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Abstract

Marker-based human motion analysis is an important tool in clinical research and in many practical applications. Missing
marker information caused by occlusions or a marker falling off is a common problem impairing data quality. The current
paper proposes a conceptually new gap filling algorithm and presents results from a proof-of-principle analysis. The
underlying idea of the proposed algorithm was that a multitude of internal and external constraints govern human motion
and lead to a highly subject-specific movement pattern in which all motion variables are intercorrelated in a specific way.
Two principal component analyses were used to determine how the coordinates of a marker with gaps correlated with the
coordinates of the other, gap-free markers. Missing marker data could then be reconstructed through a series of coordinate
transformations. The proposed algorithm was tested by reconstructing artificially created gaps in a 20-step walking trial and
in an 18-s one-leg balance trial. The measurement accuracy’s dependence on the marker position, the length of the gap,
and other parameters were evaluated. Even if only 2 steps of walking or 1.8 s of postural sway (10% of the whole marker
data) were provided as input in the current study, the reconstructed marker trajectory differed on average no more than
11 mm from the originally measured trajectory. The reconstructed result improved further, on average, to distances below
5 mm if the marker trajectory was available more than 50% of the trial. The results of this proof-of-principle analysis
supported the assumption that missing marker information can be reconstructed from the intercorrelations between
marker coordinates, provided that sufficient data with complete marker information is available. Estimating missing
information cannot be avoided entirely in many situations in human motion analysis. For some of these situations, the
proposed reconstruction method may provide a better solution than what is currently available.

Citation: Federolf PA (2013) A Novel Approach to Solve the ‘‘Missing Marker Problem’’ in Marker-Based Motion Analysis That Exploits the Segment Coordination
Patterns in Multi-Limb Motion Data. PLoS ONE 8(10): e78689. doi:10.1371/journal.pone.0078689

Editor: Ramesh Balasubramaniam, University of California, Merced, United States of America

Received July 1, 2013; Accepted September 13, 2013; Published October 30, 2013

Copyright: � 2013 Peter Andreas Federolf. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The author has no support or funding to report.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: peter.federolf@nih.no

Introduction

Marker-based analysis of movement has become the basis for a

broad spectrum of research and practical application areas

ranging from clinical gait analysis, sports biomechanics, military

sciences, computer vision, to video game development and other

applications. Loss of marker information due to a marker falling

off or due to marker occlusion is a frequent challenge in marker-

based motion capture. The resultant data gaps compromise the

accuracy of the analysis [1] or may pose a practical challenge, for

instance, when post-processing includes fitting the marker

configuration to a biomechanical model that requires the missing

marker.

Standard motion tracking software, such as EVaRT (Motion

Analysis Corporation, Santa Rosa CA, USA), Qualisys Track

Manager (Qualisys AB, Gothenburg, Sweden), or Vicon (Oxford

Metrics, Limited, Oxford, England), usually include basic gap

filling methods based on spline interpolation or on reconstruction

of markers in a local segment coordinate system. In many

situations these tools provide a satisfactory solution to the missing

marker problem. However, interpolation methods tend to be

inaccurate if the gap is too long (e.g. 200 ms [2]) or when the

reconstructed trajectory goes through a local extremum. Further-

more, they are not applicable if the gap is at the beginning or end

of the measurement. Reconstruction from a local segment

coordinate system assumes that distances between markers on

this segment are conserved and requires three additional markers

on the segment.

Several additional methods have therefore been developed in

recent years, for instance, based on modified Kalman filters [3–6],

Taylor series [7] or based on data-driven pattern recognition

methods [8–11]. Kalman-filter approaches are well suited for real-

time applications, however, their accuracy deteriorates if a marker

is missing for an extended period. Data-driven pattern recognition

methods typically use a database of similar motions, identify

similar poses (e.g. through a nearest-neighbour algorithm), and

improve their prediction with additional optimization routines [8].

These methods often allow prediction of several missing markers,

however, their limitations include the need for an additional

dataset of similar movements.
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This technical note proposes an alternative technique to

reconstruct missing marker information and reports results of a

proof-of-principle analysis evaluating its performance when

reconstructing marker data recorded in walking or balancing trials.

