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A novel approach to remove the batch
effect of single-cell data
Feng Zhang1,2,3, Yu Wu1,2 and Weidong Tian1,2,3,4

Dear Editor,

Analyzing single-cell RNA sequencing (scRNA-seq)

data from different batches is a challenging task1. The

commonly used batch-effect removal methods, e.g.

Combat2,3 were initially developed for microarray or bulk

RNA-seq data, and may not be appropriate for single-cell

analysis in some situations4. Recently, several batch-effect

removal tools specific for single-cell data have been

developed. One of them is called canonical correlation

analysis (CCA) subspace alignment (implemented in

Seurat)4, which conducts CCA and uses dynamic time

warping to align the subspaces of different batches.

However, CCA may lose the subspaces with the largest

possible variance (can be identified by PCA), leading to

wrong alignment result when the cell types of different

batches are extremely imbalanced. To remove batch-

effect from the PCA subspaces based on the correct cell

alignment, a method called fastMNN5 detects mutual

nearest neighbors (MNN) of cells in different batches, and

then uses the MNN to correct the values in each PCA

subspace. Although fastMNN was shown to have a good

performance, in practice it has long running time, and

also lacks the explainability because of the correction of

values in PCA subspace. A graph-based method named

batch balanced KNN (BBKNN)6 reduces batch-effect by

creating connections between analogous cells in different

batches. However, BBKNN only generates the final vec-

tors (UMAP)7, making it impossible to track the adjust-

ment. In this study, we present a novel method called

batch effect remover (BEER) for combining scRNA-seq

data from different batches. The originality of BEER is

that it uses the correlation of mutual nearest (MN) cell

pairs identified from different batches to identify PCA

sub-spaces with poor correlation (i.e., latent high batch-

effect), and then removes these subspaces from further

analysis. Because BEER does not change any values in

PCA subspaces, the results produced by BEER are track-

able and easily explainable. By using a cell-type imbal-

anced benchmark, we show that BEER has a clear

advantage over four representative batch-effect removal

tools: Combat, Seurat (CCA alignment), fastMNN,

and BBKNN.

BEER has been implemented in R. The inputs of BEER

are two expression matrices (UMI or other un-scaled

expression format) coming from two different batches.

The row and column names of the two expression

matrices are gene and cell names, respectively. The

workflow of BEER includes two main parts (Fig. 1a). In the

first part, for each expression matrix, BEER preprocesses

the data and conducts t-distributed stochastic neighbor

embedding (tSNE)8 to transfer the data into one-

dimension values. tSNE is used to do one-dimension

reduction because of its robustness and well-recognized

performance in the field of scRNA-seq analysis9. BEER

groups cells (default number of cells in each group is 10)

based on the order of the one-dimension values, and then

aggregate the expression profiles of each cell in a group to

obtain the representative expression profile for that group.

Next, BEER calculates a Kendall’s tau to evaluate the

distance of each pair of cell group from two batches, and

identifies all MN pairs of cell groups in between the two

batches. In the second part, BEER directly combines two

expression matrices, normalizes the data, and conduct

PCA to produce a number (default is 50) of subspaces.

Because two cell groups in a MN-paired cell groups

represent the most similar groups in those two batches,

they should have similar values in each PCA subspace if

there is no batch effect. Thus, by calculating the
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Fig. 1 (See legend on next page.)
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correlation between MN-paired cell groups in each sub-

space, BEER identifies those with poor correlation and

considers them to have latent high batch-effect. Finally,

BEER simply removes those PCA subspaces with latent

batch effect, and no values in the other subspaces are

changed (details are provided in Supplementary infor-

mation). Note that it is likely that a removed PCA sub-

space may also have biological variances. A workflow has

been provided to help users determine whether a PC

removed by BEER has biological meaning (see Supple-

mentary information for the workflow); then, other

methods, such as ComBat, may be used to modify this PC.

