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Abstract

We investigate a holistic approach to real-time gaze tracking by means of a
well-defined neural network modelling strategy combined with robust image
processing algorithms. Based on captured greyscale eye images, the system
effectively learns the gaze direction of a human user by modellingimplicitly
corresponding eye appearance – the relative positions of the pupil, cornea,
and light reflection inside the eye socket. In operation, the gaze tracker pro-
vides a fast, cheap, and flexible means finding the focus of a user’s atten-
tion on any of the objects displayed on a computer screen. It works in an
open-plan office environment under normal illumination without using any
specialised hardware. It can be easily customised to a new user and inte-
grated into an application system that demands an intelligent non-command
interface.

1 Introduction

Gaze tracking is an interesting and challenging task across several disciplines including
machine vision, cognitive science and human computer interactions [1]. The idea that a
human subject’s attention and interest reflected implicitly in his eye movements can be
captured and learned by a machine which can then act accordingly on the subject’s behalf
is very appealing and natural, lending itself to many applications, prominently, in video
conferencing [2] for focusing on interesting objects and transmitting only these images
through the communication networks, design of new generation ofnon-commandinter-
face [3, 4] for computers to reach more wide users, and the study of human vision, cogni-
tion, and attentional processes [5] among many others. Traditional ways of gaze tracking
use the so-called pupil-center/corneal-reflectionmethod [6], which use controlled infrared
lighting to illuminate the eye, computing the distance between the pupil centre (the bright-
eye effect) and the small very bright reflection off the surface of the eye’s cornea to find
the line of sight on the display screen, through geometric projections. These methods nor-
mally involve specialised high speed/high resolution camera, controlled lighting source,
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electronic hardware equipment, and are sometimes intrusive [7]. The user is often re-
quested to remain motionless during the course of operation. As a result, the eye trackers
are mostly used in a controlled laboratory environment forpassivelycapturing, record-
ing, and later on, playing back the overlaid time-stamped eye movement trajectories for
analysis of fixation and saccade phenomena in connection with various psychophysical
experimental tasks.

Recently, increasing demand on intelligent systems opens the need for more conve-
nient, effective and natural ways of communication between people and computers. To a
large extent, this requires us to expand the narrow-bandwidth channel from user to com-
puter, which is currently operated through the low speed mouse and keyboard. Along with
speech, gestures and other avenues [8], accurate extraction of eye movement information
and the wise employment of it have been reckoned to play an essential role in forming
such a fast and natural interface, which will have the ability to respondactivelyto a user’s
natural visual attention, see, for example, the work by Starker and Bolt [9] and Hansen et
al. [10].

Our objective therefore is to look into new mechanisms for eye tracking and develop
a flexible, cheap, and adequately fast eye tracker suitable for tasks of this nature, using
the standard video conferencing equipment on a workstation and without resorting to any
additional hardware and special lighting. In this paper, we present a neural network based
real-time non-intrusive gaze tracker. The goal of this gaze tracker is to determine where
the user is looking (within the boundary of a computer display) by the appearance of
his eye images (watched by a monitoring camera). In theory, this task can be viewed
as simulating a forward-pass mapping process from the (segmented) eye image space
(e.g. the example shown in Figure 4) to a2D coordinate space defined on the screen,
though in practice the mapping function is a nonlinear and highly variable one subject to
a variety of uncertainties. In Section 2, we describe the methodology and the system that
employs a feed-forward neural network to model the aforementioned mapping process
for gaze tracking, explaining the techniques used for each key component. In section 3,
experimental studies are conducted, detailing the means of collecting correct training data
and the strategy of training a large neural network. Section 4 outlines the features of the
real-time gaze tracking system. Discussions of some important opening issues are given
in Section 5.

