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Uncertainty quantification (UQ) is an important benchmark to assess the performance of
artificial intelligence (AI) and particularly deep learning ensembled-based models. However,
the ability for UQ using current AI-based methods is not only limited in terms of compu-
tational resources but it also requires changes to topology and optimization processes, as
well as multiple performances to monitor model instabilities. From both geo-engineering
and societal perspectives, a predictive groundwater table (GWT) model presents an
important challenge, where a lack of UQ limits the validity of findings and may undermine
science-based decisions. To overcome and address these limitations, a novel ensemble, an
automated random deactivating connective weights approach (ARDCW), is presented and
applied to retrieved geographical locations of GWT data from a geo-engineering project in
Stockholm, Sweden. In this approach, the UQ was achieved via a combination of several
derived ensembles from a fixed optimum topology subjected to randomly switched off
weights, which allow predictability with one forward pass. The process was developed and
programmed to provide trackable performance in a specific task and access to a wide variety
of different internal characteristics and libraries. A comparison of performance with Monte
Carlo dropout and quantile regression using computer vision and control task metrics
showed significant progress in the ARDCW. This approach does not require changes in the
optimization process and can be applied to already trained topologies in a way that out-
performs other models.
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INTRODUCTION

Groundwater is one of a nation’s important
natural resources but its incorporation with level in
terms of groundwater table (GWT) dedicates a
nonlinear time-dependent concern in many geo-

engineering projects (Hu & Jiao, 2010; Parry et al.,
2014; Tang et al., 2017; Salvo et al., 2020). Modeling
of GWT is applied to conceptualize and integrate
knowledge on the natural and engineering disci-
plines to address a range of issues in different spatial
and temporal scales (Mohammadi, 2009; Yeh et al.,
2015; Bizhanimanzar et al., 2019). However, due to
several embedded nonlinear complexities in the
system, modeling of GWT is an inherently difficult
task. Moreover, the sources of uncertainties related
to model parameters, underlying conceptual
assumptions, structure of model, geological condi-
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tions, observed spatial data (i.e., lack of data on
natural variability), and steady-state GWT should be
considered (Beven & Binley, 1992; Stedinger et al.,
2008; Yeh et al., 2015; Hauser et al., 2017). As a
result, computer code models have primarily been
developed over simplified assumptions using long-
term time series through different approaches, such
as statistical techniques, approximation methods and
numerical analyses (Rushton, 2003; Yan et al., 2018).
Therefore, evaluating the robustness and accuracy
performance of a predictive GWT model using
uncertainty quantification (UQ) analysis is often
required. Nowadays, alternative modern computa-
tional artificial intelligent techniques (AIT) lead to
systematic UQ analysis that can be applied effec-
tively to generate a GWT model (Guillaume et al.,
2016; Sahoo & Russo, 2017; Chen et al., 2020;
Wunsch et al., 2020; Yin et al., 2021).

Uncertainty can simply be described as knowl-
edge situations involving imperfect or unknown
information (Gärdenfors & Sahlin, 1982). To quan-
tify uncertainty, three sources including physical
variability of equipment, data, and model error
should be considered (Barford, 1985; Kennedy &
O’Hagan, 2001). In the modeling process, methods
UQ are described in the context of different factors,
such as input variabilities, assumptions and approx-
imations, measurement errors, and sparse and
imprecise data (Yan et al., 2015). In the literature,
statistical techniques, sensitivity analyses, Taylor
series approximation, Monte Carlo simulation,
numerical estimation, and probability distributions
are the most commonly used methods for UQ (e.g.,
Cox & Baybutt, 1981; Glimm & Sharp, 1999; Bár-
dossy & Fodor, 2001; Uusitalo et al., 2015; Elam &
Rearden, 2017; Asheghi et al., 2020). However,
when using these techniques for value-based judge-
ments, all sources of uncertainty may not be quan-
tifiable (Morgan & Henrion, 1990). The taxonomy of
different methods applied to UQ are given in Fig-
ure 1.

