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Abstract— Dermoscopy is an imaging technique that has been 

widely used in the diagnosis of skin lesions. However, its accuracy 

largely depends on the dermatologist’s experience; thus, 

computer-aided diagnosis techniques are required. In this paper, 

a novel approach based on a deformable model is proposed to 

handle the segmentation of skin lesions in dermoscopic images. 

The RGB color space is converted so that the color information 

contained in the images can be used effectively to differentiate 

normal skin and skin lesions; and the differences in the color 

channels are combined together to define the speed function and 

the stopping criterion of the deformable model. This novel 

approach is robust against the noise, and provides an effective 

and flexible segmentation. Two image databases were used to test 

the performance of the novel approach and the segmentation 

results obtained were satisfactory. Quantitative analysis on 250 

dermoscopic images showed that the novel algorithm 

outperformed other state-of-the-art algorithms. Also, using 

comparative data, the reliability and the implementation issues of 

the approach are discussed in this work. 

 
Index Terms—color spaces, image segmentation, level set 

method, medical imaging, melanoma. 

 

I. INTRODUCTION 

ELANOMA refers to malignant tumors in melanocytes. 

Melanoma accounts for less than 20% among all cases 

of skin cancer, [1, 2], but it is one of the three cancers with the 

highest mortality rate, and its incident is increasing rapidly in 

the Caucasian population [3-5]. However, if melanoma is 

detected in the early stages and treated properly, the survival 

rate is very high [6, 7]. 

Dermoscopy is a non-invasive imaging technique that has 

been developed to assist skin cancer diagnoses. A microscope 

with incident light and oil immersion is used to visualize the 

subsurface structures of the skin. This technique enables more 

details of colors and textures of the skin lesions to be 
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observed. Fig. 1 shows four examples of dermoscopic images. 

Dermoscopy improves the detection rate of melanomas 

considerably compared to inspection with the naked-eye 

whose accuracy is only 60% [6, 8]. Nevertheless, it has also 

been pointed out that the diagnostic accuracy using this 

technique largely depends on the dermatologist’s experience 

[9, 10]. In order to eliminate this subjectivity, computer-aided 

diagnoses (CAD) are needed. A common CAD system is 

composed of three steps: image segmentation, feature 

extraction, and classification. Given that the last two steps are 

based on the quantitative analysis of the segmented skin 

lesions, the accuracy of segmentation has a decisive influence 

on the whole CAD system.  

The appearance of skin lesions in dermoscopic images may 

vary considerably depending on the skin condition. Also, the 

influence of hair, skin texture, and air bubbles may blur the 

boundary between the skin lesions and the surrounding 

healthy skin. Consequently, segmentation of dermoscopic 

images is a challenging task and a hurdle to overcome for an 

effective CAD system. Many algorithms have been proposed 

to solve this problem [11, 12]. According to the technique 

used for segmentation, the current algorithms for dermoscopic 

images can be classified into three types: thresholding, 

clustering, and deformable models. The majority belongs to 

the first two types.  
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Fig. 1. (a) A dermoscopic image with a common nevi; (b)-(c) Two 

dermoscopic images with melanoma; (d) A dermoscopic image with an 

atypical nevi. 
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The image segmentation algorithms based on thresholding 

depend on quantitative differences between the skin lesions 

and normal skin. For example, the fuzzy theory was combined 

with thresholding techniques for segmentation in [13], and an 

algorithm based on statistical region merging was proposed in 

[14]. A dermatologist-like tumor extraction algorithm (DTEA) 

was developed in [15] that combined the thresholding with the 

iterative region growing to carry out the segmentation; an 

improved version of this latter algorithm was presented in 

[16]. In [17], rough regions of skin lesions were first detected 

using a mixture model and local entropy techniques; then, a 

global thresholding technique based on Otsu’s method was 

applied to refine the segmented regions. In [18], thresholding 

algorithms were combined and their segmentation results were 

fused together through an energy function to obtain a refined 

boundary of the skin lesions. 

For algorithms based on clustering, pattern recognition 

techniques, such as clustering and supervised classification, 

were used to extract the features of skin lesions for 

segmentation. For example, a 2D color clustering algorithm 

was proposed in [19]; in that algorithm, a histogram was 

calculated from the two principal components of the CIE 

L*u*v* color space, and a perceptron classifier was applied to 

obtain the centers of initial clusters; then a modified fuzzy 

C-means algorithm was used to segment the boundary of skin 

lesions. In [20], a neural network was trained based on the 

profiles of lesions in the training sets and the segmentation 

results were satisfactory with the assistance of a color 

normalization pre-processing step. An unsupervised algorithm 

based on a modified JSEG algorithm was proposed in [21]. In 

[22, 23] dynamic programming was used to solve the local 

minima and overlapping errors that appeared in the 

segmentation process. Statistical information, spatial 

interactions and color clustering techniques were incorporated 

to assist the segmentation in [24-27].  

The algorithms proposed in [28-33] are examples of the 

third type. By using a deformable model, the segmentation is 

treated as a curve evolution and the final status of the moving 

contour(s) is defined as the object boundary. Compared to the 

first two types, the segmentation algorithms based on 

deformable models are more flexible to handle the influence 

of noise, artifacts, and variations in illumination and color, and 

their performance is more robust when segmenting images 

acquired under complex imaging conditions. Comparisons and 

reviews of different segmentation algorithms can be found in 

[12, 34-37]. 

In this study, we focus on the segmentation of skin lesions 

in dermoscopic images and propose a novel approach based on 

a deformable model. Following the statistical features of 

dermoscopic images in different color spaces, the contrasts 

between the lightness and saturation of the skin lesions and the 

surrounding normal healthy skin were used as the 

segmentation clues and were combined to generate the 

region-based external forces. The color information of the 

dermoscopic images was used to assist the segmentation and 

prevent over-contraction of the curve evolution. Therefore, the 

initial curve can move towards the boundary of skin lesions in 

a robust way. 

In the next section, color spaces and deformable models are 

reviewed; then, in Section 3, the proposed approach is 

introduced, including the definitions of the initial conditions, 

speed function and stopping strategy; afterwards, numerical 

tests are presented, and based on the quantitative analysis, 

implementation issues of the algorithm are discussed. Finally, 

in the last section, the conclusions and perspectives of future 

work are indicated. 

II. BACKGROUND 

Dermoscopic images are normally acquired by a hand-held 

dermascope, with the color information represented in the 

24-bit RGB color space for display purposes. However, the 

majority of the current segmentation algorithms were 

developed for gray-scale images; a straight-forward method to 

segment the skin lesions is to discard the color information 

and convert the color dermoscopic images to gray-scale 

images, in such a way the image intensity of each pixel is 

calculated through a weighted combination of the three RGB 

channels. Nevertheless, the appearance of skin lesions may 

vary considerably depending on the skin condition, and in 

some cases its main distinction to the normal skin is the 

chromaticity that will be either lost or weakened when the 

color information is treated as a single intensity value. 

Therefore, the RGB color space should be converted to 

suitable color spaces so that the color information can be used 

more effectively for segmentation. 