2 Methodology and System

There are two primary considerations orconstraintson which the proposed method and
the real time gaze tracking system are based. First, we are concerned with accurate gaze
finding at close contact, typically the distance of a user facing a computer screen. In such
a case, the appearance of an eye in the view of an observer (e.g. a camera) is believed
to contain sufficient cues regarding where the user is looking. Second, this information
would be less ambiguous and easier to extract if the user’s head orientation generally
conforms to the line of sight of his eyes.

The former is testified by our human-human communication experience, while the
latter is introduced to avoid the over complicated situation of many-to-one mapping when
a user tends to peep at an object on the screen while facing other directions. Despite these
two assumptions, the actual relationship between an eye appearance and its corresponding
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Figure 1: The neural network based gaze modelling/tracking system. The switchS is
connected to nodeL in the training mode for simulating the forward-pass mapping func-
tion, or F : eye images! gaze coordinates, and to nodeR in operational mode for
real-time gaze tracking.

gaze point is very complicated and highly nonlinear. The complexity arises from uncer-
tainties and noise encountered at every processing/modelling stage, especially, the errors
in eye segmentation, the change in depth of the eye images relative to the camera due
to head movements, the decorations around the eye such as wearing glasses or pencilled
eyebrows, and the change of ambient lighting conditions among others.

We adopt a neural network centered methodology in an attempt to cope with the above
problems and to model and generalise this mapping function. Especially, a gaze track-
ing system has been developed, employing robust image processing algorithms, efficient
training procedures, carefully collected training examples and relevant domain knowl-
edge. Figure 1 shows a schematic diagram of the system. We describe below the functions
of several main components.

Figure 2: The snapshot of a user’s head image (192� 144) pixels taken in an open-plan
office under normal illumination. The rectangular area (100� 60) pixels defines a search
window for eye image segmentation.
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Figure 3: An automatically segmented eye
image (40 � 15) pixels, containing the
pupil, cornea, light reflection, and the eye
socket.

Figure 4: The histogram normalised eye
image, showing marked improvements of
the normalisation process in delineating
important eye appearance features.

2.1 Eye image segmentation

The function of this module is first to detect the small darkest region in the pupil of the
eye, and then to segment the proper eye image. For this purpose, a fixed search window
of 100 by 60 pixels (shown in Figure 2) is started in the center part of the grabbed image.
Inside this window, the image isiteratively thresholded, initially with a lower threshold
T0. Morphological filters (dilation and erosion) are used to remove noise or fill “gaps” of
the generated binary image which is then searched pixel by pixel from top left to bottom
right. Individual objects of pixel clusters are found and labelled using the 4-connectivity
algorithm described in Jain et al. [11] A rectangular blob is used to represent each found
object. Unless a reasonable number of objects of appropriate size are found, the threshold
T0 is increased by a margin toT1, and the search process is repeated.

The number of blobs thus obtained are first merged when appropriate based on some
adjacency requirements. Certain heuristics are then used to filter the blobs and identify
the one most likely to be part of the pupil of the eye in that frame. The heuristics we found
useful include:

� the number of detected pixels in each blob, roughly in the range(15; 100),

� the position and value of thesingledarkest pixel in a blob,

� the ratio of the blob’s height to its width, approximately in the range(0:33; 1:05),

� the knowledge of the relative eye position in the face, and

� the motion constraint that the eye movement is smooth and relatively small within
two adjacent sampling frames.

A window around the found pupil is then expanded proportionally, based on local
information, to the size of 40 by 15 pixels to contain the cornea and the whole eye socket.
Figure 3 shows an example of the segmented right eye image.

This segmentation approach is not sensitive to the change of lighting conditions as
long as the face is well lit (sometimes assisted by an ordinary desk lamp). It is not affected
by the glasses the user wears either. But, the occasional strong reflections off the glasses
and the appearance of the frame of the glasses in the segmented eye images due to the
head moving away from the camera is generally harmful. They contribute to the burst of
random noise disrupting the features inactivation patterns(discussed shortly) to be sent
to the purpose built neural network modelling system.
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2.2 Histogram normalisation

The segmented 8-bit grayscale eye image needs to be properly preprocessed to have a
value between�1:0 and1:0 for each pixel. This is necessary for a neural network to
discover the features inherent in the image and to learn to associate these features and their
distributions with the correct gaze points on the screen, by means of adequate training
stages.

