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Abstract 

In this paper we propose and investigate a new sys- 
tematic switching control design method applicable to 
a class of nonlinear discrete time hybrid systems. 

1 Introduction 

The main objective of this paper is to present a system- 

atic algebraic approach to stabilizability analysis for a 

class of nonlinear discrete time hybrid systems. The 

novelty of the adopted approach lies in the fact that 

unlike conventional nonlinear control the control bur- 

den is explicitly shifted to a logical level thus creating 

the need for the development of new analysis/design 

met hods. 

2 Problem Statement 

We consider the following class of nonlinear discrete 

time hybrid systems. 

High Level Discrete Event Dynamics: 

S = {Q, E, 6, 4, AT, a)  

Low Level Continuous State Dynamics: 

4t  + 1) = f ( 4 t ) , i b ) , W )  
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where S is a finite state machine with Q and C be- 

ing finite sets of symbolic states and events, respec- 

tively; C = C,UC,, # 0, Cc and E,, denote the 

sets of controlled and uncontrolled events, respectively. 

6 : Q x C + Q is a partial transition function. Equiv- 

alently the finite state machine S can be presented as 

a directed graph whose nodes represent discrete states 

and whose edges correspond to transitions. Each state 

6 E Q of the automaton S is interpreted as an activity 

(phase) of finite length At(()  E AT(() c N+ while a 

transition & -+ ( j ,  V&, & E Q enabled by the event 

uij E C is instantaneous. A triple eij = {ti, u,j, ( j }  

such that (i, ( j  E Q and 6(&, uij)! will be referred to 

as a transition from the discrete state to ( j  enabled 

by the event uij. The set SZ C R" further referred 

to as the normal operating domain, reflects continu- 

ous specifications clarified later. Equation (2.2) de- 

scribes the low level continuous dynamics (LLD) with 

x denoting the continuous state of the low level sub- 

system (2.2) and i(x) and ( ( t )  being the uncontrolled 

and controlled (respectively) switching indices affect- 

ing the evolution of the continuous dynamics. In this 

paper we will use the notion of a cell partition [l] de- 

fined on a compact set R c R", representing continu- 
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ous states specifications. For each discrete state E Q 

the set R is presented as a finite union of convex poly- 

topes R = U;=, IRi, Ri c R", Vi = 1 ,  ..., L .  Within 

each cell (assuming that is fixed) the dynamics are 

z ( t + l )  = f (z( t ) ,  i, E )  where f : Rn xN+ + R". Thus, 

the indices i and < are responsible for the changes in 

the dynamics of the hybrid system caused by the evolu- 

tion of the continuous and discrete states, respectively. 

The high level switching controller is defined as a 

mapping r((,z) : Q x R* + 2x=. In the sequel 

we use the following assumptions: (Al)  0 E int R; 

(A2) Each cell Ri, i = 1,2 ,  ..., L is a convex polytope 

in R"; (A3) The cells are non-overlapping, that is, 

{Ri - ORi}n{Rj - dRj} = 0, V i , j ,  i # j ;  (A4) 

For any z E R i n R j  # 0, V i , j  = l , . . . , L  and 

< E Q the low level continuous dynamics are defined as 

z ( t + l )  E { z ( t + l )  : z(t+l) = f ( z ( t ) , l , ( ) , Z  E { i , i ] } ;  

(A5) C = C, = C f ,  where Cf, stands for a set of 

forced transitions; (A6) For every pair { & , < j }  there 

exists a transition e;j = { & , u i j , < j } .  

Assumption (A4) guarantees the uniqueness of the so- 

lutions of the equation (2.2) within each cell while the 

uniqueness of the solutions on the boundary of two or 

several cells is not assumed. Assumptions (A5),(A6) 

define an unconstrained hybrid system in which ev- 

ery discrete transition is admissible, controlled and 

forcible. Since our main objective is a control design 

method the description of the hybrid system explic- 

itly showing only controlled transitions appears to be 

convenient. An example of such a system would be a 

multi-switch hybrid system depicted in Figure 1 where 

Wi represent electrical components, and Ki represent 

switches. For every possible combinations of binary 

switches the hybrid system evolves as a cell partition 

based one. 

Figure 1: Multi-switch Hybrid System 

5 1  5 -  L 

5 3  5 4  

Figure 2: Multi-switch Hybrid System 

Definition 2.1 A hybrid system (2.1),(2.2) con- 

trolled b y  a switching controllers r ( < , x )  is said to be 

0-stable if the following conditions are satisfied: (1) 

z ( t )  E R for all t 2 to, to E N+, and z ( t0)  E 52, 

(2) limt,, IIz(t)ll = 0, (3) The low level continuous 

subsystem is stable in the sense of Lyapunov. 

The notion of R-stabilizability in the class switching 

controllers C : r((,z) follows naturally from the pre- 

vious definition. The three major steps outlined below 

are essential in the proposed method. 
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3 Step 1. Discrete Event Composition 

The main idea behind this procedure is superposi- 

tion of the cell partitions associated with each discrete 

mode. This would allows us to obtain a cell partition 

based description of the system where the evolution of 

the continuous dynamics within each cell depends on 

the chosen switching sequence. 