A. Color Spaces 

The RGB color space is the most common color space used 

to store color information. Despite its popularity for display 

purposes, the RGB color representation is unsuitable for many 

image segmentation problems; one of the main reasons for this 

difficulty is that the three color channels contain correlated 

information, and when the color varies, the change of each 

component is not linear and difficult to predict. Therefore, it is 

hard to measure the difference between two colors in the RGB 

color space. 
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In order to solve this problem and to use the color 

information more effectively, two color spaces of the CIE 

system - L*a*b* and L*u*v* models have been adopted. Both 

of them are variations of the CIE XYZ color space and are 

referred to as uniform color models. In these two color spaces, 

the lightness component is separated from the color expression 

into channel L with values ranging from 0 to 100; the 

separation is a big advantage when processing dermoscopic 

images as the perceptual difference between colors is often 

influenced by lightness variations. The values of 𝑢𝑢∗ and 𝑣𝑣∗ in 

the L*u*v* model are the chrominance coordinates 𝑢𝑢∗, 𝑣𝑣∗  

representing the position of the color in the uniform 

chromaticity scale (UCS) diagram. The value of 𝑎𝑎∗  in the 

L*a*b* model stands for the position of the color between 

magenta (positive direction) and green (negative direction); 

and the value of 𝑏𝑏∗ stands for the position of the color between 

yellow (positive direction) and blue (negative direction). 

Formulas that are used to calculate these channels can be 

found in [38, 39]. 

Fig. 2 illustrates the different channels in the converted color 

spaces by mapping the channel values into the range 0, 255 ; 

in these channels the differences between the normal skin and 

skin lesions can be seen clearly. 

B. Geometric Deformable Models 

Deformable models are effective techniques for image 

segmentation and have a wide variety of applications such as 

in medical image processing and analysis [11]. The main idea 

of this technique is to model the segmentation as a process of 

a curve evolution; thus, a proper speed function needs to be 

defined with which the initial curve can be driven to the 

desired boundary. Based on the tracking approach of curve 

evolution, deformable models can be divided into parametric 

models and geometric models. The level set method [40] was 

adopted in the geometric models to facilitate the 

computations: instead of tracking the movement of each curve 

point, the curve is embedded into a higher-dimensional level 

set function as its zero level set. This implicit representation 

decreases the computational complexity for tracking 

considerably. For two-dimensional image processing, the 

equation of motion for a geometric deformable model is 

normally a level set equation written as:  !"!" + 𝐹𝐹 ∇𝜙𝜙 = 0,                 (1) 

where 𝜙𝜙 𝑥𝑥, 𝑦𝑦, 𝑡𝑡  is the level set function with 𝑥𝑥, 𝑦𝑦  the 

coordinates and 𝜙𝜙 𝑥𝑥, 𝑦𝑦, 𝑡𝑡 = 0 representing the curve at the 

time 𝑡𝑡; 𝐹𝐹 is the speed function with which the moving curve 

can stop or reach a stable status at the boundary of the focused 

object. The level set function 𝜙𝜙 𝑥𝑥, 𝑦𝑦, 0  is usually defined as 

the signed distance function to the initial curves. 

Compared with other image segmentation techniques, 

deformable models have several advantages when applied to 

dermoscopic images: the implicit representation of the moving 

curve is a way to obtain the regions and the boundaries of the 

skin lesions simultaneously, which is a desirable feature for 

shape and color analysis; the robustness against the influence 

of noise with the smoothing effects of the internal forces 

during the curve evolution; and strategies can be integrated to 

guarantee that the boundaries obtained have the desired 

properties, for example, to have the same topology as the 

initial curve [41]. 

III. SEGMENTATION 

Deformable models are normally semi-automatic. However, 

there are two issues that can appreciably affect their 

performance and therefore, need to be well defined: the initial 

conditions and the values of the parameters used. The 

following strategies were adopted in the proposed approach to 

achieve an effective segmentation of skin lesions in 

dermoscopic images. 

A. Initial Curve 

There are no general requirements on the position of the 

initial curves in a geometric deformable model, since the 

evolution and moving direction are determined by the speed 

function. However, for the segmentation of skin lesions, given 

that the colors of skin lesions are frequently inhomogeneous, 

the evolving curves can easily be attracted to the wrong inner 

boundaries if they move inside the skin lesion regions. On the 

other hand, normal healthy skin has a comparably 

homogeneous color distribution. Hence, the curve evolution is 

limited to contraction in the novel approach. In this way, the 

position of the initial curve is determined by the location of 

the skin lesion and is required to cover the entire region of the 

skin lesion. The initial curve will then move inwards until it 

arrives at the boundary of the skin lesion where the lightness 

and color are different than normal healthy skin. 

 
(a)                                             (b) 

 
(c)                                              (d) 

 
(e)                                              (f) 

Fig. 2. (a) The lightness channel in the CIE color systems of the image in 

Fig. 1a; (b)-(c) The a and b channels of the image in Fig. 1a with their values 

mapped to the range [0, 255] for illustration purpose; (d)-(e) The u and v 

channels of the image in Fig 1a mapped to the range [0,255]. (f) The 

saturation channel of the image in Fig. 1a mapped to the range [0,255]. 

https://www.researchgate.net/publication/232249318_Computerized_analysis_of_pigmented_skin_lesions_A_review?el=1_x_8&enrichId=rgreq-0496e79c-88bc-429e-a279-1cc60b027fe2&enrichSource=Y292ZXJQYWdlOzI3MDk2NjQyNTtBUzoxODgxMTg3Mjg3MTYyOTBAMTQyMTg2MjQwODg0OQ==
https://www.researchgate.net/publication/228083862_Digital_Image_Processing?el=1_x_8&enrichId=rgreq-0496e79c-88bc-429e-a279-1cc60b027fe2&enrichSource=Y292ZXJQYWdlOzI3MDk2NjQyNTtBUzoxODgxMTg3Mjg3MTYyOTBAMTQyMTg2MjQwODg0OQ==
https://www.researchgate.net/publication/220690727_Image_Processing_Analysis_and_Machine_Vision?el=1_x_8&enrichId=rgreq-0496e79c-88bc-429e-a279-1cc60b027fe2&enrichSource=Y292ZXJQYWdlOzI3MDk2NjQyNTtBUzoxODgxMTg3Mjg3MTYyOTBAMTQyMTg2MjQwODg0OQ==
https://www.researchgate.net/publication/45185034_A_Shape_Guided_C-V_Model_to_Segment_the_Levator_Ani_Muscle_in_Axial_Magnetic_Resonance_Images?el=1_x_8&enrichId=rgreq-0496e79c-88bc-429e-a279-1cc60b027fe2&enrichSource=Y292ZXJQYWdlOzI3MDk2NjQyNTtBUzoxODgxMTg3Mjg3MTYyOTBAMTQyMTg2MjQwODg0OQ==
https://www.researchgate.net/publication/222456655_Fronts_Propagating_with_Curvature_Dependent_Speed_Algorithms_Based_on_Hamilton-Jacobi?el=1_x_8&enrichId=rgreq-0496e79c-88bc-429e-a279-1cc60b027fe2&enrichSource=Y292ZXJQYWdlOzI3MDk2NjQyNTtBUzoxODgxMTg3Mjg3MTYyOTBAMTQyMTg2MjQwODg0OQ==
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Due to the complex imaging background of dermoscopic 

images, the initial curve is defined manually. The values of the 

level set function 𝜙𝜙 𝑥𝑥, 𝑦𝑦, 0  are then defined as: 𝜙𝜙 𝑥𝑥, 𝑦𝑦, 0 =     𝑑𝑑 𝑥𝑥, 𝑦𝑦         if the pixel is inside  𝐶𝐶  −𝑑𝑑 𝑥𝑥, 𝑦𝑦                                           otherwise ,     (2) 

where 𝑑𝑑 𝑥𝑥, 𝑦𝑦  is the Euclidean distance of the pixel 𝑥𝑥, 𝑦𝑦  to 

the contour 𝐶𝐶; and the internal and external regions of the 

evolving curve at the time 𝑡𝑡 can be written as: Ω! = 𝑥𝑥, 𝑦𝑦 𝜙𝜙 𝑥𝑥, 𝑦𝑦, 𝑡𝑡 > 0   ,            (3) Ω! = 𝑥𝑥, 𝑦𝑦 𝜙𝜙 𝑥𝑥, 𝑦𝑦, 𝑡𝑡 ≤ 0   .            (4) 

B. Speed Function 

The CIE L*a*b* and L*u*v* color models provide 

approximately uniform perceptual descriptions of colors. 