This block takes as input the individual40� 15 8-bit grayscale image and computes
its histogram that is normally a unimodal shape dominated by a main peak1. The lower
and upper bounds ortl andtu of the histogram are then found. All pixels within the range
of 5% of the upper bound are given a value1:0, and those within the range of5% of the
lower bound are assigned a value of�1:0. An arbitrary pixel (tp) falling within the90%
part of the bounds assumes a linearised valuep between�1:0 and1:0, or

�t = 0:05(tu � tl) and p = �1 + 2
tp � tl ��t

tu � tl � 2�t
: (1)

Other appropriate nonlinear transfer functions can also be used. The activation pat-
terns thus generated together with associated properly coded output gaze points (discussed
shortly) are ready for training a neural network. Figure 4 shows the same eye image as in
Figure 3 after histogram normalisation. It demonstrates that the contrast between impor-
tant features (the eye socket, pupil, the reflection spot) has been largely enhanced.

2.3 The Neural Network Modeller

A neural network shown in Figure 5 is adopted for learning the mapping functionF
based on representative training examples. The network has600 input retina units, each
receiving directly a normalised pixel value of the segmented eye image. As in [12], the
hidden units are divided into two groups, designed for learning the respective features of
input eye images representing the horizontal and vertical gaze cues. The hidden units are
then connected to the corresponding group of output units which are specially organised
to encode the horizontal and vertical position of a gaze point. All the hidden and output
units assume a hyperbolic tangent transfer functionf(x) = (1� e�x)=(1 + e�x) having
an output value between�1.

Given a grid matrix, 50 by 40 say, partitioning a computer screen, the position of an
arbitrary gaze point in this grid matrix can be a value between0 and49 alongx direction
and between0 and39 alongy direction, with origin being in the top left corner(0; 0) of
the screen. Instead of using the commonly seen ‘1-out of -N’ coding method for repre-
senting the desired activation pattern of a gaze point across the two groups of output units,
respectively, we have adopted a Gaussian shaped coding method similar to the work by
Pomerleau [13] on autonomous vehicle guidance. It is generally agreed that the ‘1-out
of-N’ coding method is more suitable for pattern classification tasks which require sharp
definitive decision boundaries between different classes, while the mapping function sim-
ulation task of this study demands a gradual change in output representations when the
data examples (eye appearance) in input data space exhibits slight difference. This preser-
vation of topological relationship after data transformation (mapping) is the main concern
in selecting an output coding mechanism.

1An eye image whose histogram does not satisfy some desired requirements is rejected as a false segmenta-
tion.
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Figure 5: The neural network architecture employed for gaze modelling and tracking.
The input retina units receive the normalised activation pattern of an eye image. The
hidden units are split into two groups, and connected to the corresponding two groups
of output units which encode, respectively, the horizontal and vertical position of a gaze
point based on Gaussian coding of output activations. The links as shown are fully-
connected.

In the experiments reported later, the Gaussian function used is of the form,

G(n� n0) = �1:+ 2: exp(
�(n� n0)

2

12:
); (2)

with the standard deviation� =
p
6. A paired(x; y) grid coordinates of a gaze point

therefore give rise to two Gaussian shaped output activation patterns, taking values in the
range between�1:0 and1:0, one centered around unitn0 = x across the group of50
output units representing horizontal axis and the other centered around unitn0 = y of the
40 output units for vertical axis. These two patterns concatenated together act as adesired
outputof the neural network system.