Before we proceed further we recall that an arbitrary 

Figure 3: Hybrid Automaton 

I x1 
convex polytope Rj(() can be constructed as the in- 

tersection of p(<)  linear half-spaces, each given by an 

affine inequality cj i ( ( )s  2 .,I(<), 1 = 1,2, . . . ,p(<) .  

Given decompositions of the normal operating domain 

I R = U:::) ai(<), Q( E .Q associated with each dis- 

I Crete state < E Q we define a discrete event composi- 

tion of the system as R = Ri with each cell Ri, 

i = 1, ..., J satisfying the conditions: (Cl) Each Ri, 

i = 1, ..., J is a convex polyhedron, (C2) For every 

Figure 4: Discrete Event Composition 

4 Step 2. Multilayer Decomposition 

hyperplane H E {Hj i c }  
The concept of multilayer cell partition being the key 

element in the proposed method implies appropriate 

decomposition of the set U:=, 0, and studying its 
Hjlc = {z : cji(S)z = zjl (E),  1 I 1 < E Q) 

(3.3) 

and every R, the following relation holds 
properties. 

Definition 4.1 The set E(R) = {fli}iE{l,2,...L} is 

said to be the outer layer of the set R if the follow- 

ing conditions are satisfied 
q -p j  # 0 - q-p, € a (0,) (3.4) 

R if 3 Ri s.t. OEint  Ri,  8 R n R i  #0 
{ai : Rinan # 0) otherwise 

(4-5) 

where a ( 0 )  stands for the boundary of a set, (C3) 

For each face, Fi, i = 1, ..., s of Rj there exists a hy- 

perplane H from the set (3.3) such that Fi E H. 

This is illustrated in Figures 3,4. The geometry of the 

E(R) = 

Compute recursively 

k-1 

cell partitions of a two discrete state hybrid system is Ek = E(R - U Ei) (4.6) 
i=O 

depicted in Figure 3 while the resulting cell partition 

satisfying conditions (Cl)-(C3) is given in Figure 4. 
where Eo = 0. Each set Ek # 0, k = 1,2, ... will be 

further referred to as the k-th layer of R. 
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Definition 4.2 We say that the system is in the con- 

vex multilayer form if the following conditions are sat- 

isfied 

k k 

R - U E~ = conv {n - U E~}, vi 5 k 5 I (4.7) 
i= 1 i= 1 

where = arg maxk{k : k > 0, Ek # 0).  

Without loss of generality we further assume that the 

hybrid system (2.1),(2.2) is in the convex multilayer 

form. If this is not the case then it is always possible 

to use a redundant decomposition of R satisfying con- 

ditions (4.7) (see Figure 5 and the full version of the 

paper). 

I \  

t 

‘ n  I n 

(1) (0 

Figure 5: Convex Multilayer Cell Partition 

5 Stabilizability Analysis 

For a given convex set R C R“ let R, c R” denote the 

parameterised set defined as R, = {Y : Y = ax, X E 

R, a > 0). Given a vector 2 E R”, we say that the 

set 0, is a proper set of 2 if 2 E an,. We will further 

use the notation R,(Z) to refer to such sets. Let us 

introduce the class of positive definite polyhedral Lya- 

punov functions’ V~(Z) = {a : Q 2 0, 0, = R,(z)} 

l a  positive definite Lyapunov function V(z) is said to be 
polyhedral if its level set B, = {z E R” : V(x) = r} is a convex 
polyhedron for all T 2 0, moreover, for any TI 2 0, ~2 2 0, 

where int R # 0 and int{.} stands for the interior 

of a set. Having transformed the system to a mul- 

tilayer convex form (Steps 1,2) we are ready now to 

start analysing the stabilizability properties of the sys- 

tem with respect to the polyhedral Lyapunov functions 

V~(Z) naturally induced by each layer E k .  The main 

idea behind the analysis is that each cell R k ,  E E k  can 

be analysed separately expecting that certain proper- 

ties of the cells combined together would guarantee 

stabilizability of the overall system. In the following 

description of the evolution of the continuous states 

within a cell we deliberately omit the indices i(z), that 

is f ( z ( t ) , t ( t ) )  = f ( z ( t ) ,  i ( z ( t ) ) , < ( t ) ) .  Let Ek denote 

the convex hull of the set Ek, that is, E, = conv E&. 

Definition 5.1 (Cell Stabilizability) 

A cell R k j  G Ek is said to be stabilizable w.r.t. the Lya- 

punov function Vk (z) = Vgk (z) if there e a s t  a positive 

constant 0 < /3 < 1 and a switching index < E Q such 

that v k (  f (Z, 6 ) )  - p V k ( 2 )  5 0 holds for all 2 E Rk,. 

Theorem 5.1 A hybrid system (2. l) ,  (2.2) is stabiliz- 

able on if every cell o k j  i s  stabilizable w.r.t. the 

Lyapunov function v k  (3). 