Among the five channels in the two spaces, the lightness 

channel provides an important clue for segmentation. 

However, exclusively using this channel can cause unreliable 

segmentation, a similar problem occurs when using a 

gray-scale image. Therefore the color information is necessary 

for a correct segmentation. The 𝑎𝑎∗, 𝑏𝑏∗, 𝑢𝑢∗ and 𝑣𝑣∗ channels are 

colour coordinates, and are unable to express in a simple way 

the chromatic differences between normal skin and skin 

lesions quantitatively; also, various parameters are needed to 

map the chromatic changes when using these channels. These 

factors can lead to less reliable segmentations and they are 

more sensitive to imaging conditions; hence, these four 

channels are inappropriate to define the speed function for 

segment dermoscopic images. Consequently, a measure is 

needed that can combine the information from the lightness 

and the colorfulness contained in the dermoscopic image. 

Thus color saturation is adopted to fulfill this bridging role. 

Saturation is a measure that describes the colorfulness of a 

color relative to its lightness. This channel appears in many 

color space models, such as HSL, HSV, and HSI; nonetheless, 

it is not officially defined in the CIE system. There are various 

definitions and formulas to calculate this channel; a widely 

used one in computer vision is:  𝑆𝑆 =             0                                        if  𝑅𝑅 + 𝐺𝐺 + 𝐵𝐵 = 0  1 − !"# !,!,!!!!!! !                             otherwise.        (5) 

Let’s make a general assumption that the lightness and 

saturation of the normal skin follow Gaussian distributions; 

then, with the above definitions, the speed function of the 

deformable model is proposed as: 𝐹𝐹 𝑥𝑥, 𝑦𝑦 = 𝑃𝑃! 𝑥𝑥, 𝑦𝑦 ∗ 𝑃𝑃! 𝑥𝑥, 𝑦𝑦 ∗ 1 + 𝜅𝜅 ,        (6) 

where 𝜅𝜅 = ∇ ∇!∇!  is the curve curvature that serves as the 

internal force to regularize the geometric properties of the 

moving curve, and  𝑃𝑃! 𝑥𝑥, 𝑦𝑦 = !!!!! 𝑒𝑒𝑒𝑒𝑒𝑒 − ! !,! !!! !!!!! ,        (7) 𝑃𝑃! 𝑥𝑥, 𝑦𝑦 = !!!!! 𝑒𝑒𝑒𝑒𝑒𝑒 − ! !,! !!! !!!!! ,        (8) 

where 𝜇𝜇! ,𝜎𝜎!  and 𝜇𝜇!,𝜎𝜎!  are the means and standard 

deviations of the lightness and saturation values of the normal 

skin respectively. 

With the initial curve covering the skin lesion, such a speed 

function will lead the evolving curve to contract to the places 

where either the lightness or the saturation is appreciably 

different from normal skin. The definition of the speed 

function in (6) includes the statistical information of lightness 

and saturation channels of normal skin. Nevertheless, these 

values are unknown prior to the segmentation. To obtain an 

approximation of these four values, the Otsu’s method [42] is 

applied to binarize the image based on the lightness channel. 

Otsu’s method is adopted here because in most cases, it can 

provide a suitable preliminary classification based on the 

lightness difference between normal skin and skin lesions [16, 

21, 36]. In order to facilitate this process the intensity function 

I in the binary image is defined as: 𝐼𝐼 𝑥𝑥, 𝑦𝑦 =     0      if  pixel   𝑥𝑥, 𝑦𝑦   represents normal skin255    if pixel   𝑥𝑥, 𝑦𝑦   represents skin lesion
.   (9) 

Correspondingly, the region of normal skin   Ω!  and the 

region of skin lesions  Ω! can be written as: Ω! = 𝑥𝑥, 𝑦𝑦 𝐼𝐼 𝑥𝑥, 𝑦𝑦 = 0 ,             (10) Ω! = 𝑥𝑥, 𝑦𝑦 𝐼𝐼 𝑥𝑥, 𝑦𝑦 = 255 ,            (11) 

The values of  𝜇𝜇! ,𝜎𝜎! , 𝜇𝜇!,𝜎𝜎!  are then calculated in a narrow 

band next to the initial curve defined as follows:  Ω!!   = 𝑥𝑥, 𝑦𝑦 −50 < 𝜙𝜙 𝑥𝑥, 𝑦𝑦, 0 < 0   ∩ Ω!,      (12) 

where 𝜙𝜙 𝑥𝑥, 𝑦𝑦, 0   is the initial level set function defined in (2). 

The region Ω!!  is composed of pixels that are classified as 

representing normal skin in the binary image of (9) and is 

located next to the initial curve; given that the skin lesions are 

completely inside the initial curve, this region can provide an 

approximation of the statistical distributions of the lightness 

and saturation of the normal skin. These statistical values are 

then updated along with the curve evolution.  

C. Evolution 

The speed function in (6) involves only the information of 

normal skin, as the appearance of the skin lesions are very 

varied. As reviewed in Section II, the coordinates 𝑎𝑎∗, 𝑏𝑏∗   and 𝑢𝑢∗, 𝑣𝑣∗   in the CIE L
*
a

*
b

*
 and L

*
u

*
v

*
color spaces describe the 

positions of a color relative to the color base and diagram. The 

locations of these coordinates reflect the major perceptual 

difference between the normal skin and skin lesions; hence, 

the coordinates of pixels representing normal skin should be 

near to each other and have considerable distance to the ones 

representing skin lesions. Accordingly, the image pixels can 

be classified into two groups based on their distances to the 

centroids of normal skin and skin lesions in the two color 

coordinate systems. 

However, a similar problem as the one in Section 3.2 arises: 

the centroids of the two groups are unknown. Also, the binary 

image from the Otsu’s method is unsuitable to be used here to 

calculate the centroids, because the centers obtained with such 

a preliminary classification may have large deviations to the 

true ones and cause incorrect segmentations. Instead, since the 

skin lesions are inside the curves, a neighboring external 

region Ω!!  of the evolving curve at the time t is used to 

calculate the centroid of normal skin in the color space, and 

the internal region Ω!!  of the curve is used to calculate the 

centroid of the skin lesions:  Ω!! = 𝑥𝑥, 𝑦𝑦 −50 < 𝜙𝜙 𝑥𝑥, 𝑦𝑦, 𝑡𝑡 < 0   ,          (13) 

https://www.researchgate.net/publication/232203667_A_Threshold_Selection_Method_From_Gray-Level_Histograms?el=1_x_8&enrichId=rgreq-0496e79c-88bc-429e-a279-1cc60b027fe2&enrichSource=Y292ZXJQYWdlOzI3MDk2NjQyNTtBUzoxODgxMTg3Mjg3MTYyOTBAMTQyMTg2MjQwODg0OQ==
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Ω!! = 𝑥𝑥, 𝑦𝑦 𝜙𝜙 𝑥𝑥, 𝑦𝑦, 𝑡𝑡 > 0   ,           (14) 

Accordingly, the centroids 𝑎𝑎!∗ , 𝑏𝑏!∗   and 𝑢𝑢!∗ , 𝑣𝑣!∗  of the normal 

skin, and 𝑎𝑎!∗ , 𝑏𝑏!∗    and 𝑢𝑢!∗ , 𝑣𝑣!∗  of the skin lesions are 

calculated as: 𝑎𝑎!∗ = !!!! 𝑎𝑎!∗!∈!!! , 𝑏𝑏!∗ = !!!! 𝑏𝑏!∗!∈!!! ,     (15) 𝑢𝑢!∗ = !!!! 𝑢𝑢!∗!∈!!! , 𝑣𝑣!∗ = !!!! 𝑣𝑣!∗!∈!!! ,     (16) 𝑎𝑎!∗ = !!!! 𝑎𝑎!∗!∈!!! , 𝑏𝑏!∗ = !!!! 𝑏𝑏!∗!∈!!! ,     (17) 𝑢𝑢!∗ = !!!! 𝑢𝑢!∗!∈!!! , 𝑣𝑣!∗ = !!!! 𝑣𝑣!∗!∈!!! .     (18)  