In decoding the outputs while testing the gaze tracking system, the Gaussian shaped
activation patternG(n�n0) is moved across the output units for x-coordinate by changing
n0 from0 to49 at a time, a least-square fitting procedure is performed at each unit position
trying to match the actual output activation pattern. The peak of the Gaussian shaped
pattern that achieves the smallest error determines the horizontal position of the gaze
point. In the same way, the vertical position of the gaze point across the40 output units
for y-coordinate is found.

3 Experiments

3.1 Training Data Collection

This is essential to assure that the proposed gaze tracker learns the correct mapping func-
tion and generalise to real-time running situations. The procedures are as follows:

In a collection session, the user is prompted to visually track a blob cursor which
moves across the screen within the partitioned grid matrix in either the horizontal or ver-
tical zig-zag movements. At the same time, a video camera mounted along the side of
the screen continuously grabs the head image sequence. For each frame a small patch of
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40� 15 pixels image containing appropriately the eye socket is then segmented. This eye
image paired with the grid position(x; y) of the travelling cursor at that instant forms a
raw training example. During the course of images collection, the user needs to satisfy
some constraints as mentioned in Section 2. The segmentation algorithm can detect auto-
matically those unwanted images when the eye blinks occur, and that contain eye brows,
nostrils or left eyes.

3.2 Training of the Neural Network

For the data collected in the manner above, and preprocessed and coded according to
Section 2, the back-propagation algorithm, see e.g. [14], has been modified to train the
neural network. The cost function to be minimised is as usual the summed squared error
(SSE). For stopping purpose, however, an evaluation criterion calledaverage grid devi-
ation (AGD) is introduced, which measures the average difference in grid units between
the current predictions and the desired positions of the gaze for the entire training set ex-
cluding a few wildcards due to the user’s unexpected eye movements. Note that the SSE
and AGD do not always keep the same change directions.

In the following, we discuss a two phase strategy that was used to train this large neural
network. It should be mentioned that though the number of training examples, normally
between 2500 and 4000, is less than the number of free parameters (weights), 10,426 for
the present case, the training strategy makes sure that the set ofeffectiveparameters are
very well tuned, and neither under-fitting nor overfitting of the network occurred.

Started with small random weights each having a value between�� and�, this strategy
consists of a fast search phase followed by a fine tuning phase :

� In the first phase, the network is updated once for every few tens of training ex-
amples (typically,U0 is between 10 and 30) which are drawnat randomfrom the
entire training data set. Anominal learning rater = r0 and a momentum factor
m = m0 are adopted in training, which means that, for each connection weight
wi, the actual learning rate used for updating its value varies, and is much smaller,
equal to the nominal learning rate divided by the fan-in of the unit to whichwi is
connected. A small offset� = �0 is added to the derivative of each unit’s trans-
fer function to speed up the learning process. This is especially useful when a
unit’s output approaches one of the two saturation limits,�1 or 1, of the hyperbolic
tangent function. Besides, for each input training pattern we have added random
Gaussian noise corresponding to5% of the size of each retina input, i.e. the actual
inputxa received by each unit is

xa = xo(1 + 0:05g) (3)

wherexo is the original normalised input andg the Gaussian variable with zero
mean and unit variance. This is particularly effective for overcoming the over-
fitting problem in training a neural network and achieving better generalisation per-
formance. In so doing, the neural network, albeit over ten thousands weights, would
always approach a satisfactory solution after between50 and80 training epochs.

� In the second fine tuning phase, we update the network weights once after present-
ing the whole training set. The nominal learning rater1 to use is proportionally
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Figure 6: The root mean square errors in phase 1 and 2 versus number of training epochs
in one typical training trial of the neural network. Phase 2 started with weights obtained
after 60 training epochs in phase 1.

much smaller than that in the first phase, and a slightly smaller magnitude of Gaus-
sian noise, around3% of each retina input, is used. After about30 epochs, the
system can settle down to a very robust solution.