Methods

Conceptual Outline
Human (or animal) motion is a complex, neural-system-

controlled, multi-body movement. It is characterized by a large

number of mechanical degrees of freedom creating an abundance

of possible solutions for any given motion task [12]. However, a

multitude of internal and external constraints govern and restrict

every movement pattern [13,14] leading to a dramatic reduction

in the actual degrees of freedom and facilitation of a self-

organizing control structure (‘‘dynamic systems theory’’ [15,16]).

These constraints arise, among other causes and mechanisms,

from mechanical principles and requirements (e.g. stability), from

anatomical properties of the moving organism [17], from the

individual motor learning history and experiences, from psycho-

logical phenomena (e.g. emotional states [18]), or from influencing

environmental factors (e.g. ground surface properties, footwear,

clothing, etc. [17,19–21]). Consequently, despite the vast abun-

dance of potential solutions for a given task, usually a distinct,

highly individual and characteristic movement pattern emerges, in

which the movements of the individual body segments are

intercorrelated in a specific way.

Principal component analysis (PCA) and other multivariate

analysis methods can be used to determine the interrelation

between kinematic movement variables [22,23], thus characteriz-

ing the specific solution space that emerges in a given set of

constraints [24]. The gap filling algorithm suggested in the current

paper is based on the underlying idea that missing variables may

be reconstructed if: (i) the interrelations between observed

variables describing a movement are known, for instance through

a PCA, and: (ii) if sufficient information from other variables is

available to determine what state of motion a subject is in.

PCA applied to posture vectors incorporating the spatial

coordinates of all markers of a given marker set yields a set of

principal component vectors (PC vectors) which form a basis in the

vector space spanned by the posture vectors [22,23,25–28].

Transforming the data, originally expressed in a coordinate

system spanned by the measured marker coordinates into the

system spanned by the PC-vectors, allows the expression of the

complex multi-segment movement of the subject as a combination

of one-dimensional movement components [22,23,28], also called

‘‘principal movements’’ [25–27]. Each principal movement quantifies a

specific pattern of change in the positions of all markers, where the

movement of each individual marker is correlated with the

movements of the other markers. In other words, each principal

movement can be viewed as a specific, one-dimensional represen-

tation of the internal constraints that govern the interrelations

between the marker movements. The combination of all principal

movements quantifying a movement can then be viewed as a

representation of all internal constraints that lead to the specific,

characteristic movement pattern of an individual in a given

situation.

A PCA calculated for a subset of the data where all markers are

available thus provides the information of how the position of the

missing marker correlates with the positions of the other markers –

and thus, how it can be reconstructed if the other marker positions

are known. The challenge is then, how incomplete data (due to a

missing marker) can be transformed into this PCA space. This was

solved by first calculating a second PCA for the same subset but

with the coordinates of the missing marker zeroed and then a

transformation matrix T between the two PC-vector basis systems.

Implementation Steps
The observed data were arranged in a n x 3m-matrix, M, with

each line representing one time frame (where n is the total number

of observed time frames) and each column representing a marker

coordinate (m the number of markers). Some entries in M are

missing.

As a first step, the marker coordinates in M were centered by

determining for each frame the mean position of all markers that

are available throughout the whole dataset. This trajectory of

mean marker positions was subtracted from all markers in each

frame. After the reconstruction procedure, the mean trajectory

was added back to retrieve the original, non-centered marker

trajectories.

To determine the reconstruction transformation, two smaller

matrices N were created from the matrix M. First, all line vectors

(time frames) containing a full set of marker coordinates were used

to form a new nno_gaps x 3m-matrix, Nno_gaps (nno_gaps , n). Then, a

second nno_gaps x 3m-matrix, Nzeros, was created as a copy of

Nno_gaps, except that those marker coordinates where M had

gaps, were replaced by zeros.

Two principal component analyses were conducted separately

for Nno_gaps and Nzeros. The PC-vectors obtained for Nno_gaps

form a basis {PCno_gaps} for principal movements based on all

marker coordinates. The PC-vectors obtained for Nzeros form a

basis {PCzeros} for principal movements that consider no

information from those markers that had gaps. Both basis systems,

{PCno_gaps} and {PCzeros}, are 3m x 3m-matrices. Hence, a

transformation matrix T facilitating a transformation of the data

from the {PCzeros}-system into the {PCno_gaps}-system could be

determined.