In statistical techniques, UQ is based usually on
the estimated variance and determined confidence
limits by assuming normally distributed error (e.g.,
Eisenhart et al., 1983; Cacuci & Ionescu-Bujor, 2004;
Jiang et al., 2018; Zhang et al., 2020). Because
quantification is most often based on statistical in-
dices (e.g., mean, median, population quantiles) due
to limited sample size, estimations must be provided
with the associated confidence intervals (Geffray
et al., 2019). Therefore, due to underlying founda-
tions, such as measurement errors, material prop-

erties, unknown design demand models, and
stochastic environments, the applicability of statis-
tical techniques is limited (Taper & Ponciano, 2016).
The Taylor series approximation can be used to
determine theoretical error bounds but is very
complex to derive and it tends to increase quickly
the risk of error (Barrio et al., 2011). Monte Carlo is
applied mainly to explain the probability density
function but it is a complex process and requires
several simulations and computational resources
when the dataset is large. Therefore, it only provides
statistical estimates of results, not exact fig-
ures (Atanassov & Dimov, 2008). Results of
numerical methods of UQ, which are simulated by
computer codes, inherently involve error or uncer-
tainty. Such drawbacks can be addressed in part by
defining the error magnitude or bound the error in a
given simulation (Freitas, 2002). By using probabil-
ity distributions, accurate information on the
uncertainty can be achieved, but infinite extension
along either side of the most probable region creates
a sophisticated situation that is difficult to interpret
(Kabir et al., 2018). Moreover, quantitative mea-
sures may bias the description of uncertainty to-
wards the more computational components of the
assessment (Bárdossy & Fodor, 2001). Therefore,
the concepts and methods used for UQ make it
difficult to communicate the results effectively. This
implies that the analysis for UQ through ensemble
methods is one of the main benchmarks to assess the
performance of complex systems (Vrugt & Robin-
son, 2007; Zhang et al., 2021), especially in geo-
engineering and GWT predictive modeling, which
often suffer from inadequate experimental or data
(e.g., Whitman, 2000; Wu & Zeng, 2013; Sepulveda
& Doherty, 2015; Huber, 2016; Li et al., 2018;
Chahbaz et al., 2019). Furthermore, computing the
contribution of each error component on total
uncertainty is difficult and it leads to extreme
weighting schemes with applicability that is often
questionable. Therefore, no unified applicable
methodology exists for combining uncertainties.
Because these methods typically yield an estimate of
the total variance of measurement values, reliance
on statistical variance can produce misleading re-
sults that are not readily applicable (e.g., Goodman,
1960; Yager, 1996; Borgonovo, 2006; Farrance &
Frenkel, 2012).

Due to the revolution of different types of AITs
in recent years, and deep neural networks (DNNs)
in particular, these mechanisms have shown
impressive state-of-the-art performance on a wide
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variety of engineering tasks dealing with challenging
scientific data analysis and UQ problems (e.g., Vrugt
& Robinson, 2007; Chahbaz et al., 2019; Abbaszadeh
et al., 2020; Hernandez & Lopez, 2020). However,
despite the rapid emergence of AIT and the subse-
quent DNN-based UQ (e.g., Krzywinski & Altman,
2013; Gal & Ghahramani, 2016; Zhu et al., 2019), the
performance of these methods may suffer from a
series of shortcomings, such as complexities arising
from topology and hyperparameter choices (Ashe-
ghi et al., 2020), computational cost for multiple
trainings, and weak performance due to model
instabilities (Foong et al., 2019). Moreover, because
DNNs tend to produce overconfident predictions,
accurate outcome, especially in out-of-domain data,
is an important issue (Loquerico et al., 2020; Klotz
et al., 2021). Moreover, current DNN-based meth-
ods of UQ, such as Monte Carlo dropout (MCD)

(Gal & Ghahramani, 2016) or quantile regression
(QR) (Weerts et al., 2011), behave differently at
training and inference time due to implemented
changes in topology and optimization processes.