Repeated training trials, using different initial random seeds, on data examples from
several users have demonstrated consistently good performance of the training strategy. A
range of values can be used for the parameters without affecting the training performance.
In the experiments reported,� = 0:1, r0 = 0:4,m0 = 0:6, �0 = 0:05,U0 = 20, andr1 =
0:002, were used. Figure 6 shows a trial learning result for the user BA. The original data
were collected in two horizontal and two vertical cursor running sessions, respectively.
The cursor is confined to only travel within the top-right40 � 30 area – an application
relevant part of the screen – of the entire50�40 grid matrix. So, each running session can
ideally provide1; 200 data examples. The total number of examples successfully collected
for the four sessions is3; 906, and the number of training examples used in obtaining
Figure 6 is3; 000. The rest906 examples, which were randomly selected from the whole
data examples available, were used to examine the learning performance and to find most
appropriate stopping point. Table 1 gives some performance measurements. In this trial,
the weights saved at the60th epochs of training phase 1 are loaded for further refinement
in training phase 2. It can be seen that this overall strategy leads to rapid reduction in
training error which then settles down to a stable status allowing for no further overfitting
of the neural network. In practice, the weights obtained at the end of the60 + 20 = 80th
training epoch are used to drive the real-time gaze tracker.

4 A Real-time Gaze Tracking System

Once the training (calibration) process is finished and an optimised weight set is loaded
into the system, the gaze tracker will be ready to run. It constantly outputs the(x; y) gaze
coordinates whenever it captures an valid eye image, or reports a failure when no eye is
detected.

The system works in an open plan office environment with a video camera mounted



436 British Machine Vision Conference

Training epochs 50 60 +10 +20 +30 +40
r.m.s.(tr) 0.254 0.239 0.204 0.202 0.201 0.200
AGD (tr) 1.432 1.387 1.078 1.057 1.052 1.046
AGD (te) 1.860 1.824 1.616 1.612 1.619 1.619

Table 1: The performance of the neural network versus number of training epochs in one
trial. The size of the training set (tr) is 3000 and that of the test set 906. The first two
columns (50,60) give the measurements in training phase 1, and the rest show the results
in training phase 2 with extra training epochs.

on the right hand side of the display screen to continuously monitor the user’s face. There
is no additional hardware and special lighting source involved. The user sits comfortably
at a distance of about22 to 25 inches away from the screen, he is allowed to move head
freely while looking at the screen, but needs to keep his head within the field of view of
the camera and his face within a search window overlaid on the captured head image.

The system now works at about 20 Hz in its stand-alone mode on a SunUltra-1 Work-
station. To gauge its performance, the average prediction accuracy on a separately col-
lected test data set is about1:5 degrees, or around 12 mm apart on the computer screen.
One can also test the system interactively by clicking a mouse button while looking at a
highlighted grid point, the predicted gaze point will be shown on the screen. As the gaze
prediction error is distributed non-uniformly over the screen, anoffset tableis introduced
to adjust predictions in those badly performed areas in real-time running situation. The
process of acquiring this offset table can be achieved interactively or automatically.

5 Discussion

We have developed a real-time non-intrusive gaze tracking system based on powerful
neural network modelling techniques. In contrast with other gaze tracking systems, the
current system works in an office environment under normal illumination, without re-
sorting to any specialised hardware and controlled lighting source. The system can be
customised to individual users and particular applications. The system now runs at about
20 Hz in its stand-alone mode on a Sun Ultra-1 station, despite that the maximum capture
rate of the video card (frame grabber) is 25 fps. It has been developed with a variety of
applications in mind, especially, the design of multimodal interface, providing focus of
attention in video conferencing, disambiguating verbal as well as nonverbal information.

There are a few issues currently under study, including alternative training techniques
to allow for rapid customisation of the system to different users; tracking and modelling
head orientation to allow for larger head movements; and modelling user’s attentional
behaviours such that the interface can make more human-like responsive judgement.
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