We apply BEER and other four representative batch-effect

removal methods (Combat, BBKNN, Seurat CCA alignment,

and fastMNN) to a stringent cell-type imbalanced bench-

mark. In this benchmark, there are two batches: one is from

a mouse cortex study10, and another is from a mouse oli-

godendrocyte study11. Except the cell type named “Oligo-

dendrocytes”, the other cell types of those two batches are

completely different (Fig. 1b and Supplementary informa-

tion). The total number of cells in this benchmark is 8074.

The running time of almost all methods is about 1–5min,

while fastMNN uses 35min (Fig. 1c). We apply UMAP to

visualize the output of each method. As can be seen in Fig.

1d, Combat and Seurat (CCA alignment) fail to mix oligo-

dendrocyte cells from the two batches. Although oligoden-

drocyte cells from the two batches are mixed by fastMNN

and BBKNN, these two methods fail to separate biologically

different cell types of different batches (Fig. 1e, f): fastMNN

mixes Astrocyte_batch1, OPC_batch2, and Micro-

glia_batch1 together (Fig. 1e), while BBKNN mixes Oligo-

dendrocytes_batch1&batch2, Pyramidal SS_batch1, and

Interneurons_batch1 together (Fig. 1f). In contrast, BEER not

only successfully mixes oligodendrocytes of two different

batches together, but also separates the cell types that are not

separated by fastMNN and BBKNN into different locations

(Fig. 1g), showing a clear advantage over other methods.

We have inspected BEER’s performance to the change

of tSNE perplexity values and the change of cell group size

(for aggregating expression profiles), and have found that

BEER is fairly robust to these changes (Supplementary

information). We have also used a quantitative metric-

Silhouette coefficient to compare the performance of

different methods for removing batch-effects, and have

demonstrated that BEER clearly outperforms the other

methods (Supplementary information). In addition, for

batch-effect removal of more than two batches, we have

provided a function named “MBEER” which identifies the

batch with the most number of cells as the target batch,

and applies BEER iteratively for comparing the other

batches with the target batch (for details, see Supple-

mentary information). Alternatively, users can define the

target batch, and then apply “MBEER” for batch-effect

removal of more than two batches.

In conclusion, BEER has three main features: (a) BEER

can mix the same-type cells of different batches without

losing the identities of different types of cells in different

batches. (b) All steps of BEER are transparent and

trackable. (c) BEER is efficient, and the “parallel” package

has been implemented in BEER for multi-threads pro-

cessing. A user guide of BEER is provided in Supple-

mentary information. For convenience, BEER and all

scripts of this study are available at https://github.com/

jumphone/BEER

Data availability

BEER may be used in R and source code is maintained at https://github.com/

jumphone/BEER. All scripts used in this study are available in this repository.
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Fig. 1 Workflow and benchmark study of BEER. a Shows the workflow of BEER. In the “Embed” step, we use tSNE to transfer single-cell expression

matrix into one-dimension values. When detecting mutual nearest (MN) pairs, we use Kendall’s tau (“cor.fk” function of “pcaPP” package in R) to

evaluate the distance (higher Kendall’s tau means shorter distance). We use “cor.test(method= ’kendall’)” in R to test the correlation between MN-

paired cell groups. Details are provided in Supplementary information. b Shows the basic information of the benchmark data sets. “Batch1” is derived

from a cortex study10, while “Batch2” is derived from an oligodendrocyte study11. The third row shows the number of cell types (or cells in

parenthesis) in “Oligodendrocytes”. Details about those two batches are in Supplementary information. c Shows the summary of the methods being

compared in this study. “C”, “B”, “S”, and “M” stand for “Combat”, “BBKNN”, “Seurat (CCA alignment)”, and “fastMNN”, respectively. “Cell Type Sense”

means that the method can sense same-type cells across different batches. “Change Subspace” means that the method changes the values of PCA

(or CCA) subspace. Details about the competing methods are in Supplementary information. d–g The UMAP figures show the output of each

method. For figures with “Oligodend_batch1” and “Oligodend_batch2”, the red and blue points are oligodendrocytes in batch1 and batch2,

respectively. Figures with three labels show the location of three different cell types that should be separated due to their biological difference in

UMAP. UMAP figures with all cell-type labels in high resolution are shown in Supplementary information
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