
A Novel Approach to the Detection of Cheating in

Multiplayer Online Games

Peter Laurens∗, Richard F. Paige∗, Phillip J. Brooke‡, and Howard Chivers§
∗Department of Computer Science, University of York, UK

‡School of Computing, University of Teesside, Middlesbrough, UK
§Cranfield University, Shrivenham, UK

Email: [laurens,paige]@cs.york.ac.uk, P.J.Brooke@tees.ac.uk, hrchivers@iee.org

Abstract— Modern online multiplayer games are complex
heterogeneous distributed systems comprised of servers and
untrusted clients, which are often engineered under considerable
commercial pressures. Under these conditions, security breaches
allowing clients to employ illegal behaviours have become com-
mon; current commercial approaches have limited capabilities for
reacting rapidly to such threats. This paper presents an approach
to the detection of a cheating player, and describes a proof-of-
concept system designed to detect cheating play (specifically wall-
hacking) through the analysis of player behaviour. This approach
differs from current methods in that it does not rely on knowledge
about specific vulnerabilities and their method of exploitation
in order to protect the system, but instead monitors player
behaviour for indications of cheating play. Statistical evidence
is presented which shows that the proof-of-concept correctly
distinguishes between most cheating and non-cheating players.

I. INTRODUCTION

In conventional sporting games, rule breaking may take the

form of doping, i.e., through use of prohibited chemicals such

as steroids. In board games, rule breaking often takes the

form of collusion amongst players. And in complex online

computer games, involving multiple servers and untrusted,

heterogeneous clients, cheating manifests itself in curious

virtual versions of these real-world counterparts, e.g., ‘virtual

doping’ in the form of aimbots and speedhacks [1], and

‘virtual collusion’ in the form of ghosting [6]. But the possible

bounds of cheating extend much further in online games

than in the real-world. In an online game environment, the

laws of the game world are fundamentally more arbitrary

and mutable, allowing cheating users to afford themselves

extra-sensory abilities and advantages such as seeing through

walls (wallhacks), or learning about the exact state of other

players in the world (information exposure). Any game or

sport we conceive of and host in the real world is bound

by the immutable laws of our universe. We cannot be so

confident of the non-existence of exploitable loopholes, or of

the stability and reliability of the laws of a complex online

game world architected under commercial pressures. Thus,

through inevitable security loopholes and oversights, cheating

has become rife in a significant number of online games.

Clearly, if we are to improve confidence in, and the reputation

and enjoyability of online-gaming, as well as promote it as a

legitimate and mature pastime (or even profession) we must

work to protect the integrity of a game and deter or prevent

players from cheating.

Online game developers face an up-hill battle in combating

the cheat developers. Cheat developers are able to develop and

perfect an exploit in privacy and then, when ready, release it

to the public where it may be used immediately. From this

moment on, players are free to engage in cheating via this

provided exploit, before its existence may even be known

to the game developer. The result of this is that the game

developer always acts defensively, reactively countering the

exploits made public by the cheat developers. The reactive

nature of this cycle means that there is a considerable amount

of time available to cheaters where there is no method of

detection or defence against their behaviour. It takes time to

discover, understand, produce, and test a patch for a game.

Meanwhile, the install-base remains vulnerable to attack. No

repository of game-exploits is currently available in order to

formally determine the average time between exploit and sub-

sequent patch, but [23] and [24] provide access to supposedly

‘VAC-proof’ (unpatched) cheats, and frequently show active

cheats unpatched for several months. It is likely that exploits

commonly remain undetected for even longer periods of time

than this.

It is the fundamentally defensive nature of the game-

developer’s role which gives cheat developers their biggest

advantage; while the game-developer works to understand the

current exploits in the wild, there are already new mechanisms

for cheating under development. This is a battle which is very

difficult for the game developer to win, and it appears that the

issue requires the introduction of a disruptive technology or

technique in order break this cycle.

The work described in this paper investigates the technical

and life-cycle deficiencies which may permit or exacerbate

unwanted cheating activity. A proof-of-concept system is

presented that attempts to circumvent these deficiencies via

detection thorough behavioural analysis, which also abstracts

the provision of cheat detection, allowing it to be gener-

ically applicable across different online games and game-

engines without significant customisation. An implementation

for Valve Software’s Source (Half-Life2) engine running Coun-

terStrike: Source [20] is outlined, allowing the approach to

be quantitatively evaluated in a real-world production game

environment.

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

II. CURRENT METHODS OF CHEATING AND

COUNTER-MEASURES

This section will look briefly at the current state of cheating

in online games in terms of: (a) common techniques used to

implement game-exploits; (b) illegal in-game advantages, or

cheats facilitated by those techniques; (c) commercial methods

and tools currently employed to provide protection against

cheating play; and (d) an overview of research contributions.

A. Common Cheat Techniques

The practical technique used to implement a cheat may take

a number of different forms which differ in complexity and

effectiveness. The cheats (or ‘hacks’) detailed here involve

the modification of the client computer, either in the form of

changing the client game code, or the client game environment

(e.g., drivers). As such, they may be categorised under Yan’s

[1] taxonomy of cheats, and also using the analysis from [11].

1) Hard-coded Hacks: Hard-coded hacks are considered

rudimentary, and are implemented by replacing code in the

installed client files, e.g., changing a DLL file to an altered

one. Such changes may improve aiming on the client-side in

the form of an aimbot, or change the engine code to render

walls semi-transparently. They are very tightly coupled to the

game-code, making them easy to detect; for example, asking

the client to create a hash of the local game-code will clearly

show whether the client code has been altered.