When using the MCD, UQ is performed
through a set of trained topologies, which are sub-
jected to randomly removed neurons, while in the
QR, UQ is based on a conditional quantile of a
dependent variable without assuming any specific
conditional distribution. However, these methods
typically ignore prior knowledge about the data and
consequently tend to make assumptions that lead to
oversimplification and thus underestimate uncer-
tainty (Waldmann, 2018). Such concerns imply that
developing new schemes or approaches to present
robust UQ is still a crucial challenge with a
tremendous potential for application in complex

Figure 1. Taxonomy of UQ methods.
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geo-engineering problems, particularly for GWT
pattern modeling.

In Sweden, the GWT is an important part of
sustainable ecosystems and for human water con-
sumption. However, the GWT pattern can be af-
fected by geo-engineering projects in combination
with changes in the natural variability and the cli-
mate. Due to the significant benefits offered by an
adequately accurate predictive model and the ap-
proved efficiency of AIT in providing more precise
solution than many simulation processes, this paper
addresses and then examines a new approach of
systematic analysis for UQ through the development
of an automated procedure.

Therefore, a novel state-of-the-art ensemble
automated random deactivating connective weights
approach (ARDCW) is proposed herein. In this
framework, instead of dropping neurons, the con-
nective weights between layers of the identified
optimum topology are deactivated randomly. To
overcome the problem of overfitting and to avoid
being trapped in local minima, the ARDCW uses
several embedded internal and nested loops to
monitor all the topologies based on different
hyperparameters. This approach was then applied
experimentally to 244 sets of GWT geolocation data
in an urbanized area of Stockholm. Due to the use of
the optimum topology, ARDCW led to a state-of-
the-art performance of UQ whereby the produced
multiple predictions can be interpreted in terms of
average errors. In comparison to other methodolo-
gies such as MCD and QR, the evaluated and
compared performance of ARDCW showed supe-
rior capability in the spatial prediction of GWT.

STUDY AREA AND DATA SOURCE

The study area, which contained 357 investi-
gated GWT wells, encompasses 20 km of an ongoing
highway project in south Stockholm, Sweden.
Among the monitored GWT data, 244 points were
screened and compiled from continuous recorded
intervals from 19 to 25 September 2020. The location
of the study area with respect to the generated long-
term map of spatial monitored GWTs for the en-
tirety of Sweden is presented in Figure 2a, which
was retrieved from Geological Survey of Sweden. As
shown in Figure 2b, in the northwest of the study
area, Mälaren Lake controls the GWT toward the
downstream, while the coverage in the northeast
consists of bedrock outcrop incorporated with

intermediate soil-filled valleys. This implies that the
topographical variation in the surface of the bedrock
dominantly controls the groundwater flows. The
GWT in the high terrain Masmo hills, located in the
middle of the study area (Fig. 2b), mostly follows
the surface topography, but without connecting to
any nearby aquifers. To the southwest (Fig. 2b),
homogenous bedrock and a uniform GWT pattern
can be observed. However, in the southeast of study
area, the bedrock is highly heterogenic without
uniform GWT levels due to the influence of cracking
on hydraulic connectivity. An integrated spatial
distribution of groundwater aquifers with the GWT
data over the entire study area is presented in Fig-
ure 2c.

A SUMMARY OF UQ ANALYSIS USING
AIT

UQ, as one of the main challenges in AIT,
needs extensive exploration. However, currently,
the focus is often on giving a best estimate as defined
by a loss function. Referring to Figure 1, Bayesian
techniques (MacKay, 1992) are the main AIT-based
framework for UQ. However, they are often com-
putationally slow and difficult to train because they
are traditionally formalized through parametric
probability distributions of network activations and
weights (Hernandez-Lobato & Adams, 2015). Sam-
pling technique (Gal & Ghahramani, 2016) is an-
other method used for UQ, but due to inability,
explicitly modeling generates overconfident predic-
tions (Hernandez & Lopez, 2020). Because an input
with large noise provides wider model uncertainty
than the same input with lower noise, the risk of
underestimated uncertainties is increased because
sampling-based methods generally disregard the
relationship between data and model uncertainty
(Bárdossy & Fodor, 2001; Gal & Ghahramani, 2016;
Kabir et al., 2018).