A matrix R with reconstructed marker coordinates was obtained

by: (1) creating a copy Mzeros of M where columns from M

containing gaps were replaced by zeros; (2) transforming the

dataset Mzeros into the {PCzeros}-coordinates; (3) multiplying the

result by T to obtain the dataset in the {PCno_gaps}-system; and

(4) transforming the data back into the original coordinate system

defined by the complete set of marker coordinates:

R = Mzeros PCzeros T (PCno_gaps)21

Without a normalization of the M and N matrices, the {PC}-

systems are dominated by marker coordinates with large motion

amplitudes (typically markers on the extremities). Depending on

the marker that needs to be reconstructed, this can be an

advantage or a disadvantage. To better standardize the recon-

struction algorithm, the mean marker positions calculated for each

column of Nno_gaps were subtracted from all vectors in the M and

N matrices and the result was normalized to unit variance.

Assuming that marker coordinates to be reconstructed correlate

strongest with the coordinates of adjacent markers, the vectors in

M and N were additionally multiplied with a weight vector w, in

which the closest markers were assigned a weight of 10 and second

nearest neighbors a weight of 5. For example, if a knee marker was

reconstructed, a weight of 10 was used for markers on the thigh

and shin segments and a weight of 5 for the ankle and trochanter/

ASIS markers. The reconstruction result could be improved

further by reducing the number of PC-vectors used in the

reconstruction from 3m (dimension of the {PC}-systems) to a

lower number. The underlying idea for this modification was that

measurement noise affecting the marker trajectories is typically not

correlated between different markers. The noise is therefore

predominantly represented in higher order PC-components (small

signal-to-noise ratio), while the (correlated) motion data is
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represented in lower order PC-components (high signal-to-noise

ratio). In the motion data analyzed in the current study, the

reconstruction was based on 40 PC-vectors, which appeared to be

a reasonable compromise between using as much of the

information as possible and reducing the influence of noise on

the reconstruction. All processing steps were implemented in a

Matlab-function (MatlabH, The MathWorks Inc., Natic, MA,

USA). A copy of the Matlab-code of the reconstruction algorithm

has been attached to this manuscript as supplementary material.

Data Selected for the Proof-of-Principle Analysis
Two essential types of human movement, the cyclic motion of

walking on a treadmill and the postural sway motion of balancing

in a one-leg stance, were selected for the proof-of-principle analysis

in this study. Each movement had been conducted by one healthy

young volunteer as a trial for other studies [26,29] that had been

approved by the Conjoint Health Research Ethics Board at the

University of Calgary. The volunteers provided informed written

consent prior to participating.

The subjects’ movement patterns were recorded with a full-

body marker set consisting of 37 markers. The markers were

positioned on the volunteers in accordance with the Vicon Plug-

In-Gait marker set (Oxford Metrics). Specifically, markers were

placed on the left (L…) and right (R…) foot on the second

metatarsal head (LTOE, RTOE); posterior on the calcaneous

(LHEE, RHEE); on the lateral malleolus (LANK, RANK); shank

(LTIB, RTIB); lateral epicondyle of the knee (LKNE, RKNE); thigh

(LTHI, RTHI); anterior and posterior superior iliac spine (LASI,

RASI, LPSI, RPSI); 7th cervical and 10th thoracic vertebrae (C7,

T10); sternum (STRN); clavicle (CLAV); right scapula (RBAK),

superior on the acromio-clavicular joint (LSHO, RSHO), upper arm

(LUPA, RUPA); lateral epicondyle of the elbow joint (LELB, RELB);

forearm (LFRA, RFRA); both sides of the wrist joint (LWRA,

RWRA, LWRB, RWRB); and four markers were attached to a head

band worn by the volunteer (LFHD, RFHD, LBHD, RBHD).

All markers were spherical, retro-reflective markers with a cross

section of 20 mm. The 3D-positions of these markers were

determined with a frame rate of 240 Hz using a standard eight-

camera motion capture system (Motion Analysis Corporation,

Santa Rosa, CA, USA). The average 3D-residual of the camera

calibration was 0.5 mm. The coordinate system was oriented such

that the X-coordinate pointed in the anterior direction, the Y-

coordinate in the medio-lateral direction, and the Z-coordinate in

the vertical direction with respect to the volunteer. Post-processing

(marker identification) was conducted using Eva Real-Time

Software (EVaRT, Motion Analysis Corporation, Santa Rosa,

CA, USA). The selected data sequences had no gaps and no

filtering was applied. The trajectories of all markers were imported

into MatlabH (The MathWorks Inc., Natic, MA, USA) where all

further analyses were carried out. In the walking trial, 20

consecutive steps (17.92 s corresponding to 4300 frames) were

selected for the proof-of-principle analysis. In the balance trial, for

simplicity, the same number of frames was used.