2) External Hacks (Fig. 1): An external hack exists as a

separate process to the game client, and does not alter the

client code directly. Instead it attempts to affect the play of the

game through legitimate channels. An early example of such

a hack involved changing the player model skins in the game

so that all enemies would appear flat-shaded red, the external

hack would then monitor the output of the graphics driver,

constantly scanning for red-pixels. When red pixels (which

denote an enemy) were detected in the output, the hack would

attempt to move the player’s mouse via the standard Windows

API so that the player in the game would aim automatically

at the enemy [12]. External hacks are considered basic; the

example described had a tendency for jerky movement, and to

erroneously lock-on to innocuous parts of the environment.

Client Server

Hack

Game
code

Display
driver

Windows
API

Fig. 1. External hack

3) Environment Hacks (Fig. 2): Environment-based hacks

involve altering the computing environment in which the

game client runs in order to cheat. It differs from hard-coded

hacks in that the game client code is left unaltered; it differs

from external hacks as no unique and independent process is

involved. A typical environment-based hack may involve the

altering or replacement of the client system’s video driver in

a way that makes rendered objects semi-transparent.

Client Server

Hacked

Video

Driver

Game

code

Fig. 2. Environment hack

4) Hook Hacks: Hooks involve running the game from

inside a launch harness process, rather than from the game’s

main executable. This launch harness, or ‘hook’, can read,

control, and inject data into game memory locations. The hook

is programmed to be aware of important memory locations,

such as player positions, and so can access this data at run-

time to the advantage of the cheating player.

5) Packet Tampering (Fig. 3): Packet tampering involves

inspecting packets as they leave the client, and altering their

contents where it is determined more optimal play could

have occurred. The client game-code and environment remains

completely unaltered. An implementation normally consists of

an entirely separate machine acting as a proxy server to the

game-client system. The proxy server will run a sophisticated

program which inspects incoming and outgoing packets and

learns about the state of the game-world from them. In this

way, the proxy builds up basic information such as the position

of players in the world, and the orientation of the cheater. If

it detects an outgoing command-packet where the player has

attempted to shoot an enemy player but missed, the proxy

program may make alterations to the packet that indicates a

different orientation of the shooting player, one that would

have lead to a correct hit. The game server has no reason

to disbelieve this packet, making packet-tampering techniques

very difficult to detect, but also highly complex to implement.

Client Server

Game

code

Proxy

1: 'Miss'

Command Packet

3: ''Miss-packet becomes

'Hit' Command Packet

2: Proxy alters Command

Packet content

Fig. 3. Packet-tampering hack

B. Common Cheat Implementations

The mechanisms outlined above allow a host of illegal

advantages to be bestowed upon a cheating player and have

been used to implement a great spectrum of such ‘cheats’.

This section takes a brief look at the next level of the game

exploitation process, that of common cheat implementations:

1) Wall-hacking: Wall-hacking is the name given to cheats

which provide the player with the ability to see through walls

in some capacity. The benefit to the cheating player is that he

can assess the location and movement of opponents to great

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

advantage, such as preparing an ambush or pre-aiming at an

approaching opponent.

2) Aim-bots: Aim-bots provide the player with a computer-

augmented ability to aim at other players. All first-person

shooter (FPS) games rely to some extent on the reaction times

and accuracy of the player, an aim-bot removes these ‘hand-

icaps’ from the player by allowing users to aim immediately

and automatically at opponents.

3) ESP: Extra-Sensory Perception is the name of a genre

of information exposure cheats which involve divulging game

information to the player which he should not have access to,

and which awards him an unfair advantage over opponents.

For example, ‘Map’ ESP in the online game Counter-Strike

simply involves showing enemy locations on the in-game map

by way of a hook into the game memory which extracts the

client’s ‘behind-the-scenes’ information about the whereabouts

of other players.

4) Bang-hacking: Bang-hacks provide the player with im-

munity to the effects of blinding grenades in FPS games.

5) Cross-hair Cheats: In some FPS games certain weapons

which are intended to be used at long-range do not draw a

cross-hair to the screen. This works to prevent players from

using very powerful weapons accurately at short range, and

helps balance the gameplay. Cross-hair cheats reinstate the

cross-hair, either through a hook to the game-code, a hacked

version of the video-driver, or even an external process which

draws a cross-hair dumbly in the dead-centre of the screen.

6) Content-based Cheats: Content cheats involve modify-

ing the game content (e.g., textures) rather than the actual

engine code. For example, enemy textures may be altered so

that they stand out against the world, or enemy footsteps made

artificially louder.

C. Some Relevant Cheat-Prevention Techniques and Tools

Several cheat-prevention/detection tools have been devel-

oped, each of which employ an array of techniques in order

to try to prevent illegal play. The four major commercial

tools in use at the time of writing are: Valve Software’s

[20] ‘VAC’ (Valve Anti-Cheat) [18], Even Balance Inc.’s [21]

‘PunkBuster’ [16], United Admin’s [22] ‘Cheating-Death’

(now discontinued) and ‘HLGuard’ [19]. These developers do

not make public the full range of anti-cheat techniques that

their tools utilise, but the following list summarises what is

known about the mechanisms they employ, taken from the

above sources:

1) Memory-scanning: Involves checking the contents of

memory used by the game in real-time for the presence

of known cheat-hooks, or evidence of tampering with the

memory from outside the game-code.

2) Authorisation-servers: Provides a single, trusted account

server used by game-servers to indicate which users are

trustworthy, and therefore allowed to connect. The users

are identified by WON number or CD-key on Punkbuster

authentication servers, and by SteamID on VAC authentication

servers. This allows authorised game servers to ensure that

players connecting have not been blacklisted for cheating in

the past on any other authorised server.

3) Content-hashing: In order to detect alterations to game

files or game content, the Punkbuster or VAC server may ask

the client for a hash of a particular set of game files, and

compare this hash against what is expected.