Along with the contraction of the curve, the centroids of the 

skin lesions and the surrounding normal skin will become 

more accurate. Meanwhile, a binary image can be generated 

using the following rule: 𝐼𝐼 ! 𝑥𝑥, 𝑦𝑦 =0 if 𝑑𝑑! 𝑎𝑎∗, 𝑏𝑏∗ < 𝑑𝑑! 𝑎𝑎∗, 𝑏𝑏∗   and  𝑑𝑑!′ 𝑢𝑢∗, 𝑣𝑣∗ < 𝑑𝑑!′ 𝑢𝑢∗, 𝑣𝑣∗255                                                                                                                                                                     otherwise
                       (19) 

where 𝑎𝑎∗, 𝑏𝑏∗, 𝑢𝑢∗, 𝑣𝑣∗  are the values of the corresponding 

channels of the pixel 𝑥𝑥, 𝑦𝑦 , and 𝑑𝑑!,𝑑𝑑!,𝑑𝑑!′,𝑑𝑑!′  are the 

Euclidean distances to the centroids of the normal skin and the 

skin lesions in the CIE L*a*b* and CIE L*u*v* color spaces, 

respectively, which are calculated as: 𝑑𝑑! 𝑎𝑎∗, 𝑏𝑏∗ = 𝑎𝑎∗ − 𝑎𝑎!∗ ! + 𝑏𝑏∗ − 𝑏𝑏!∗ !,         (20) 𝑑𝑑! 𝑎𝑎∗, 𝑏𝑏∗ = 𝑎𝑎∗ − 𝑎𝑎!∗ ! + 𝑏𝑏∗ − 𝑏𝑏!∗ !,       (21) 𝑑𝑑!′ 𝑢𝑢∗, 𝑣𝑣∗ = 𝑢𝑢∗ − 𝑢𝑢!∗ ! + 𝑣𝑣∗ − 𝑣𝑣!∗ !,       (22) 𝑑𝑑!′ 𝑢𝑢∗, 𝑣𝑣∗ = 𝑢𝑢∗ − 𝑢𝑢!∗ ! + 𝑣𝑣∗ − 𝑣𝑣!∗ !.       (23) 

Using these definitions, only the pixels of the colors that are 

similar to normal skin in both the a*-b* and u*-v* planes are 

assigned to the black color.  

The binary image 𝐼𝐼 !  actually provides a classification of 

the image pixels according to their colors; based on this 

classification, the distribution of the saturation values of 

normal skin around the skin lesions can be more suitable than 

that from the region defined in (12). Hence, the mean and 

standard deviation of normal skin 𝜇𝜇!,𝜎𝜎!  are calculated and 

updated during the evolution in a sub-region of Ω!!  defined 

as: Ω′!! = 𝑥𝑥, 𝑦𝑦 𝐼𝐼 ! 𝑥𝑥, 𝑦𝑦 = 0   ∩ Ω!! .        (24) 

Then, the speed values defined in (6) are updated in order to 

guide the curve towards the segmentation more accurately. 

D. Stopping Criterion 

In the ideal situation, the curve will move inwards with the 

speed function defined in (6) until it arrives at the position 

where either the lightness or the saturation is different from 

normal skin. The quick decrease of the speed value will slow 

down the movement of the curve and let it achieve a stable 

status. However, due to the considerable variations in the 

lightness and saturation values of normal skin, when the curve 

arrives at a skin lesion, the decrease of speed values may not 

be enough to attract the curve to the boundary; and further 

evolution will let the curve leak into the skin lesions. 

Therefore, strategies are needed to avoid this. 

The white regions in the binary image 𝐼𝐼 !  represent the skin 

lesions, and along with the curve evolution, this classification 

will be refined and will concentrate on the real boundaries of 

the skin lesions. To assure that the curve moves slowly when 

close to the boundary of a skin lesion, the speed function in (6) 

is modified to: 𝐹𝐹∗ 𝑥𝑥, 𝑦𝑦 = 𝛼𝛼𝛼𝛼 𝑥𝑥, 𝑦𝑦           if  𝐼𝐼 ! 𝑥𝑥, 𝑦𝑦 = 255𝐹𝐹 𝑥𝑥, 𝑦𝑦         if  𝐼𝐼 ! 𝑥𝑥, 𝑦𝑦 = 0   ,      (25) 

where 𝛼𝛼 ∈ 0,1  is a penalty to the speed values of the pixels 

that are classified as the skin lesions at the time 𝑡𝑡 . The 

modified speed function can attach the moving curve to the 

possible boundary. The parameter 𝛼𝛼  can be viewed as the 

color sensitivity of the segmentation: when 𝛼𝛼 approaches zero, 

the curve movement will be affected more by the changes of 

color and will be more sensitive to the influence of noise and 

the initial classification 𝐼𝐼 ! ; with the increase of 𝛼𝛼 , the 

penalty to the speed function is weakened, and the curve will 

have a greater possibility to pass the wrongly classified pixels 

and cause leakage. From another point of view, this parameter 

is a mimic of the perceptual differences among individuals, 

and by adjusting its value the segmentation becomes more 

flexible to follow the dermatologists’ evaluation. 

Additionally, once a curve moves into the region of a skin 

lesion, the different colors of the skin lesion will dramatically 

change the centroids of normal skin and the skin lesions in the 

two color spaces. As a result, there will be a considerable 

amount of pixels misclassified as the skin lesions, and the 

binary image 𝐼𝐼 !  has a tendency to invert the black and white 

regions. Based on this clue, the evolution is stopped once the 

area of the skin lesions in 𝐼𝐼 !   increases appreciably. 

Besides the above strategy, an index 𝐿𝐿_𝐷𝐷 ! is defined as: 𝐿𝐿_𝐷𝐷 ! = 𝐿𝐿!!! − 𝐿𝐿!!! ,              (26) 

where 𝐿𝐿!!!  and 𝐿𝐿!!!  are the mean lightness values of the 

regions Ω!!  and Ω!!  defined in (13) and (14), respectively. 

This index reflects the difference of the mean lightness values 

of the internal and external regions of the moving curve, and 

its value should increase along with the curve evolution. 

Hence, once the curve moves into the region of skin lesions, 

its value has a tendency to decrease; then, the curve evolution 

is stopped. 

E. Summary of Procedure 
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In the proposed approach, the color information is 

incorporated into the segmentation process and is used to 

assist the determination of the final status of evolution. Fig. 3 

shows the process of segmentation using the image shown in 

Fig. 1a. The procedure of the approach can be outlined as 

follows: 

Preprocessing:  

Smooth the original image by applying a median filter to 

each channel of the RGB space. 