Figure 1. Trajectory of the left knee marker (LKNE) recorded for 20 steps of walking. In this example, the first 10 steps (frame 1-2150) of
the measured LKNE-coordinates were used as input data for the reconstruction, the following 10 steps (frame 2151-4300) were reconstructed.
doi:10.1371/journal.pone.0078689.g001
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Proof-of-principle analysis
Four aspects were assessed as proof-of-principle analysis: (1) how

the prediction accuracy of the reconstruction algorithm depended

on the position of the marker on the volunteer; (2) how the

prediction accuracy depended on the number of frames available

as input; (3) what influence the weight factor w used for

neighboring markers had on the prediction accuracy; and (4)

how the reconstruction accuracy depended on the number of PC-

vectors that were used in the reconstruction. In addition, the

prediction accuracy of the proposed algorithm was compared with

the accuracy obtained in linear or cubic interpolation, which are

the standard gap filling procedures in commercial motion tracking

software. In each test, the trajectory of one selected marker was

removed for a specified period from the matrix containing the

trajectory of all markers. This matrix was submitted as input into

the proposed reconstruction algorithm. The accuracy of the

trajectory predicted by the reconstruction algorithm was then

quantified by determining the absolute difference between the

predicted and the measured (and then deleted) marker coordi-

nates.

The assessment of the prediction accuracy in dependence of the

marker’s position on the body was conducted for 8 markers on all

major body segments, specifically for LHEE, LANK, LKNE, LASI,

LSHO, LELB, LWRA, and LFHD. Three situations were tested: the

trajectory of one selected marker was removed for the last 2 steps

(3870 frames of the data available; 430 frames reconstructed); the

last 10 steps (2150 frames available; 2150 frames reconstructed); or

the last 18 steps (430 frames available; 3870 frames reconstructed)

– corresponding to the situation of a marker falling off during an

experiment. The same procedure was conducted in the balance

trial. Differences between measured and predicted marker

positions were listed as actual distance (mm) and also as percentage

of the marker’s total range of motion (% ROM).

The prediction accuracy in dependence of varying length of the

input trajectory was investigated for three selected markers,

LKNE, LSHO, and LWRA. In the walking trial, the length of

the input was varied between 1 step and 19 steps, and the

remainder to 20 steps was reconstructed. In the balance trial, the

length of the input trajectory was varied between 1 s and 17 s and

the remainder of the 17.9-second balance trial was reconstructed.

The mean and maximum Euclidean distance between the

measured and predicted trajectories were calculated for the period

in which the marker was missing.

The influence of the weighting factor assigned to neighboring

markers was assessed using the same three markers as in the

previous analysis (LKNE, LSHO, and LWRA). For both the

Figure 2. Trajectory of the left front head marker (LFHD) recorded during a one-leg balance trial. The underlying black line represents
the input data for the reconstruction, the blue line represents the measured reference data that was reconstructed and the red line represents the
reconstructed marker position. Three cases are shown: In the lower line, 3870 frames (90% of the data) were provided as input data for the
reconstruction, 430 frames were reconstructed. The middle line (shifted by +10 mm in each coordinate) shows the case where 2150 frames (50% of
the data) were provided as input, 2150 frames were reconstructed. The top line (shifted by +20 mm) shows the case where only 430 frames (10% of
the data) were provided as input and 3870 frames were reconstructed. The broken lines and the black circles indicate the first frame from which on
the trajectories were reconstructed.
doi:10.1371/journal.pone.0078689.g002
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walking and the balancing trial, 50% of the trajectory was

provided as input, the other 50% were reconstructed. Neighboring

markers, as defined in Tables 1–4, were assigned a weight between

0 and 30. Second nearest neighbors were assigned half of the

weight of the direct neighbors. The prediction accuracy was

quantified using the mean and the maximum Eucledean distance.

Reconstruction accuracy in dependence of the number of PC-

vectors used in the reconstruction was also investigated using

LKNE, LSHO, and LWRA in the walking and the balancing trial.