4) Screenshotting: Administrators on Punkbuster enabled

servers may request a screen-shot of any player’s screen at

any time, the results of which may allow the administrator to

visually confirm suspicions of wall-hacks or other attacks.

5) API/Driver Scans: The anti-cheat package Cheating-

Death is known to scan for activity in the graphics driver

directly before launching a game in its own launch harness (or

hook), thereby monitoring for driver and API-based exploits.

6) Delayed bans: VAC implements a controversial policy

of delaying bans for some weeks after a cheating player has

been found and confirmed to be cheating. The reasoning for

this is that Valve believes more cheaters can be caught if time

is given for a cheat to spread.

7) Anti-wallhack: VAC has an inbuilt anti-driver-wall-hack

mechanism which checks whether opponents should be oc-

cluded by walls or objects in the gameworld, and will not

draw them if they are. This means that player models never

even get sent to the graphics driver, and so tampering with the

driver will not reveal the locations of opponent players.

8) Anti-crosshair: Cheating-death checks the window stack

to ensure that no program is running above the game in

the stack, so that cross-hairs for sniper weapons cannot be

provided in this manner by an external application.

D. Existing Research

A large proportion of existing academic work on cheating

and security for online gaming has focused on providing

a secure environment that makes peer-to-peer (P2P) based

gaming more feasible. There is interest in a pure P2P-based

game topology as it promises to reduce the cost overheads and

reliability issues of running complex and expensive central

servers. Despite these potential advantages, there is a resis-

tance to embracing P2P network architectures in multiplayer

online games, primarily because of the issue of information

exposure.

Chambers et al. [4] describe the issue of cheating in games

without a trusted non-biased central server and propose a ‘bit-

commitment’ scheme by hashing sensitive data and a secret

together. In this way clients can determine whether or not the

opponent was cheating after a game by verifying the final

known positions of the objects with the initial hash. This

method, however, means the cheating verdict can only be

ascertained at the end of a game, and it is not clear that

this solution is a scaleable one. Similar work on preventing

cheating by engineering specific communication protocols be-

tween a client and a central server has been undertaken by both

Chen et al. [9] and also Gauthier-Dickey et al. [10], who have

investigated the effects of latency and other communication

artefacts on game-play in traditional client-server systems and

peer-to-peer systems respectively.

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

Kabus et al. [5] present a higher level approach to securing a

P2P based network architecture in larger scale situations such

as an MMOG (massively-multiplayer online game) rather than

smaller-scale RTS (real-time strategy) games. They propose

a more complete solution that ensures that no peer main-

tains game-world information that is applicable to the current

location/actions of the player at that peer. This means that

information exposure is still possible, but less applicable to

the local player. Rather than fix the fundamental issue of

information exposure, Kabus’ work attempts to minimise the

impact of the technique. Nevertheless, this does not preclude

the use of external tools for collusion amongst players, and can

break the benefits of locality of interest of the P2P architecture.

There appears to be limited previous academic work ad-

dressing the issues of gaming security and cheating specifi-

cally. Yan et al. [1][6] have provided a great deal of the foun-

dation work, identifying and classifying cheating behaviour.

Also, Brooke, Paige, et al. [7] have developed a conceptual

overview of fairness and legality in virtual societies, which

Foo and Koivisto [8] have also looked at from a practical

angle, investigating ‘griefing’ (bad) behaviour.

III. A BEHAVIOURAL-MONITORING APPROACH TO

AUTOMATED CHEAT DETECTION

Existing commercial tools as outlined in the previous sec-

tion are severely limited in their ability to detect and deter

cheating play. The fact that cheaters can move easily from

one exploit to another as older cheats are detected has,

for example, forced Valve to adopt a delayed ban system,

where detected cheaters are not banned immediately, in the

hope of catching more illegal players. Current techniques

are also poorly automated, requiring manual intervention (for

example: administrators needing to request and manually

check screenshots for evidence of cheating), are resident on

the client machine which is inherently untrustworthy, or are

highly game-specific and represent a non-portable investment

of development resources (for example HLGuard).

Most of these flaws stem from or are exacerbated by a

product lifecycle which gives every available advantage to the

cheat-developers. This lifecycle can be described as follows:

it is inevitable that a game will be released to market with

flaws, which will be exploited by cheat-developers over time

to enable various types of cheating. These exploits will be

detected by the vigilant developer, and usually in a matter of

days or weeks a client-server patch is issued to prevent this

particular method of exploitation from working. In conjunction

with this, cheat-detection systems may be updated on the

servers so that further attempts to use this particular exploit

may result in the banning of an individual from play.

Figure 4 shows this cyclical process, demonstrating the con-

siderable portion of time that a game is vulnerable to cheating

players during the product’s life. In reality this is an over-

simplification; several flaws may be exploited concurrently.

The presence of concurrent exploited flaws threaten to extend

the proportion of time that the game is vulnerable considerably.

Hackers Isolate
New Exploit

Cheat Developed

Cheaters Adopt
New Cheat

Developers Detect
Cheat

Game Vulnerable to Cheating

Developers Provide
Client or Server Patch

Days / Weeks / Months

Typically some
weeks

Game Released

Fig. 4. Traditional exploit-patch lifecycle of a game

As Figure 4 suggests, the current practice for dealing with

exploits can be considered to be flawed:

• Most patches are developed to correct flaws that have

already been exploited in the wild (so-called zero-day

exploits), making the Patch-Exploit cycle entirely reac-

tive in its cheat-prevention. This ensures that the game-

developers maintain a perpetual disadvantage.