Initialization:  

Set 𝑡𝑡 = 0, 

Define the initial curve;  

Compute the initial level set function 𝜙𝜙 𝑥𝑥, 𝑦𝑦, 0  using (2); 

Apply the Otsu’s method on the L* channel in the CIE 

L*a*b* space;  

Compute the statistical values 𝜇𝜇! ,𝜎𝜎! , 𝜇𝜇!,𝜎𝜎!  based on the 

region Ω!!  defined in (12); 

Repeat: 

Set 𝑡𝑡 = 𝑡𝑡 + 1,  

Compute 𝜙𝜙 𝑥𝑥, 𝑦𝑦, 𝑡𝑡  according to (1);  

Calculate the spatial color centers 𝑎𝑎!∗ , 𝑏𝑏!∗ , 𝑢𝑢!∗ , 𝑣𝑣!∗ , 𝑎𝑎!∗ , 𝑏𝑏!∗ , 

and 𝑢𝑢!∗ , 𝑣𝑣!∗  using (15) - (18); 

Build the binary image 𝐼𝐼 !  with (19) and update the values 𝜇𝜇!,𝜎𝜎! with the region Ω′!!  defined in (24);  

Compute the speed function 𝐹𝐹 with (25). 

Until: 𝑡𝑡 > 𝑡𝑡!"#, or 

The curve has achieved a stable status, or  

The area of the white region in 𝐼𝐼 !  has a tendency to 

increase, and 𝐿𝐿_𝐷𝐷 !  in (26) has a tendency to decrease. 

IV. EXPERIMENT& DISCUSSION 

Due to inter-observer errors, the ground truth of lesion 

boundaries in dermoscopic images does not exist in normal 

practice. Therefore, the comparison with the manual 

segmentation by experienced technicians is a common way to 

evaluate the performance of an algorithm and was adopted in 

this study.  

A. Numerical Tests 

Two image databases were used to test the effectiveness of 

the proposed algorithm: one is the database used in [18], 

which is composed of 90 dermoscopic images with 23 images 

diagnosed as melanomas and 67 as benign nevi; the other is a 

challenging dermoscopic image database called PH2 [43], in 

which 160 images captured the complete region of skin lesions 

with 8 images diagnosed as melanoma and 152 as either 

typical nevi or atypical nevi. Hence, a total of 250 

dermoscopic images were used for numerical tests. In order to 

perform the quantitative analysis, let’s suppose that 𝐶𝐶 is the 

boundary of the skin lesions; then a binary image 𝐼𝐼!  can be 

defined correspondingly as: 𝐼𝐼! 𝑥𝑥, 𝑦𝑦 =   0,      if   𝑥𝑥, 𝑦𝑦   is  outside  𝐶𝐶255,      if   𝑥𝑥, 𝑦𝑦   is  inside  𝐶𝐶            .       (27)  
Afterwards, the region of the skin lesions is: Ω = 𝑥𝑥, 𝑦𝑦 𝐼𝐼! 𝑥𝑥, 𝑦𝑦 = 255 ,            (28) 

and the area of skin lesions can be defined as: 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐼𝐼 = Ω .                 (29) 

With these definitions, the following three measures were used 

to evaluate the difference between the ground truth and the 

result obtained: 𝐷𝐷 𝐼𝐼!, 𝐼𝐼! = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐼𝐼!⊕ 𝐼𝐼! 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐼𝐼! ,        (30) 𝐷𝐷! 𝐶𝐶!,𝐶𝐶! = 𝐷𝐷 𝑝𝑝,𝐶𝐶! , 𝑝𝑝 ∈ 𝐶𝐶!,           (31) 𝐷𝐷! 𝐶𝐶!,𝐶𝐶! = 𝐷𝐷 𝑝𝑝,𝐶𝐶! , 𝑝𝑝 ∈ 𝐶𝐶!,           (32) 

where 𝐶𝐶!  is the ground true of the boundary, 𝐶𝐶!  is the 

boundary obtained by the algorithm, 𝐼𝐼! and 𝐼𝐼! are the binary 

images defined by 𝐶𝐶! and 𝐶𝐶! using (27), ⊕ is the exclusive or 

(XOR) operator, 𝐷𝐷 𝑝𝑝,𝐶𝐶  is the point-to-contour distance that 

can be calculated as 𝐷𝐷 𝑝𝑝,𝐶𝐶 = min!∗∈!𝑑𝑑 𝑝𝑝, 𝑝𝑝∗ with𝑑𝑑 𝑝𝑝, 𝑝𝑝∗  

the Euclidean distance between the two points, which is a 

similar way used in the Hausdorff distance to define such a 

point-to-contour distance, and 𝐷𝐷 𝑝𝑝,𝐶𝐶  is the mean of this 

value. The value of 𝐷𝐷 𝐼𝐼!, 𝐼𝐼!  reflects the deviation of the 

segmented regions of the skin lesion; while the 

contour-to-contour distance in (31) and (32) reflect the 

differences between the boundaries.  

The comparison of the results with 𝛼𝛼 = 0.5  using the 

measures in (30) - (32) are listed in Table I. Although the 

performance of the proposed algorithm using the second 

image database is not as good as the performance with the 

database in [18], it still achieves a very satisfactory result 

 
(a)                       (b) 

 
(c)                                              (d) 

 
(e)                                              (f) 

Fig. 3. An illustration of the proposed approach with the image in Fig. 1a: (a) 

the initial curve (red contour); (b) the binary image generated with (18), 

which is obtained by applying the Otsu’s method; (c) the binary image 

generated with (28) based on the color coordinates when the curve begins to 

evolve in Fig. 3a; (d) the binary image generated with (28) when the curve 

achieves stable status in Fig. 3e; (e) the final location of the curve; (f) The 

boundary obtained overlapped with the ground truth of the skin lesion (white 

area), and the comparison values were 𝐷𝐷(𝐼𝐼!, 𝐼𝐼!) = 0.0507 , 𝐷𝐷!(𝐶𝐶! ,𝐶𝐶!) =6.7629, 𝐷𝐷!(𝐶𝐶!, 𝐶𝐶!) = 6.268. 
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given that the images in PH2 have more complex backgrounds 

and contain more complicated skin conditions. To make the 

evaluation more comprehensive and unbiased, Table II lists 

the data presented in [18] that describes the performance of 

nine state-of-the-art algorithms [14, 16, 19, 21, 28, 35, 20, 44, 

45] on the first database with the measure defined in (30). The 

nine algorithms cover all the three major effective 

segmentation techniques developed for dermoscopic images. 

Among them, the ones in [14] and [44] are thresholding-based; 

[16], [19], [20], [21], [35] and [45] are algorithms based on 

clustering techniques; and in [28] the algorithm is based on a 

deformable model. This table shows that the proposed 

approach has the smallest mean error percentage on images 

with benign skin lesions, and it achieved the best overall 

performance in the first database. 

Fig. 4 illustrates several examples in the two image 

databases, from which one can see the robustness of the 

proposed approach against the different imaging conditions 

and distinct types of skin lesions. 

B. Parameters and Initial Conditions 

Tests on different image databases can show the 

adaptability of the proposed algorithm to distinct imaging 

conditions and illustrate its robustness against their variances. 

To show the consistency of the approach, the value of 𝛼𝛼 in 

(25) was fixed as 0.5 for both image databases. A notable 

point is that for a specific image, changing this value can 

enhance the similarity of the boundary obtained to the manual 

segmentation which was used as the ground truth. A case in 

point is shown in Fig. 5c where the boundary obtained is very 

similar to the manual segmentation with a smaller 𝛼𝛼 and the 

𝐷𝐷 𝐼𝐼!, 𝐼𝐼!  decreases from 0.1641 to 0.0749. It is also worth 

pointing out that the parameter 𝛼𝛼 in the proposed algorithm is 

unlike the common parameters defined in the deformable 

model-based approaches, which normally have a substantial 

influence on the segmentation results and require a delicate 

definition. The parameter α is used because it can adjust the 

segmentation result flexibly, mimicking manual segmentations 

of different dermatologists as well as being a user interaction 

tool in a CAD system. 