Similar to the weighting factor analysis, 50% of the marker

trajectory was provided as input, the other 50% were reconstruct-

ed. The number of PC-vectors used for the reconstruction varied

between 5 and 111.

The proposed algorithm was compared to interpolation as gap

filling technique in a series of additional tests. The walking trial

was selected for this analysis and an artificial gap of varying length

was created in the LKNE marker. Interpolation techniques

require data before and after the gap. The gap was, therefore,

not created at the end of the file, but started in the middle of the

dataset (arbitrarily chosen). The length of the gap was stepwise

increased by 4 frames starting from a gap of 2 frames up to a gap

of 98 frames. Matlab’s functions for linear and cubic interpolation

and the gap filling algorithm proposed in the current paper were

used to fill these gaps. The accuracy of each of the three gap filling

techniques was quantified by calculating the mean Euclidean

distance between the reconstructed and measured marker

positions.

Figure 3. Detail of the Y-coordinate of the left front head
marker (LFHD) with a measurement artifact. The artifact is visible
in the measured trajectory (blue line) at frame 4142. The results of the
reconstruction based on 2 steps or 18 steps are displayed as orange or
red lines, respectively.
doi:10.1371/journal.pone.0078689.g003

Figure 4. Reconstruction accuracy as a function of the amount of input data available for the reconstruction. LKNE: left knee, LSHO: left
shoulder, and LWRA: left wrist marker; walking (top) and balancing (bottom). The broken vertical lines indicate the three situations used to create
Tables 1–4.
doi:10.1371/journal.pone.0078689.g004
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Results

In both, the walking trial (Figure 1) and the balance trial (Figure

2), good qualitative agreement was observed between predicted

and measured marker trajectories. The predicted marker positions

followed the general characteristics of the measured trajectory,

even if only 10% of the trajectory was provided as input for the

reconstruction (Figure 2, Tables 1–4).

In the walking trial, the absolute difference between measured

and reconstructed positions of the 8 selected markers, averaged

over the all reconstructed values, varied between 1 and 8 mm,

between 0.5 and 2 mm, and between 0.5 and 2 mm for

reconstructions with input data available from 2, 10, or 18 steps,

respectively (Table 1). This corresponded to between 0.5% and

6%, 0.5% and 3%, and 0.5% and 3% of the entire range of

motion of the reconstructed markers. The largest differences were

observed in markers placed on the most distal body segments

(LHEE, LWRA). The maximal differences observed for the three

reconstruction conditions were 31 mm, 19 mm, and 19 mm

(Table 2), However, it is important to note that the differences

may not only stem from inaccuracies in the reconstruction, but

may also be caused by artifacts in measured trajectories (Figure 3).

In the balance trial, the averaged absolute differences between

measured and reconstructed marker trajectories (Table 3) ranged

from 0.5 to 7 mm, from 0.5 to 2 mm, and from 0.5 to 1 mm if

10%, 50%, or 90% of the marker trajectory were provided as

input for the reconstruction. The maximum differences (Table 4)

ranged from 1 to 18 mm, from 1 to 5 mm and from 1 to 3 mm,

respectively.

The reconstruction accuracy was in all analyzed markers

generally improved if more input data was provided (Figure 4),

however, in all markers some fluctuations and deviations from this

general trend were observed. This suggests that any additional

data provided as input has the potential to alter the PCA solution,

and consequently the reconstruction.

The analysis of the impact of the weighting factor on

neighboring markers on the reconstruction accuracy (Figure 5)

showed that no or small (,5) weighting factors generally produced

substantially worse results than larger weighting factors. In the two

datasets used in the current proof-of-principal analysis, a weighting

factor of 10 appeared to be a good compromise between exploiting

the higher correlation of the movement of neighboring markers

and overemphasizing neighboring markers (and their noise levels

and artifacts).

The comparison of the reconstruction accuracy between

reconstructions based on a different number of PC-vectors (Figure

6) showed roughly a U-shaped response. If too few PC-vectors

were used, then the features of the movement were insufficiently

represented by the PCA and the reconstruction result suffered.