• Patching a game is expensive in terms of the monitoring

of the use of cheats, the development time and effort into

producing a corrective patch, as well as the distribution

costs of getting it to the players.

• In the rare cases where patches are proactive (fixing

un-exploited flaws), they can identify a flaw to cheat-

developers that had previously been undiscovered. The

cheat-developers may then take advantage of the fact that

it can take some time for all clients and servers to be

updated to this latest patch.

• Patches may introduce new flaws of their own.

• Some systems (VAC) delay the banning of cheaters who

have been detected by a number of weeks, so that the

cheating community is less likely to be alerted when

a cheat has become detectable, theoretically allowing

more cheaters to be caught. Valve determines this to be

necessary to catch more cheaters and prevent them from

moving to new undetected cheats quickly, but it allows

cheaters to cheat against legitimate players online for a

significant amount of time before being banned.

The solution that this paper describes is that of real-time

behaviour-based cheat detection. This concept relies on the

real-time monitoring and analysis of players’ movement and

behaviour in the game world, and is based on the central

hypothesis that players engaged in cheating exhibit behaviour

which is significantly distinguishable from normal play. If this

is the case, the cheaters may be identified without regard for

their chosen method of exploitation. A system based on be-

havioural analysis to detect cheating play promises significant

advantages over current anti-cheat mechanisms:

• It doesn’t matter how the cheater is cheating. They may

use a hook, a driver exploit, a highly complex packet-

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

mutating proxy, or a hitherto undiscovered method - it

makes no difference to the ability of a behaviour-based

system to detect a cheater, as it operates via investigation

of the symptoms of cheating behaviour, rather than the

exact technical method used.

• Unknown future exploits offer no advantage over known

exploits. There is no benefit to the cheater in using an ex-

ploit unknown to the developer - the behavioural system

should detect all wallhacks/aimbots/etc. equally via their

symptoms rather than their particular implementation.

• A cheater may be intimately aware of exactly how the

behavioural system works, and what characteristics it is

monitoring. It is likely to still have a significant effect on

a player’s ability to cheat by forcing the player to refrain

from using his advantage (such as pre-aiming, shooting

through walls, tracking enemies through walls, etc.).

• There is less pressure on the developer to issue patches; it

is believed that common cheat techniques can be detected

automatically and the behaviour-based cheat detection

engine may be improved at the developer’s pace.

• The behavioural detection system may be run entirely

on the server, removing the possibility of tampering with

the client code, and pre-empting any man-in-the-middle

or proxy attacks. Also, the added resource-burden of

the behavioural analysis process is placed fully on the

dedicated server rather than the clients.

• A behaviour-based cheat detection system provides a

generalised and abstract method of cheat deterrence.

Security flaws and their associated exploits in contrast are

uniquely specific to a particular game or game engine, and

require an equally unique solution to fix. A behaviour-

based system may provide a level of protection to an

entire class of online game, with minimal re-engineering

required to be applicable to new games and engines as

they are developed.

Behaviour-based cheat detection is strongly related to intru-

sion detection. Such systems rely on two strategies to identify

security incidents; the first is signature recognition, which

compares data extracts from known exploits with incoming

data, and the second is behavioural classification, which uses

heuristic analysis to identify anomalous behaviour in networks,

host software or applications. Examples include honeypots

[15], systems with no operational purpose, allowing any

outbound connection to be regarded as a potential anomaly,

and host-based anomaly detection systems, where heuristics

based on the structure and behaviour of programs are used to

detect potential threats [17]. Anomalous behaviour can also

be identified at the application layer; for example, parameters

used to invoke web applications can be profiled and used to

detect unusual web-based requests [13]. These all demonstrate

the potential value of behavioural analysis as a means of

identifying attacks, and suggest the need to combine a range

of heuristics for acceptable false-positive performance.

IV. APPROACH

A proof-of-concept system was developed as a Source-

engine server plugin, and was designed to implement cheat-

detection through the behavioural analysis concepts which

have been outlined in the previous sections. The goal of the

proof-of-concept system was to provide the most simple im-

plementation possible that would demonstrate the effectiveness

and feasibility of this concept. In order to achieve this aim,

the system concerns itself with only a single type of cheat,

wall-hacking, in first-person-shooter games.

The proof-of-concept behaviour-based cheat detection sys-

tem resides on the game-server as a Source-engine plugin,

from where it may monitor the actions of players within the

game world. Figure 5 shows a high-level overview of the

architecture of the cheat detection system as implemented.

The analysis engine is componentised and abstracted away

from any first-hand interaction with the game-server specifics.

Game-server communication takes place via an interaction

layer comprised of an input component and an output compo-

nent. The input component is designed to be engine-specific,

it will interface directly with the game-engine pulling player

data and performing world-traces upon the state of the game

to determine the required information. This is formatted and

passed to the analysis engine. The output component is re-

sponsible for taking the outputted cheat-score for a player,

and passing this back to the game-server so that it may be

acted upon.

Analysis

Engine

Inputs /

Traces

Outputs

Game Server

Game server queried
for player data

Outputs visualised
to players

via the game
engine

Fig. 5. Architecture for the proof-of-concept system

This architecture allows for a high level of portability -

only the interface components (inputs and outputs) need to

be re-written for a new game-engine. Also, by abstracting

the analysis engine it is possible to update and improve the

detection algorithms without having to affect the rest of the

system, or the clients.