The proposed algorithm is semi-automatic, as the initial 

curve needs to be defined manually. The manual initialization 

was adopted because the performance of the algorithm can be 

affected when the neighboring region of the initial curve 

involves parts with significantly dissimilar colors to the 

normal skin. Meanwhile, external influences, such as black 

frames and common nevus, often appear simultaneously in the 

image with the skin lesion; a fully automatic process to 

exclude these influences is not trivial under the complex 

background in dermoscopic images and needs considerable 

pre-processing steps which currently are not robust enough 

with the existing techniques. Controversially, a manual 

definition of the initial curve not only helps to exclude these 

undesired influences, but also makes the segmentation more 

flexible and robust. Therefore, a manual initialization is a 

reasonable exchange for full-automation. A common concern 

is: How is the performance of the algorithm affected by the 

location and size of the initial curve? There is no restriction on 

TABLE II 

COMPARISON DATA OF THE NINE STATE-OF-THE-ART ALGORITHMS IN [38] 

Algorithm 
 Benign  Melanoma  All 

 𝜇𝜇(%) 𝜎𝜎(%)  𝜇𝜇(%) 𝜎𝜎(%)  𝜇𝜇(%) 𝜎𝜎(%) 

[14]  11.38 6.23  10.29 5.84  11.11 6.12 

[16]  10.51 4.73  11.85 6.00  10.86 5.08 

[19]  22.99 12.61  28.31 15.25  24.35 13.45 

[21]  10.83 6.36  13.75 7.59  11.58 6.77 

[28]  13.69 5.59  19.34 9.33  15.13 7.13 

[35]  11.53 9.74  13.29 7.42  11.98 9.19 

[20]  10.07 4.34  18.17 26.96  12.14 14.36 

[44]  12.95 6.17  16.93 7.16  13.96 6.63 

[45]  21.56 25.19  23.51 16.06  22.06 23.13 

New one  10.03 4.34  13.11 4.88  10.82 4.66 𝜇𝜇  and 𝜎𝜎  are the mean and standard deviation of the measure   𝐷𝐷(𝐼𝐼!, 𝐼𝐼!) defined in (39). 

 
(a)                                              (b) 

 
(c)                                              (d) 

 
(e)                                              (f) 

Fig. 4. Examples of segmentation results: (a)-(c) the segmented boundary 

(red contour) with the ground truth (blue contour) of the images in Figs. 

1b-1d, with 𝐷𝐷(𝐼𝐼!, 𝐼𝐼!) = 0.0787,0.0544,0.1273 , respectively; (d)-(e) the 

performance of the proposed approach on images with a strong influence of 

hairs, air bubbles and blood vessels; the skin lesions in (d) and (f) are benign 

and the skin lesion in (e) are melanoma with 𝐷𝐷(𝐼𝐼!, 𝐼𝐼!) = 0.1267,0.1669,0.1668. 

TABLE I 

QUANTITATIVE ANALYSIS OF THE PROPOSED APPROACH 

Type 
 𝐷𝐷(𝐼𝐼!, 𝐼𝐼!)  𝐷𝐷!(𝐶𝐶! ,𝐶𝐶!)  𝐷𝐷!(𝐶𝐶!, 𝐶𝐶!) 
 𝜇𝜇(%) 𝜎𝜎(%)  𝜇𝜇 𝜎𝜎  𝜇𝜇 𝜎𝜎 

Benign
1
  10.03 4.34  8.91 4.59  8.59 4.20 

Melanoma
1
  13.11 4.88  11.44 5.82  10.14 5.42 

All
1
  10.82 4.66  9.55 5.03  8.99 4.56 

Benign
2
  13.91 7.79  10.35 6.03  9.67 5.73 

Melanoma
2
  14.16 8.07  11.43 5.52  11.67 7.49 

All
2
  13.92 7.78  10.41 5.99  9.77 5.82 

1
Images from the database in [18].  

2 
Images from the PH2 database. 
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the shape of the initial curve thanks to the deformable model 

features; but the initial curve must cover the whole region of 

the skin lesion. An interesting finding is that, with the premise 

that the neighboring region of the initial curve is not seriously 

affected by unwanted influence, the initial curve has little 

influence on the result obtained, except on the convergence 

time. Fig. 5 illustrates two examples: the different locations of 

the initial curve caused small changes in the shapes of the final 

boundary; this is more appreciable in Fig. 4d which is a more 

complex imaging but with the proposed algorithm, the major 

part of the segmented region remains unchanged both 

qualitatively and quantitatively. However, if the neighboring 

region of the initial curve is seriously affected by unwanted 

influences, the algorithm may not achieve satisfactory results. 

Meanwhile, the size of the neighboring region of the initial 

curve determines the statistical information of normal skin 

around the skin lesions. A larger neighboring region around 

the initial curve can capture the variations of normal skin more 

accurately, but is more likely to introduce unwanted 

influences. A bandwidth of 50 pixels as defined in (12) and 

(13) were used in the testing of both databases and led to very 

satisfactory results. 

V. CONCLUSION 

A novel approach based on deformable model is proposed 

here to segment skin lesions in dermoscopic images. The 

proposed algorithm combines the information contained in 

dermoscopic images, and defines the speed function based on 

the lightness, saturation and color information, with which the 

evolving curve is guided to stop at the boundary of the skin 

lesions. Numerical experiments illustrated the effectiveness of 

the algorithm, and the implementation issues were discussed 

based on the quantitative analysis. 

Compared with other algorithms, the novel approach uses 

the color information in the dermoscopic images efficiently 

and carries out the segmentation in a more robust and flexible 

manner. The implementation of the novel approach is simple 

and the segmentation results can easily be adjusted or refined 

through the parameter of color sensitivity. The approach 

presented here achieves very satisfactory results in challenging 

image databases and gives sound segmentation for further 

analysis of skin lesions. The current form of the novel 

approach is semi-automatic as the initial curves need to be 

defined manually to avoid negative influence from the 

complicated imaging background. Future work will continue 

to enhance the robustness of the approach and study the 

influence of shape accuracy on the classification of the skin 

lesions. For example, a pre-processing step such as the 

pigment separation procedure proposed in [46] and [47] can be 

a potential way to enhance the performance of a segmentation 

algorithm. The discussions and techniques referred to in [48] 

can also be useful when handling dermoscopic images. 

VI. ACKNOWLEDGEMENT 

The authors would like to thank Dr. M. Emre Celebi for 

sharing his image database and comparison data. 

REFERENCES 

[1] R. S. Stern, “Prevalence of a history of skin cancer in 2007: results of an 

incidence-based model,” Arch. Dermatol., vol. 146, no. 3, pp. 279-282, 

2010.  

[2] American Cancer Society. Cancer facts & figures 2013. Available: 

http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/d

ocuments/document/acspc-036845.pdf. 

[3] A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA. 

Cancer J. Clin., vol. 60, no. 5, pp. 288-296, 2010. 

[4] N. Howlader, A. M. Noone, M. Krapcho, J. Garshell, N. Neyman, S. F. 

Altekruse, C. L. Kosary, M. Yu, J. Ruhl, Z. Tatalovich, H. Cho, A. 

Mariotto, D. R. Lewis, H. S. Chen, E. J. Feuer, and K. A. Cronin (2012), 

SEER Cancer Statistics Review, 1975-2010.National Cancer Institute, 

Bethesa, MD,Available: http://seer.cancer.gov/csr/1975_2009_pops09/.  

[5] A. Bleyer, M. O’Leary, R. Barr, and L. A. G. Ries (2006), Cancer 

Epidemiology in Older Adolescents and Young Adults 15 to 29 Years of 

Age, Including SEER Incidence and Survival: 1975-2000. National 

Cancer Institute, Bethesa, MD.  

[6] H. Pehamberger, A. Steiner, and K. Wolff. “In vivo epiluminescence 

microscopy of pigmented skin lesions. I. Pattern analysis of pigmented 

skin lesions,” J. Amer. Acad. Dermatol., vol. 17, no. 4, pp: 571-583, 

1987. 