However, if more than 50 PC-vectors were used, then the

difference between predicted and measured trajectory also started

to increase gradually. The 40 PC-vectors selected for the analyses

in the current study represented more than 99.98% of the variance

in the walking trial and more than 99.94% of the variance in the

balance trial. The shapes of the graphs shown in Figure 6 suggest

that 40 PC-vectors are well suited for walking trials. In the balance

trials, where the signal-to-noise ratio is much lower due to the low

Figure 5. Reconstruction accuracy as a function of the weighting factor assigned to neighboring markers. LKNE: left knee, LSHO: left
shoulder, and LWRA: left wrist marker. The broken vertical line indicates the weighting factor of 10, which was used as standard for all other analyses
in the current study.
doi:10.1371/journal.pone.0078689.g005
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motion amplitude, a smaller number of PC-vectors may in some

cases lead to a better reconstruction.

In the comparison of the proposed gap filling algorithm with

interpolation techniques (Figure 7), small gaps of 10 frames or less

were more accurately filled with linear or cubic interpolation

techniques. For gap lengths up to 30 frames, cubic interpolation

provided an equal or better result than the proposed algorithm.

However, the prediction accuracy of the linear or cubic

interpolation technique quickly deteriorated if the gap length

exceeded 10 frames or 30 frames, respectively. The average

distance between the measured trajectory and the one predicted

by the proposed algorithm remained lower than 4 mm for all

tested gap lengths between 2 and 98 frames.

Discussion

In both of the two essential types of human motion tested in the

current study, gait and postural sway, good agreement was found

between predicted and actually measured marker coordinates.

The results of the current analysis, therefore support the

underlying assumption that strong intercorrelations exist between

the movements of different markers in human motion and that

PCA can be used to quantitatively characterize these internal

constraints [24].

Even if only 2 steps of walking or 1.8 s of postural sway (10% of

the whole marker data) were provided as input in the current

study, the reconstructed marker trajectory differed on average no

more than 11 mm from the originally measured trajectory. The

reconstruction result improved further to average distances below

5 mm if the marker trajectory was available more than 50% of the

trial. The difference between reconstructed and measured

trajectory was thus smaller than the cross section of the markers

(20 mm); smaller than soft tissue artifacts (16 mm [30]; 21 to

31 mm [31]); small compared to the jumps or ripples that can

sometimes be observed when the number of cameras detecting a

marker changes or when reflections interfere (typically 5–10 mm

[e.g. Figure 3]); and comparable to the alterations in marker

trajectories produced by low-pass filtering [32,33], which typically

follows as a next post-processing step after gap-filling.

The systematic analysis of how the reconstruction result

improves when a weight factor is used on neighboring markers

showed that this is an effective and important tool to improve the

reconstruction accuracy. In some cases, the average difference

between measured and predicted marker positions improved by

one order of magnitude. The availability of neighboring markers is

higher for proximally positioned markers and offers one explana-

tion for the observation that the best reconstruction results were

obtained for proximal markers (e.g. LSHO). The more distal the

markers were positioned (LHEE, LWRA) the worse was the

reconstruction result, but the more it benefitted from increasing

the weight factor on the few available neighboring markers.

The systematic analysis of how the reconstruction accuracy

depended on the number of PC-vectors used in the reconstruction

demonstrated that the ability of the PCA to separate correlated

signals in the data from uncorrelated noise can be utilized to

further improve the reconstruction result. The results of this study

suggest that the optimal number of PC-vectors to include may

Figure 6. Accuracy if the reconstruction was based on a selected number of PC-vectors. (LKNE: left knee, LSHO: left shoulder, and LWRA:
left wrist marker). The broken vertical line highlights the results obtained with 40 PC-vectors, which was used as standard for all other analyses in the
current study.
doi:10.1371/journal.pone.0078689.g006
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depend on the type of movement – probably due to a different

signal-to-noise ratio in the marker data.

Compared to other gap-filling approaches, the proposed

algorithm differs in some important prerequisites, advantages,

and disadvantages. A fundamental conceptual prerequisite and

limitation is that the PCA has to be able to adequately characterize

the interrelation between the marker movements. Hence, it is

important to note that, firstly, sufficient input data needs to be

available. A mathematical prerequisite is that more frames need to

be available than dimensions in the posture vector. Moreover, the

results of the current study suggest that several cycles in a cyclic

motion or a few sway cycles in balance trials should be represented

in the input data. Secondly, no changes that could alter the

interrelation between the segment motions may occur in the

subject’s movement patterns. The algorithm is well suited for

continuous or cyclic motion patterns, however, it is a priori not

suited for datasets that quantify events (e.g. external perturbation

experiments) and its suitability for trials with transition phases (e.g.

walking-running, change of direction maneuvers) remains to be

tested; Thirdly, the performance of the suggested algorithm

depends on the employed marker set. The more information about

the motion of the subject is available, the better the performance of

the proposed gap-filling algorithm. Marker sets representing only a

fraction of the motion (e.g. only on the lower extremities) will

reduce the accuracy of the reconstruction.