A key element to the understanding of how exactly the

proof-of-concept plugin detects wall-hacking behaviour in-

volves the concept of a trace: The plugin must be able to

detect precisely what the player is ‘looking’ at, at any moment

in time, and what that object in the world is. A ‘trace’ is a

mechanism provided by the Source engine which allows us to

achieve this, it takes the form of a vector which, when ‘run’,

reports information back about what it has hit in the game-

world. Traces may be combined with trace filters, which filter

the objects that are opaque to a trace, for example; allowing it

to pass unhindered through walls and other world-geometry,

but returning a hit for entities (players) in the world. The wall-

hack-detecting proof-of-concept requires two different types

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

of trace filter, a world filter which only returns data about

the base-world geometry that it has hit (world trace) and an

entity filter which passes through all world-geometry as if it

weren’t there, returning only information about any entities

it hits, regardless of whether the they are behind a wall in

relation to the tracing player (entity trace).

To be able to monitor for the characteristic behaviour

of a cheating player, it was first necessary to identify and

understand the observable differences between the play of a

legitimate player and a cheater, essentially answering the ques-

tion ‘what observable characteristics would allow a system

to tell a legitimate player and a cheating player apart?’. No

previous work studying the practical behaviour of cheating

gamers is known to the authors, and so the first phase in

the development of the proof-of-concept system involved a

study of captured trace-data of both a wall-hacking player

and a legitimate player playing Counterstrike:Source on the

same maps under the same conditions. The legitimate player

used the standard release of CS:S (version 1.0.0.5), the wall-

hacking player used the same version augmented with version

1.1 of the FSKWallhack wall-hack by ‘Felikz’ and ‘slayer-

es-me’. Play-data in the form of a series of trace-results

was captured from the engine as the users played, and was

then reviewed to determine the defining characteristics that

may help distinguish a cheater from a legitimate player. This

produced the following four metrics which, it was determined,

demonstrated noticeable differences between the two:

• Frequency of illegal traces: An illegal trace is defined

as a trace (vector along a player’s line of sight) from the

player under observation to an enemy entity where the

trace passes through opaque world material before reach-

ing the opponent model. The rationale for this selection

is that non-cheating players would trace to enemy players

behind walls only by chance, whereas it was hypothesised

that wall-hackers may tend to track enemies behind walls,

thereby giving themselves the advantage that they had

aimed and were ready to fire when the opponent is no

longer occluded by world material.

• Distance to world material: To a wall-hacker, world

material (such as walls) does not occlude the player’s

view, whereas during play, a legitimate player will tend

to focus on the farthest point of the map within his field

of view. Therefore, it was hypothesised that wall-hacking

players would exhibit strange behaviour such as having

unusually small traces to world material (appearing to

stare blankly at a wall).

• Distance to illegal traces: A legitimate player may

make chance illegal traces to players behind walls. The

randomness of these traces should make it equally likely

that such a trace is to a far away player as to a very

close player (after target-size difference for the opponent

entity is accounted for due to distance). A wall-hacker,

however, may be more likely to track closer enemies as

he takes advantage of his ability. Due to this, it was

hypothesised that the distance to illegal traces will be

on average smaller for wall-hacking players than for

legitimate players.

• Consecutivity of illegal traces: A legitimate accidental

trace is unlikely to last more than the briefest of moments

as both players move and look around the game-world.

A wall-hacker, however, may have a tendency to con-

tinuously track an opponents movements behind world

material, building up a string of consecutive illegal traces.

It was hypothesised therefore that the consecutivity of

illegal traces is much higher for wall-hacking players than

for legitimate players.

The capacity of these metrics to distinguish between legit-

imate and illegitimate play was investigated during a metric-

testing phase, where data for the four metrics was obtained

and compared for a player while cheating and also playing

normally. Two separate maps were used in the test to minimise

possible idiosyncrasies of world-layout. The results of the

metric-test can be seen in tables I-IV, and figures 6 and 7.

Table I shows the power of differentiation of illegal trace

frequency, giving a 2.37x difference between legitimate and

cheating play on the map de Chateau, and 2.63x in the

frequency of traces between the two for the map cs Office.

Table II shows the results after the data was processed to

allow a grace period of 1, 3, and 6 seconds between a

player legitimately seeing an opponent, and being punished

for illegally tracking them behind a wall. The rationale for this

grace period is that legitimate players may track opponents as

they run behind a wall for cover, thus tracking them behind

world-objects illegally, by giving a grace period of a few

seconds after legitimately seeing an opponent it ensures that

legitimate players cause fewer false positives. This can be seen

in the higher differentiation rates.

TABLE I

ILLEGAL TRACE FREQUENCY METRIC

Map played Mean trace interval Difference

de Chateau normal 20.3s
2.37x

de Chateau wallhack 8.55s

de Office normal 16.67s
2.63x

de Office wallhack 6.35s

Figures 6 and 7 show the results of the world-distance

metric as a histogram demonstrating the difference between

the player and the closest world object being looked at

(normally walls). From this data, it appears that there is a

slight tendency for cheating players to have a larger proportion

of close-distance world-traces (less than 300 world units) than

legitimate players.

Table III shows the power of differentiation between a

cheating player and a legitimate one, based on the distance-

to-illegal-trace metric. This metric shows that the legitimate

players illegal traces were on average 0.53x the distance of

the same player cheating for the map de Office. This level of

differentiation was not present in the de Chateau test, but as

more data was available for the de Office test, it is believed

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

TABLE II

ILLEGAL TRACE FREQUENCY WITH GRACE PERIOD METRIC

Map played Grace
Period

Mean trace
interval

Difference

de Chateau normal

1 second

37.4s
3.4x

de Chateau wallhack 10.99s

de Office normal 17.86s 2.48x

de Office wallhack 7.21s

de Chateau normal

3 seconds

41.8s
3.6x

de Chateau wallhack 11.61s

de Office normal 20.0s 2.77x

de Office wallhack 7.21s

de Chateau normal

6 seconds

41.8s
3.6x

de Chateau wallhack 11.61s

de Office normal 20.0s 2.77x

de Office wallhack 7.21s

Fig. 6. Comparison histogram of distance to world behaviour, comparing
cheating and legitimate players. Map: de Chateau.