[7] C. M. Balch, A. C. Buzaid, S. J. Soong, M. B. Atkins, N. Cascinelli, D. 

G. Coit, I. D. Fleming, J. E. Gershenwald, A. Jr. Houghton, J. M. 

Kirkwood, K. M. McMasters, M. F. Mihm, D. L. Morton, D. S. 

Reintgen, M. I. Ross, A. Sober, J. A. Thompson, and J. F. Thompson, 

“Final version of the American Joint Committee on Cancer staging 

system for cutaneous melanoma,” J. Clin. Oncol., vol. 19, no. 16, pp: 

3635-3648, 2001.  

 
(a)                                                        (b) 

  
(c)                                                       (d) 

 
(e) 

Fig. 5. (a) Seven initial curves with different shapes and locations in Fig. 1a; 

(b) The boundaries obtained overlapped with each other, the mean and 

standard deviation of 𝐷𝐷(𝐼𝐼! , 𝐼𝐼!) of these results are 0.0536 and 0.0022; (c) 

Seven initial curves with different shapes and locations in Fig. 4d; (b) The 

boundaries obtained overlapped with each other; the mean and standard 

deviation of 𝐷𝐷(𝐼𝐼!, 𝐼𝐼!) of these results are 0.1294 and 0.0073, respectively; (e) 

Boundaries obtained using 𝛼𝛼 = 0.2  (green contour) and 𝛼𝛼 = 0.5  (red 

contour) with the same initial curve, overlapped with the ground truth (blue 

contour). 

https://www.researchgate.net/publication/234048546_Intrinsic_Melanin_and_Hemoglobin_Colour_Components_for_Skin_Lesion_Malignancy_Detection?el=1_x_8&enrichId=rgreq-0496e79c-88bc-429e-a279-1cc60b027fe2&enrichSource=Y292ZXJQYWdlOzI3MDk2NjQyNTtBUzoxODgxMTg3Mjg3MTYyOTBAMTQyMTg2MjQwODg0OQ==


JBHI-00452-201 

 

9 

[8] C. M. Grin, A. W. Kopf, B. Welkovich, R. S. Bart, and M. J. Levenstein. 

“Accuracy in the clinical diagnosis of malignant melanoma,” Arch. 

Dermatol., vol. 126, no. 6, pp: 763-766, 1990. 

[9] M. Binder, M. Schwarz, A. Winkler, A. Steiner, A. Kaider, K. Wolff, 

and H. Pehamberger, “Epiluminescence microscopy. A useful tool for 

the diagnosis of pigmented skin lesions for formally trained 

dermatologists,” Arch. Dermatol., vol. 131, no. 3, pp: 286-291, 1995. 

[10] H. Kittler, H. Pehamberger, K. Wolff, and M. Binder, “Diagnostic 

accuracy of dermoscopy,”Lancet Oncol., vol. 3, no. 3, pp: 159-165, 

2002. 

[11] K. Korotkov and R.Garcia, “Computerized analysis of pigmented skin 

lesions: a review,” Artif. Intell. Med., vol. 56, no. 2, pp: 69-90, 2012. 

[12] M. E. Celebi, H. Iyatomi, G. Schaefer, and W. V. Stoecker, “Lesion 

border detection in dermoscopy images,” Comput. Med. Imag. Grap., 

vol. 33, no. 2, pp: 148-153, 2009. 

[13] M. E. Yuksel and M. Borlu, “Accurate segmentation of dermoscopic 

images by image thresholding based on type-2 fuzzy logic,” IEEE T. 

Fuzzy Syst., vol. 17, no. 4, pp: 976-982, 2009.  

[14] M. E. Celebi, H. A. Kingravi, H. Iyatomi, Y. A. Aslandogan, W. V. 

Stoecker, R. H. Moss, J. M. Malters, J. M. Grichnik, A. A. Marghoob, 

H. S. Rabinovitz, and S. W. Menzies, “Border detection in dermoscopy 

images using statistical region merging,” Skin Res. Technol., vol. 14, no. 

3, pp: 347-353,2008. 

[15] H. Iyatomi, H. Oka, M. Saito, A. Miyake, M. Kimoto, J. Yamagami, S. 

Kobayashi, A. Tanikawa, M. Hagiwara, K. Ogawa, G. Argenziano, H. P. 

Soyer, and M. Tanaka,“Quantitative assessment of tumor extraction 

from dermoscopy images and evaluation of computer-based extraction 

methods for automatic melanoma diagnostic system,” Melanoma Res., 

vol. 16, no. 2, pp: 183-190, 2006. 

[16] H. Iyatomi, H. Oka, M. E. Celebi, H. Hashimoto, M. Hagiwara, M. 

Tanaka, and K. Ogawa, “An improved Internet-based melanoma 

screening system with dermatologist-like tumor area extraction 

algorithm,” Comput. Med. Imaging Graph., vol. 32, no. 7, pp: 

566-579,2008. 

[17] Q. Abbas, I. F. Garcia, M. E. Celebi, W. Ahmad, and Q. Mushtaq, 

“Unified Approach for Lesion Border Detection Based on Mixture 

Modeling and Local Entropy Thresholding,” Skin Res. Technol., vol. 19, 

no. 3, pp: 314–319, 2013. 

[18] M. E. Celebi, Q. Wen, S. Hwang, H. Iyatomi, and G. Schaefer, “Lesion 

border detection in dermoscopy images using ensembles of thresholding 

methods,” Skin Res. Techno., vol. 19, no. 1, pp: e252-e258, 2013.  

[19] P. Schmid, “Segmentation of digitized dermatoscopic images by 

two-dimensional color clustering,” IEEE T. Med. Imaging, vol. 18, no. 2, 

pp: 164-171, 1999. 

[20] G. Schaefer, M. I. Rajab, M. E. Celebi, and H. Iyatomi, “Colour and 

contrast enhancement for improved skin lesion segmentation,” Comput. 
Med. Imaging Graph., vol. 35, no. 2, pp: 99-104, 2011.  

[21] M. E. Celebi, Y. A. Aslandogan, W. V. Stoecker, H. Iyatomi, H. Oka, 

and X. Chen, “Unsupervised border detection in dermoscopy images,” 

Skin Res. Technol.,vol. 13, no. 4, pp:454-462, 2007. 

[22] Q. Abbas, M. E. Celebi, I. Fondon, and M. Rashid,“Lesion border 

detection in dermoscopy images using dynamic programming,” Skin 

Res. Technol.,vol. 17, no. 1, pp: 91-100, 2011. 

[23] Q. Abbas, M. E. Celebi, and I. Fondon, “Skin tumor area extraction 

using an improved dynamic programming approach,” Skin Res. 

Technol., vol. 18, no. 2, pp: 133-142. 2012. 

[24] H. Zhou, G. Schaefer, A. Sadka, and M. E. Celebi, “Anisotropic mean 

shift based fuzzy c-means segmentation of dermoscopy images,” IEEE 

J. Sel. Top. Signa., vol. 3, no. 1, pp: 26-34, 2009. 

[25] A. Wong, J. Scharcanski, and P. Fieguth,“Automatic skin lesion 

segmentation via iterative stochastic region merging,” IEEE T. Inf. 

Technol. B., vol. 15, no. 6, pp: 929-936, 2011. 

[26] J. Gao, J. Zhang, M. G. Fleming, I. Pollak, and A. B. Cognetta, 

“Segmentation of dermatoscopic images by stabilized inverse diffusion 

equations,” in Proc. IEEE Int. Conf. Image Process, 1998, pp: 823-827. 

[27] H. Ganster, A. Pinz, R. Röhrer, E. Wildling, M. Binder, and H. Kittler, 

“Automated melanoma recognition,” IEEE T. Med. Imaging, vol. 20, no. 

