6). The ANOVA revealed a significant

main (p,0.001) effect for dM; with post hoc analyses showing that

dM differed between all three tasks (p,0.001). Comparison of dD

revealed a significant difference (p,0.001) between the three

conditions. Post hoc analysis indicated that the fluctuation around

the differences of normal to mental walking was less than either

condition that included walking with weights on the ankles, i.e.

normal to weighted and mental to weighted walking (see Figure 7).

Reliability estimates revealed that dM displayed excellent day to

day reliability as indicated by the ICC and lack of differences (p .

0.05) between days (Table 1 and Figure 6). Day to day reliability of

dD expressed via ICC was moderate to good and not different

between days (p . 0.05) (Table 1 and Figure 7).

The impact of different cutting conditions, defining the cycle’s

start, were found to be smaller than 5% of the value of each

parameter. We also calculated the error (equation (12)) caused by

the attractor’s standard error and found sdM ,0.05dM.

Discussion

The purpose of this new method is to allow the easy

quantification of differences between dynamic situations on the

group and on the individual level. In the case of our example,

differences between gait patterns under different constraints were

determined. The constraints included normal walking, walking

while performing a mental task (counting backwards by threes),

and walking with weights added to the ankles. In the current study

the gait pattern differed in all three conditions, i.e normal walking

was different from mental and weighted walking, which also

differed from each other. Previous studies have shown changes in

gait patterns as a response to a cognitive or motor task while

walking [29–33].

The estimation of reliability for the proposed methodology

indicated that dM and dD are reliable and the results of one day

can be replicated on a second day occurring approximately a week

later. This is in agreement with the results of other studies. In a

study with acceleration-based gait tests Senden et al. [34] found

high repeatability in basic gait parameters such as step length,

cadence, speed, and step time. Henriksen and coworkers [35]

established the test–retest reliability of a trunk accelerometric gait

test in healthy subjects. Gait parameters of step length, stride

length, cadence and the mean acceleration were found to be

stable. Kadaba et al. [36] investigated repeatability of gait data in

normal adults at three times on three different days. They showed

the gait parameters ‘‘are quite repeatable’’; with good repeatability

within a test day, but less so for measurements on different days.

Recently, van Schooten et al. [14] also found reliability of local

dynamic stability within a day was good, but was only moderate to

poor between days.

Figure 3. Scatterplot of dM and dD for the attractors in the three conditions. Note the clustering of data for each of the three
conditions.
doi:10.1371/journal.pone.0071824.g003
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While, dD displayed lower repeatability, the ICCave was still

moderate to good ranging from 0.414 to 0.610, with no differences

across days (p . 0.05). This is in agreement with Senden and

colleagues [34] who also found less repeatability in the irregularity

and asymmetry of gait measures.

An interesting point to note from the current study was the

ability of the method to identify outlying values from one of the

subjects who had different experiences between days. Subject 22

performed the mental task in a non-native language and

commented afterwards that, ‘‘I was more nervous about getting

Figure 4. Individual subject values of dM for normal-mental, normal-weighted and mental-weighted walking on days 1 and 2.
doi:10.1371/journal.pone.0071824.g004

Figure 5. Individual subject values of dD for normal-mental, normal-weighted and mental-weighted walking on days 1 and 2.
doi:10.1371/journal.pone.0071824.g005
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the answers correct on the first day than the second day’’. This

subject displayed a much larger dM for the normal to mental

walking on day 1 than on day 2 (see Figure 4). This instance, while

anecdotal, suggests that when an individual displays characteristics

that differ from the group, he/she will be classified into a different

group by their dM and dD. Thus the sensitivity of dM and dD

Figure 6. Means and Standard Error of dM for the three conditions across the two days. Significant differences occurred between all three
tasks (p,0.001), but not within conditions.
doi:10.1371/journal.pone.0071824.g006

Figure 7. Illustration of the Means and Standard Error of dD for the three conditions across the two days. Significant differences
occurred between all three tasks (p,0.001), but not within conditions.
doi:10.1371/journal.pone.0071824.g007
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appears to allow the sorting of individuals into the various

categories as explained in the methods section.

The described new method relies on thousands of data points

for each subject and measurement. This makes for a strong

statistical outcome. The attractor change dM and the fluctuation

change dD for two different time intervals can then be reliably

quantified at a high degree of accuracy. In our example study the

error margins of dM and dD are in the range of 5%. Therefore,

individuals can be rated precisely and categorization on a personal

level is possible. The method is easy to apply, simple to use in the

case of gait data acquisition, the analysis is uncomplicated, and

results are sensitive and stable. Thus it appears that the new

method could be useful in many situations, but may be most

helpful in clinical settings where the low cost of accelerometers and

minimal amount of data processing required would be desired.

A comparison between the well-established non-linear methods

calculating the Lyapunov exponent or the Floquet multiplier

shows big differences compared to our method. Lyapunov

exponent and the Floquet multiplier were developed for the

analysis of classical deterministic systems. Those methods allow

deep insight into the mathematical working of dynamical systems,

an ability that our method lacks completely. The application of

established non-linear methods to data obtained from experiments

is not without problems. To be able to handle more or less noisy

data, algorithms have been developed (for a comprehensive

overview see [15]), but the liability of these algorithms is still not

completely assured [18]. On the other hand our method is

developed to handle real live data of processes with an underlying

limit cycle attractor only. The two main parameters in our method

calculate the velocity normalized mean distance between limit

cycle attractors (dM) and the change of the variation, which is the

deviation of actual movement compared to the attractor (dD). The

simplicity of our method and its stability allows quantification of

factors responsible for changing movement pattern and movement

variation as in the clinical example mentioned above.

In a clinical setting a central object is to diagnose functional

problems which are reflected as walking abnormalities or changes

in gait patterns between two different conditions. For example,

fatigue is a common and frequently disabling symptom of Multiple

Sclerosis with negative effects on normal activities of daily life [37].

Despite the high incidence of fatigue, there are no objective

measures for assessing motor fatigue in Multiple Sclerosis. With

our new method we can quantify the changes in gait patterns

between two conditions: at the beginning and at the end (under

full exertion) of the treadmill walking for each individual. If the

change in a patient exceeds the threshold value – which we can

define using the results of a control group – then the individual can

be classified as a patient with fatigue symptom. In addition it could

be used in other neurological conditions, such as Parkinson’s

Disease, stroke, trauma, etc. Thus, the proposed method does not

judge the quality of the movement, but allows quantification of the

changes in gait pattern between two different conditions and hence

gauges the acuteness of a neurological detraction. We therefore

recommend this novel method as a tool to use in clinical studies

and in the clinical practice.
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