Fig. 7. Comparison histogram of distance to world behaviour, comparing
cheating and legitimate players. Map: cs Office.

that this result is due to too small a data-set for that particular

map.

TABLE III

MEAN DISTANCE TO ILLEGAL TRACE METRIC

Map played Mean Trace Dist. Difference

de Chateau normal 844.40 units
0.99x

de Chateau wallhack 834.12

de Office normal 1132.90
0.53x

de Office wallhack 604.98

The consecutivity of traces metric provided the data in table

IV, showing a 1.5x differentiation for the map de Chateau, and

1.7x for the map de Office. It was considered, however, that

to better distinguish between a legitimate player accidentally

illegally tracking an opponent, and a cheating player, consecu-

tive illegal traces would be punished exponentially rather than

linearly. This increases the level of punishment considerably

for extended strings of consecutive illegal traces, a character-

istic that very strongly suggests wall-hacking activity. When

this change was made to the metric, the metric’s power to

differentiate between legitimate and illegitimate players was

improved, scoring 3.68x higher for cheating users playing

de Chateau, and 4.49x higher for cheating users playing

de Office.

TABLE IV

CONSECUTIVITY OF ILLEGAL TRACES

Map played Mean Number of
Consecutive Traces

Difference

de Chateau normal 1.07
1.5x

de Chateau wallhack 1.6

de Office normal 1.08
1.7x

de Office wallhack 1.84

A non-parametric rank sum test [25] was used (for all of the

metrics) to evaluate the null-hypothesis that the data from the

cheating player, and that from the legitimate player are from

the same distribution. All of the metrics bar one rejected the

null-hypothesis at a significance level of 5%. The data that did

not meet this level of significance was the distance-to-illegal-

trace data for the map de Chateau. The data-sample for this

metric was uniquely small, and this is likely to be the cause

of the different statistical results for this one set of data in

isolation.

An algorithm, drawing on the above data showing the

varying ability of the metrics to distinguish cheating play, was

developed. The algorithm combines all four metrics giving

greater power to those which showed a higher capacity for

differentiating. The system records these metrics every 0.1

seconds at runtime, and uses them in the algorithm to provide

a probabilistic score that a certain player is cheating. Results

from the metrics which are likely to have arisen due to illegal

play will cause an increase to a player’s cheat-score, persis-

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

tent abstention from such behaviour will gradually reduce a

player’s cheat-score. Thresholds can be established where it

can be significantly improbable for a player to attain a certain

cheat-score through legitimate play, and can be used to mark

such a player as a highly probable cheater. The algorithm used

to calculate the cheat score for a player is shown in expressions

(1) to (6).

X = the set of all traces

I = the set of all illegal traces

Xplayer = the set of all traces for the player analysed

Iplayer = the set of all illegal traces for the player analysed

Xplayer ⊂ X, and Iplayer ⊂ I

(1)

a = 60
|Iplayer|

t
(2)

Equation (2) calculates the frequency of illegal traces a

player makes, per minute, by taking the total number of illegal

traces, dividing that figure by t, the elapsed time of the game

in seconds, and then multiplying by 60, to get the figure in

minutes.

b = a(
X̄

X̄player

) (3)

Equation (3) calculates the world-distance metric, based on

the difference in the mean of all the analysed player’s traces,

and the mean of all combined players.

c = a(
Ī

Īplayer

) (4)

Equation (4) calculates the illegal trace-distance metric,

based on the difference in the mean of the analysed player’s

illegal traces, and the mean of all combined players’ illegal

traces.

λ =

(

|Iplayer|

|{i : xi ∈ Iplayer ∧ xi−1 6∈ Iplayer}|

)2

(5)

Equation (5) calculates the score for the consecutivity of

illegal traces for the analysed player. This is done by dividing

the total size of the set of illegal traces I , by the number

of individual ‘runs’ of illegal traces (traces whose predecessor

was not an element of the illegal trace set), to give the average

consecutivity of traces per run. This value is then squared

to more harshly punish higher levels of consecutive illegal

tracing.

Final ‘cheat-score’ = b + c + λ (6)

Equation (6) shows how the final cheat score is determined,

by summing the world-distance score, the illegal trace distance

score, and the consecutivity of illegal traces score.

V. PRELIMINARY RESULTS

Testing was undertaken with three test subjects, each provid-

ing several hours of cheat-score data, generated as described

by the algorithm discussed in the previous section. The three

subjects were all students aged between 20 and 30 years, and

were selected for their experience of online gaming, experi-

ence with FPS games, experience with CounterStrike:Source,

and their basic understanding of the current situation regarding

cheats in online games. This was to ensure that the results were

close to the play of most normal, competent players, and that

they would not be skewed by players unfamiliar with controls

or gameplay mechanics etc.

The results are presented in the form of the cheat-scores

reported by the algorithm outlined in the previous section,

the higher the cheat-point score, the more likely the system

‘believes’ the player to be cheating. The results are shown in

figures 8, 9, and 10. The results show promise in the ability

of this technique to distinguish between a legitimate and a

cheating player. The system’s power of distinction between

cheating play and non-cheating play varied widely, at its

greatest, a differentiation of 1200x between the scores of the

cheating player and non-cheating player (same subject, same

map) was observed. At its weakest, it diminished to 1.4x. The

mean power of differentiation, across all subjects and all maps

was 22x, i.e. on average a player scored 22-times the cheat-

score when cheating as compared to when playing normally.