Despite the significant performance of the
Markov chain Monte Carlo (MCMC) in UQ, it is
mostly appropriate for small networks and thus
computationally expensive for large DNNs (Quino-
nero-Candela et al., 2006). However, this short-
coming can be overcome using stochastic gradient
MCMC (Chen et al., 2014), which only needs to
estimate the gradient on small sets of mini batches.
Because MCMC requires a significant amount of
time to converge on a desired distribution, the suf-
ficient number of iterations is unknown (Neal, 2012).
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Therefore, to provide a relatively faster approximate
Bayesian solution, different methods such as varia-
tional inferences, assumed density filtering, expec-
tation propagation and the stochastic gradient
Langevin diffusion technique have been introduced
(Lakshminarayanan et al., 2017). However, the
posterior UQ in the variational method is typically
underestimated rather than overestimated in the
expectation propagation technique.

QR is a type of powerful regression analysis that
estimates the conditional median (or other quan-
tiles) of the response predicted values, where the
quantile itself is a parameter for the loss function.
This implies that for each quantile, the training
process should be analyzed through individual
asymmetric weighting (Yang et al., 2016). Accord-
ingly, a trained model, when subjected to different
quantiles, generates different bounds that picks out
the conditional quantiles away from the median, that

is, the 95% prediction intervals can be found when
subjected to the quantiles 0.025 and 0.975. The mean
square error, as the most commonly used loss func-
tion, would then correspond to the Gaussian distri-
bution. Accordingly, the mode (peak) of this
distribution corresponds to the mean parameter, and
DNNs predict the mean value of the output, which
may have been noisy in the training set. Moreover,
the dependency of the quality of prediction on
computational complexity, degree of approximation
and correctness of the prior distribution implies that
UQ using these methods cannot be guaranteed to
provide underlying beliefs (Hirschefeld et al., 2020).

UQ can be performed using ensemble-based
methods, whereby inputs are trained and passed
through multiple networks (Fig. 3a). Greater accu-
racy can be achieved by using such methods than
any individual model because the predictions vary
across multiple runs of a set of models M = {M1, M2,

Figure 2. (a) Distribution of GWT in Sweden. (b) Digital elevation map overlaid on a satellite image of the study area. c Mapped aquifers

and monitored GWT data in the area. (a) and (c) were retrieved from Geological Survey of Sweden.
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…, Mn} rather than training a single Mi. However,
the primary drawback of any ensemble-based
method of UQ is the increased training time,
depending on the size of the ensembles. As pre-
sented in Figure 3, in addition to ensemble methods,
the UQ can be based on mean–variance, distance-
based strategies and union-based strategies (Angiulli
& Fassetti, 2020; Hirschefeld et al., 2020; Zhang
et al., 2020). The problem with training Bayesian
neural networks for large data sets can be solved by
using mean–variance estimation, where the output
layer is modified and trained using a negative log
likelihood loss to predict both the mean and vari-
ance of the interested input (Hirschefeld et al.,
2020). Through distance-based methods, the mini-
mum distance between each interested prediction
from its nearest neighbors in the training set is
interpreted as uncertainty. The larger the distance
between the training sets and predictions, the higher
the error and thus the greater the uncertainty (An-
giulli & Fassetti, 2020). However, significant sensi-
tivity of the calculated distance to outliers is the
major drawback of this estimator in UQ. The union-
based method (Huang et al., 2015) is a combined
confidence estimator, where the output of the
trained neural network is fed to another model to

provide an ensemble model and thus calculate
uncertainty into the task-specific latent space.