If these prerequisites are met, then there are also a number of

advantages compared to other gap-filling routines. For example, in

contrast to interpolation techniques, the gaps may be positioned

anywhere within the trajectory including at the beginning or end

of the file and they may contain several movement cycles (i.e.

several extreme values). In contrast to Kalman filter approaches

[3–6], the method does not suffer from drift. Moreover, the

proposed method is little affected by noise, outliers or artifacts in

the available sections of the reconstructed trajectory. However,

outliers or artifacts particularly in the adjacent markers may affect

the reconstruction accuracy. The method is conceptually related to

data-driven pattern recognition methods [8–11] and achieved

similar reconstruction accuracy [8], however, a separate database

with similar movement data is not required and the optimization

or data-mining techniques (e.g. nearest neighbor analysis)

employed by these methods are replaced by a simple coordinate

transformation. It is possible that replacing the PCAs with non-

linear directional statistical tools might further improve the

reconstruction, however, further research is necessary to investi-

gate this speculation.

Concluding Remarks

The result of the proof-of-principle analysis presented in the

current study confirmed the general applicability of the proposed

gap-filling algorithm. Estimating missing information is always

tenuous, however, in many situations in human motion analysis it

cannot be entirely avoided. For some of these situations,

particularly for trials with multiple repetitions of similar movement

patterns such as in balance or fatigue trials, the proposed

reconstruction method may provide a better solution than the

methods that have been previously applied. Furthermore, it is

likely that the results of the reconstruction could be further

improved, if more information, for example, ground reaction

forces were included.

Situations in which gaps occur in more than one marker have

not been considered in the current proof-of-principle analysis. It

Figure 7. Comparison of the proposed reconstruction algorithm with interpolation based gap filling techniques. The main graph
shows the mean Eucledian distance between measured and reconstructed marker positions for various gap lengths. The two inserted graphs show as
an example the z-coordinate of the trajectories at the position of the gap for the two indicated gap lengths (18 and 70 frames).
doi:10.1371/journal.pone.0078689.g007

A New Solution for the "Missing Marker Problem"

PLOS ONE | www.plosone.org 12 October 2013 | Volume 8 | Issue 10 | e78689



seems likely that the approach presented here may also be useful if

multiple markers are missing, however, some additional challenges

will need to be solved, such as, if gaps occur in neighboring

markers. The optimal solution for multiple missing markers is,

therefore, likely to be dependent on the specific situation and may

include a combination of the proposed algorithm with other gap-

filling procedures.

The underlying concept that was applied here to solve the so

called ‘‘missing marker problem’’ may also be applicable when

addressing related challenges in motion analysis. For example, to

determine what unique information each marker contributes in an

analysis, to detect and remove artifacts, to study coupling of

movement over joints, or to detect a change in the movement

pattern.

Supporting Information

Dataset S1 This.zip-file contains twoMatlab scripts (.m-files) and

two datasets (.mat files). The file ‘‘PredictMissingMarkers.m’’ is an

implementation of the algorithm described in the current paper.

The file ‘‘Script_to_test_PredictMissingMarkers.m’’ is a script that

allows an assessment of the proposed algorithm by (i) reading in test

data, (ii) creating gaps in the test data, (iii) filling the gaps by calling

the function ‘‘PredictMissingMarkers’’, and (iv) comparing the

reconstructed marker trajectories with the original trajectories. Two

datasets are provided as test data: ‘‘OneLegBalancing_18seconds_

noGaps.mat’’ and ‘‘Walking_20steps_noGaps.mat’’.

(ZIP)

Text S1 This pdf file contains a copy of the Matlab script for

‘‘PredictMissingMarkers’’. It is intended to give readers who use

other software than Matlab an idea how the algorithm may be

implemented.

(PDF)
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