By Theorem 5.1 the stabilizability analysis of the hy- 

brid system is reduced to that of each cell obtained as 

a result of the convex multilayer decomposition. 

5.1 Step 3. Cell Stabilizability Analysis 

First we recall that the polyhedral Lyapunov func- 

tion V~(Z) is defined as V k ( 2 )  = maxlSjgs{cTz} where 

each vector c,, j = 1,2, ..., s defines a hyperplane 

T I  5 TZ the following condition holds Bra = %Br, holds. An 
alternative description of polyhedral Lyapunov functions can be 
given in the form Vn(z) = maxl<isa {cTz}. See, for example 
[2] and references therein. 
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cTx = zj bounding the polyhedron f i k .  The theorems 

below represent the main results of the paper. 

Theorem 5.2 A cell a k i  2 Ek ,  0 # n k i  is stabilizable 

w.r.t. the Lyapunov function v k ( x )  if and only if 

h I j # 0  (5.8) 
j=1 

where 

(5.9) 

and 

(5.10) 

Below we show that under certain mild conditions the 

problem of calculating the sets Ij , j = 1, ..., s is re- 

duced to a standard nonlinear optimization problem. 

Theorem 5.3 Let the following conditions be satis- 

fied: (i) The functions f ( x , [ ) ,  < E Q are Lipschitz 

over f l k i t  that is, Ilf(xi,t) - f(x2,t)Il L Lllxi - 2211 

holds for some 0 < L < 00, (ii) 0 # n k i .  Then the cell 

Qk, is stabilizable w.r.t. the Lyapunov function v k ( X )  

if and only if there exists a finite number of constants 

CYI, 1 = 1, ...lm, a1 = a- = minzEnki v k ( Z ) ,  am = 

a+ = maxzEnki v k ( x ) ,  as = a,-l + (a+ - a-)/m, 

V 1 < s < m such that 

s m  n n I j l  # 0 (5.11) 
j=11=1 

where 

< 1 - Lllcj l ld(al ,ar 1) 
a1 + 

(5.12) 

2For the sake notational simplicity we avoid here the notation 
Zj(&i) implying Z j  = Z j ( f l k i ) .  

and 

To analyse the case 0 E Qki we note that the last 

inclusion implies the layer Ek being the last layer in 

the convex decomposition. Since a- = 0 the result of 

Theorem 5.3 can be directly applied by replacing a- 

by a sufficiently small positive constant. In that case 

the existence of a sufficiently small attractor centred 

around the origin can be proved under some additional 

local stabilizability assumptions (see the full version of 

the paper). 

Remark 5.1 The computational complexity of check- 

ing the conditions (5.8),(5.11) depends on the topo- 

logical properties of the nonlinear system and must be 

assessed on a case b y  case basis. W e  show that piece- 

wise linear hybrid systems of type (2.1),(2.2) allow for 

significantly simplified procedures for checking the con- 

ditions (5.8), (5.11). 
The systematic approach to stabilizing control design 

presented above leads to simple switching control de- 

sign algorithms presented in the full version of the pa- 

per. 

6 Model Example 

Example 6.1 Let us consider the following two dis- 

crete state hybrid system. For both discrete states 

& and & the normal operating domain is specified as 

fl = { X  E R2 : 1x11 5 1,lxal 5 1). 

The continuous dynamics corresponding to the first 

discrete state <' is described by 
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thus partitioning the normal operating domain R in 

stable and unstable sub-domains, respectively. 

For the discrete state (2 the domain R is partitioned 

into three sub-domains by the hyperplanes Z I - 2 2  = 0, 

x1 + x2 = 0 and x1 - 3x2 = 0, with the continuous 

dynamics being piecewise linear 

z ( t  + 1) = A i ( t , ~ ( t )  + F d ( t ) ,  i ( t )  E {1,2,3} (6.15) 

where 

A1 = [ 
[ -0.2000 0.8000 1’ A3 = [ 

] -42 = 
0.9539 - 0.0361 
0.7461 0.5161 ’ 

-0.9000 0.2333 
-o.3 2.4 ] 

and the switching logic is defined as 

1 if z ( t )  E 0 2 1  
2 if x ( t )  E 0 2 2  (6.16) 
3 if z(t)  E fl23 

Performing the discrete event composition we obtain a 

cone type cell partition of the hybrid system depicted 

in Figure 6. Further analysis resulted in the following 

stabilizing switching controller 

X I - 3 X 2 = 0  

l x l  / 

\ 
x ,  + x 2 = o  

Figure 7: Evolution of the Continuous States 

I 

Figure 8: Switching Sequence 

The behaviour of the system subject to random uni- 

formly distributed disturbance d ( t )  :  up^>^,, - Id(t)l = 

0.01 and F = (1, l )T is shown in Figures 7,8. 

7 Conclusions 

In this paper we propose and investigate a new theo- 

retical framework for controlling and analysing a class 

of linear and nonlinear discrete time hybrid systems. 
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