One particular anomalous sample was of note in that it

showed a higher score for normal play than for cheating

play (average of 1.9 points for the normal, and 0.9 points

for the cheat). After the samples were taken, the subject was

debriefed and asked about this anomaly. He answered that he

was intentionally trying to play exactly as he had been before

without taking advantage of the cheat, partly out of interest

(but also because he found with the wall-hack he was actually

performing more poorly in the game than before). This is

interesting in that it shows the plugin is essentially capable of

detecting when a player is taking advantage of a cheat rather

than whether he is using one at all. This is not considered

a particular issue with the future applicability of this method

of cheat prevention, as it works to prevent a cheater from

taking advantage of his illegally obtained abilities - that is,

he may be able to see through walls, but he must not use this

ability to his benefit. All other samples showed that the plugin

could differentiate between the two styles of play. As an aside,

it is interesting to consider the difference between preventing

cheating itself, and preventing gain through cheating, which is

essentially what is achieved by this technique. It is the opinion

of the authors that the two are very often equal in preference.

It is considered important that cheating players may be

detected as quickly as possible so that their influence may

be removed from the game-world. For the proof-of-concept

system, it appears that the time to distinguish a cheating player

is between 250 and 350 seconds, as the system needs a certain

number of samples to settle. This is still a promising time for

an early proof-of-concept, and may be further improved with

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

Fig. 8. Score results across six bouts of play for subject 1

Fig. 9. Score results across six bouts of play for subject 2

a more mature algorithm.

The results show a score-threshold at around 20 points

which would distinguish a cheater from a legitimate player.

With a threshold in this range, all normal players in the

test would be properly identified as non-cheating, and 7 of

9 cheating samples would be properly identified as cheating.

False positives, then, appear rare, no legitimate player achieved

a higher average score than 6.6. False negatives however

appear more likely to cause problems. Some sample data

showed a very low score of 0.89 for one game while the

subject was cheating (this is the anomaly already discussed).

Another two samples show an average score of 8.46, and

8.9, both recorded by cheating players, which would not have

been distinguished by a system with a threshold set to 20-

points. Overall however, this is not discouraging, with the

aforementioned threshold, over 70% of cheating players would

be identified.

VI. FUTURE WORK

The scope of this work was limited to a focussed and

basic implementation, designed to provide a proof-of-concept

system that would demonstrate the feasibility of taking this ap-

proach to game security. Now that this ground-work has been

established, and the results have indicated that behavioural

analysis of play may indeed effectively identify the presence

Fig. 10. Score results across six bouts of play for subject 3

of cheating, there is ample opportunity to enhance the proof-

of-concept by expanding on the metrics used as a method of

identification.

This paper isolated just four metrics to consider: Frequency

of illegal traces; consecutivity of illegal traces; distance to

world traces; and distance to entity traces. It has been shown

that these metrics are indeed able to provide an indication

of the likelihood of a player cheating, but no work has been

done in assessing the efficiency of these metrics’ powers of

differentiation, they were simply chosen based the informal

monitoring of wall-hacking players, and the fact that they

were relatively easy metrics to capture from the engine. This

opens two immediate avenues for future work: The assessment

and tuning of the metrics used, and the development and

assessment of new (more complex) metrics. For example,

metrics based on movement and/or speed, metrics involving

reaction times of the player after first seeing a new opponent,

and more complex patterns of play etc. Despite having been

shown empirically to distinguish between cheaters and players,

the metrics employed have no rigourous statistical foundation,

confirmation of their true statistical significance would be

desirable in future work.

One may imagine that a more complete behaviour-based

cheat-detection system would have many of the characteristics

of an artificial immune system, such as the ability to classify

and distinguish players based on complex interdependent

inputs, the ability to recognise cheating play by way of

a negative-selection algorithm [2], and an ability to make

decisions based on noisy data. An Artificial Immune System

approach could also allow for the game-servers to collaborate

and communicate their work on classification of players to

each other, further enhancing an individual system’s ability to

distinguish and classify players, work of a similar conceptual

nature has been applied to fault detection in ATM machines

by Timmis et al. [3].

The work described in this particular paper considers only

wall-hacking, but the characteristics of the proof-of-concept

are such that it is possible that the system could be engineered

to detect other types of cheats. The software could, for ex-

ample, analyse players for characteristic behavioural elements

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

which occur when a player uses an aimbot. Such a system

would monitor reflexes, the jerkiness of the player’s aim, etc.

and produce a cheat score based on the likelihood that a player

is using an aimbot.

A more advanced and automated way of capturing the

characteristics of a particular cheat through the monitoring

of a known-cheating player would be a great asset. Such a

system could produce ‘profiles’ for different classes of cheat

which would be used by the server-plugin. Depending on the

complexity and detail of the play-characteristics that could

be captured, it may be possible to create profiles which are

capable of distinguishing particular patterns and characteristics

with great levels of subtlety. It may then be possible to char-

acterise and detect very complex behaviours such as various

types of nuisance-play (griefing). Some types of cheating, such

as information exposure (e.g. enemy positions being shown on

a players map) may be much more difficult, or even impossible

to detect via a behavioural-monitoring system as proposed by

this paper. Such cheats would still have to be combated via

existing traditional methods, but it is worth noting that wall-

hacks and aimbots are considered to be the most significant

and widely deployed cheats in many FPS games. There is also

a possibility that an expanded and more flexible system could

operate on other game genres, not just the FPS genre that

has been the focus of this project. MMORPGs (‘Massively-

multiplayer online role-playing games’) represent a slightly

more complex environment with a greater level of social

involvement, and would be an interesting genre to investigate.

The typical cheats used in an MMORPG may be different

to those in an FPS, but it would be interesting to attempt to

isolate the behavioural characteristics of cheating users in this

different gaming domain.