3, pp:233-239,2001. 

[28] B. Erkol, R. H. Moss, R. J. Stanley, W. V. Stoecker, and E. Hvatum, 

“Automatic lesion boundary detection in dermoscopy images using 

gradient vector flow snakes,” Skin Res. Technol., vol. 11, no. 1, pp: 

17-26, 2005. 

[29] Q. Abbas, I. Fondón, and M. Rashid,“Unsupervised skin lesions border 

detection via two-dimensional image analysis,” Comput. Methods 

Programs Biomed., vol. 104, no. 3, pp: e1-15, 2011. 

[30] H. Zhou, X. Li, G. Schaefer, M. E. Celebi, and P. Miller, “Mean shift 

based gradient vector flow for image segmentation,” Comput. Vis. Image 

Und., vol. 117, no. 9, pp. 1004–1016, 2013. 

[31] Q. Abbas, M. E. Celebi, and I. F. Garcia, “A novel perceptually-oriented 

approach for skin tumor segmentation,” Int. J. Innov. Comput. I., vol. 8, 

no. 3, pp. 1837–1848, 2012. 

[32] M. Mete and N. M. Sirakov, “Lesion detection in dermoscopy images 

with novel density-based and active contour approaches,” BMC 

Bioinformatics, vol. 11, no. Suppl. 6, pp. S23, 2010. 

[33] H. Zhou, G. Schaefer, M. E. Celebi, F. Lin, and T. Liu, “Gradient vector 

flow with mean shift for skin lesion segmentation,” Comput. Med. Imag. 

Grap., vol. 35, no. 2, pp. 121–127, 2011. 

[34] G. A. Hance, S. E. Umbaugh, R. H. Moss, and W. V. 

Stoeker,“Unsupervised color image segmentation with application to 

skin tumor borders,” IEEE Eng Med Biol.,vol.15, no.1, pp: 104-111, 

1996.  

[35] R. Melli, C. Grana, and R. Cucchiara, “Comparison of color clustering 

algorithms for segmentation of dermatological images,” in Proc. SPIE 

Med Imaging, 2006, pp: 3S1-3S9. 

[36] M. Silveira, J. C. Nascimento, J. S. Marques, A. R. S. Marcal, T. 

Mendonca, S. Yamauchi, J. Maeda, and J. Rozeira,“Comparison of 

segmentation methods for melanoma diagnosis in dermoscopy images, ” 

IEEE J. Sel. Top. Signa., vol. 3, no. 1, pp: 35-45, 2009. 

[37] A. R. A. Ali and T. M. Deserno, “A systematic review of automated 

melanoma detection in dermatoscopic images and its ground truth data,” 

in Proc. SPIE Med. Imaging, 2012, pp: 8318-8854. 

[38] R. C. Gonzalez and R. E. Woods, “Digital Image Processing”, 

3
rd

Edition, Prentice Hall. 2007. 

[39] M. Sonka, V. Hlavac, and R. Boyle, “Image Processing, Analysis, and 

Machine Vision”, 4
th
 Edition, Cengage Learning. 2014. 

[40] S. J. Osher and J. A. Sethian, “Fronts propagating with 

curvature-dependent speed: algorithms based on Hamilton-Jacobi 

formulations,” J. Comput. Phys., vol. 79, no.1, pp: 12-49, 1998. 

[41] Z. Ma, R. N. M. Jorge, andJ. M. R. S. Tavares, “A shape guided C-V 

model to segment the levator ani muscle in axial magnetic resonance 

images,” Med. Eng. Phys., vol.32, no.7, pp: 766-774, 2010.  

[42] N. Otsu, “A threshold selection method from gray-level histograms,” 

IEEE T. Syst. Man. Cyb., vol.9, no.1, pp: 62-66, 1979. 

[43] T. Mendonca, P. M. Ferreira, J. S. Marques, A. R. S. Marcal, and J 

Rozeira. “PH2 - A dermoscopic image database for research and 

benchmarking,” in Proc. IEEE Eng. Med. Biol. Soc., 2013, pp: 

5437-5440. 

[44] R. Garnavi, M. Aldeen, M. E. Celebi, G. Varigos, and S. Finch, “Border 

detection in dermoscopy images using hybrid thresholding on optimized 

color channels,” Comput. Med. Imaging Graph., vol. 35, no.2, pp: 

105-115, 2011. 

[45] H. Zhou, M. Chen, L. Zou, R. Gass, L.Ferris, L.Drogowski, and J. M. 

Rehg, “Spatially constrained segmentation of dermoscopy images,” in 

Proc. IEEE Int. Symp. Biomed. Imaging, 2008, pp: 800-803. 

[46] A. Madooei, M. S. Drew, M. Sadeghi, and M. S. Atkins, “Intrinsic 

melanin and hemoglobin colour components for skin lesion malignancy 

detection,” Med. Image Comput. Comput. Assist. Interv., vol. 15, pp: 

315-322, 2012. 

[47] S. Xu, “Skin lesion segmentation by using independent pigment 

concentration distribution,” Journal of image and graphics (in Chinese), 

vol. 18, no. 11, pp: 1452-1456, 2013. 

[48] P. G. Cavalcanti and J. Scharcanski, “Macroscopic pigmented skin 

lesion segmentation and its influence on lesion classification and 

diagnosis,” Lecture Notes in Computational Vision and Biomechanics, 

vol. 6, pp: 15-39, 2013. 

 

 

Zhen Ma was born in Shandong, China, 

in 1982. He received his B.S. and M.S. 

degrees in applied mathematics from 

Inner Mongolia University and Beihang 

University in 2004 and 2007, and a Ph.D. 

degree in biomedical engineering from the 

University of Porto, in 2012. 

Currently he is a Researcher at the 

Instituto de Engenharia Mecânica e Gestão Industrial and the 

Faculdade de Engenharia da Universidade do Porto, Porto, 



JBHI-00452-201 

 

10 

Portugal. His research interests include image processing, 

biomedical engineering, mathematical modeling, and parallel 

computing.  

 
  

 

João Manuel R. S. Tavares was born in 

Porto, Portugal, in 1969. He received a 
B.S. degree in mechanical engineering in 
1992, an M.S. degree in electrical and 
computer engineering in 1995, and a Ph.D. 
degree in electrical and computer 
engineering in 2001, all from the 
University of Porto. 

From 1995 to 2000, he was a Researcher at 

the Institute of Biomedical Engineering, Porto, Portugal. Since 

2001, he has been a Senior Researcher and Project 

Coordinator at the Laboratory of Optical and Experimental 

Mechanics of the Institute of Mechanical Engineering and 

Industrial Management. He was Assistant Professor in the 

Department of Mechanical Engineering of the Faculty of 

Engineering of the University of Porto between 2001 and 

2011; and since then he has been Associate Professor in the 

same department. His main research areas include 

computational vision, computational mechanics, scientific 

visualization, human-computer interaction and new product 

development. He is the co-author of more than 550 articles in 

national and international journals and conferences and 

co-editor of 30 international books and guest-editor of several 

special issues of international journals. He has been 

co-chairman of various international conferences, for example 

CompIMAGE 2006/2010/2012/2014, BioDENTAL 2009/ 

2012/2014, VipIMAGE 2007/2009/2011/2013/2015 and 

ICEBS 2013, and of numerous mini-symposia, workshops and 

thematic sessions. He has been a member of several national 

and international journal editorial boards and is presently the 

Editor-in-Chief of the journal “Computer Methods in 

Biomechanics and Biomedical Engineering: Imaging & 

Visualization” and is also Co-editor of the Springer book 

series “Lecture Notes in Computational Vision and 

Biomechanics”. 