VII. CONCLUSION

This paper has explored the struggle to effectively combat

security issues in complex multiplayer-games. It is believed

that this failure originates from the commercial pressures of

game development, which ensures that there will never be

sufficient resources available to properly engineer security

into what is a complex distributed system, and that cheat-

developers will always have the advantage of time and secrecy.

We have presented a solution to the problem of detecting

tell-tale behavioural characteristics of cheating rather than

detecting the cheating mechanism itself. In doing so, we have

abstracted out the process of providing a certain level of cheat

protection for a game, an abstraction which allows a single sys-

tem to be portable to many different games and many different

game-engines with minimal re-engineering and at little cost.

This technique has been tested and implemented in a proof-

of-concept system, which is designed to detect wall-hacking.

The system was built to work in conjunction with a mod-

ern production game-engine, Valve Software’s Source, and a

modern and popular multiplayer game, Counterstrike:Source,

demonstrating the validity of this approach though translation

of the concept to a production system. The proof-of-concept

system, although primitive, showed significant success in its

ability to distinguish between legitimate players, and cheating

players. This success, the authors believe, provides fertile

ground for further work and expansion of the technique, per-

haps by way of taking inspiration from work on classification,

differentiation, and anomaly detection in the field of artificial

immune systems.

REFERENCES

[1] J. Yan, B. Randell, A Systematic Classification of Cheating in Online

Games, in Proceedings of 4th ACM SIGCOMM Workshop on Network

and System Support for Games, October 10-11, 2005, Hawthorne, New

York., NetGames ’05, ACM Press, 2005.
[2] D. Dasgupta, S. Forrest, Novelty Detection in Time Series Data using

Ideas from Immunology, 5th International Conference on Intelligent
Systems, 1995.

[3] R. de Lemos, J. Timmis, S. Forrest, M. Ayara, Immune-Inspired Adaptable

Error Detection for Automated Teller Machines, to appear in IEEE SMC

Part C: Applications and Reviews, IEEE, 2006.
[4] C. Chambers, W. Feng, W. Feng, D. Saha, Mitigating Information

Exposure to Cheaters in Real-time Strategy Games, in Proceedings of

the international workshop on Network and operating systems support

for digital audio and video, NOSSDAV ’05, ACM Press, 2005.
[5] P. Kabus, W. Terpstra, M. Cilia, A. Buchmann, Addressing Cheating in

MMOGs, in Proceedings of 4th ACM SIGCOMM workshop on Network

and system support for games, NetGames ’05, ACM Press, 2005.
[6] J. Yann, H. Choi, Security Issues in Online Games, Emerald Group

Publishing, 2002.
[7] P. Brooke, R. Paige, J. Clark, S. Stepney, Playing the Game: Cheating,

Loopholes, and Virtual Identity, in ACM Computers and Society, ACM
Press, 2004.

[8] C. Foo, E. Koivisto, Defining Grief-Play in MMORPGs: Player and

Developer Perceptions, in Proceedings of the 2004 ACM SIGCHI Inter-

national Conference on Advances in computer entertainment technology,
ACE ’04, ACM Press, 2004.

[9] B. Chen, M. Maheswaran, A Cheat-Controlled Protocol for Centralised

Online Multiplayer Games, in Proceedings of 3rd ACM SIGCOMM

workshop on Network and system support for games, NetGames ’04,
ACM Press, 2004.

[10] C. GauthierDickey, D. Zappala, V. Lo, J. Marr, Low-latency and Cheat-

Proof Event Ordering for Peer-to-Peer Games, in Proceedings of the 14th

international workshop on Network and operating systems support for

digital audio and video, NOSSDAV ’04, ACM Press, 2004.
[11] Counter-Hack.net, 2006, How Hacks Work, viewed June 2006,

http://wiki.counter-hack.net/howhackswork
[12] Counter-Hack.net, 2006, Types of Cheats Associated with Counter-

Strike, viewed June 2006, http://wiki.counter-hack.net/CategoryCSHacks
[13] C. Kruegel and G. Vigna. Anomaly Detection of Web-based Attacks,

Proc. CCS’03, ACM Press, New York, NY, USA, 2003; 251-261.
[14] M. Leo, T. D’Orazio, P. Spagnolo, Human Activity Recognition for

Automatic Visual Surveillance of Wide Areas, in Proceedings of the ACM

2nd International Workshop on Video Surveillance and Sensor Networks,
ACM Press, 2004

[15] The HoneyNet Project. Know Your Enemy : Learning about Security

Threats, AWL, 2004.
[16] Even Balance Inc., 2006, Punkbuster Information, viewed June 2006,

http://www.evenbalance.com/index.php?page=info.php

[17] Symantec Inc., Understanding Heuristics, Volume XXXIV. September
1997. p. 17. http://www.symantec.com/avcenter/reference/heuristc.pdf

[18] Valve Software Inc., 2006, Valve Anti-Cheat (VAC), viewed June 2006,
http://developer.valvesoftware.com/

[19] United Admins Limited, 2006, Cheating Death and HLGuard, viewed
June 2006, http://www.unitedadmins.com/

[20] Valve Software Inc., http://www.valvesoftware.com

[21] Even Balance Inc., http://www.evenbalance.com

[22] United Admins Limited, http://www.unitedadmins.com

[23] Fkn0wned.com, Downloads, viewed January 2007,
http://www.fkn0wned.com/

[24] CSH-Network, Counter-Strike Source Downloads, viewed January 2007,
http://www.mirc-scripts.de/

[25] P. Hoel, Introduction to Mathematical Statistics, 5th Edition, John Wiley
& Sons, 1984.

12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS 2007)
0-7695-2895-3/07 $25.00 © 2007