The MCD (Gal & Ghahramani, 2016) is one of
the most widely used methods for UQ and it can
even be implemented on an already trained model.
In this procedure, any trained topology with drop-
outs is used to prevent overfitting and can thus be
interpreted as an approximate inference of the
posterior weights. Accordingly, the average of mul-
tiple predictions for the analysis of distributions is
considered to calculate meaningful variance. In a
fixed topology during the MCD process, all in/out
connective weights and biases of dropped neurons
are ignored. This implies that in each dropout, the
data are trained using a different topology, while
none of these connectives participate in the predic-
tion process nor will they be updated. Therefore, the
dependency of UQ on the dropped neuron and
internal hyperparameters is the main drawback of
MCD. Moreover, due to the training of several
topologies, the produced approximations can be
categorized in ensemble techniques, which signifi-
cantly enable improved overall performance (Diet-
terich, 2000). In comparison to the Bayesian
approach (MacKay, 1992), which attempts to aver-
age and thus find the single best model (or param-
eters), ensembles combine the topologies to obtain a

Figure 3. Simplified schematic of different strategies for UQ: (a) ensemble-based, (b) distance-based, (c) mean

variance and (d) union-based. PE = predicted error. PV = predicted variance.
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more powerful model. Therefore, ensembles poten-
tially provide a complementary source for predictive
UQ. Referring to Figure 4, UQ through the MCD is
performed over multiple networks at the test time,
where a model with n neuron can provide a collec-
tion of 2n possible topologies as an ensemble com-
bination (Srivastava et al., 2014).

PROPOSED UQ APPROACH

In recent years, UQ using different AITs has
increased because the provided models can offer
simple but precise solutions in many engineering
simulation problems. Systematic UQ can be applied
by considering a combination of several compo-
nents, including data, model structure and parame-
ter values. This implies that UQ should be
conceptualized in a concrete mathematical sense
and thus be amenable for programming. Because
noise will be produced in each random dropping,
which will affect results, therefore, mathematically,
the performance and predictability of the DNN
structure should always be evaluated with the orig-
inal optimum model. By using the dropout concept
integrated with the optimum topology, the ensemble
automated random deactivating connective weights
(ARDCW) approach was proposed. The ARDCW is
focused solely on randomly switched off weights, not
neurons, where the remaining weights are forced to
participate in learning processes and assist in
decreasing the overfitting. Accordingly, this ap-
proach uses an optimum trained topology capable of
performing a given task even when the weights are
randomly sampled. This implies that the training of
multiple different topologies is avoided, as the
uncertainty will be estimated by changing the
internal assigned weights of a fixed optimum model.

In a DNN topology, all m neurons of a layer are
associated with probability p, otherwise they are
dropped (set to zero), with probability 1- p (Hinton
et al., 2012). According to probability theory, the
expected value of a random variable (E[X]) is a
generalization of the weighted average with proba-
bilities of pi as:

E X½ � ¼
Xn

i¼1

xipi where
Xn

i¼1

pi ¼ 1 ð1Þ

Mathematically, for a constant random variable,
E[X = c] = c. Therefore, E[X] with equiprobable
outcomes {c1, c2, …, cn} expresses the arithmetic

mean of the terms with probabilities P(X = ci).
Using this concept, the impact of dropped weights
(ŵij) in UQ can be described with mean field theory
(Kadanoff, 2009) as:

ŵij ¼
wij with pðcÞ
0 otherwise

�
ð2Þ

where P(c) denotes the probability of keeping a
weight, whereby the implemented neurons are kept
with the probability p and otherwise will drop (0)
with probability 1-p. This implies that the UQ can be
generalized by dropping the connective weights with
probability 1-p rather than the neurons (Wan et al.,
2013). Consequently, in a topology with h hidden
layers, where Z(l) and y(l) denote the vector of inputs
into and output from layer l e {1, 2, …, h}, the feed-
forward process is described as:

z
ðlþ1Þ
i ¼ w

ðlþ1Þ
i yl þ b

ðlþ1Þ
i ð3Þ

y
ðlþ1Þ
i ¼ f z

ðlþ1Þ
i

� �
ð4Þ

where w
ðlþ1Þ
i , b

ðlþ1Þ
i and f denote the weight, bias and

applied activation function, respectively. Referring
to neural network topology, the activity of dropout

weight of the ith neuron in hth hidden layer ( ah
i ),

and consequently the corresponding output ( Oh
i ),

can be expressed as:

ah
i ¼

X

l\h

X
j
whl

ij d
l
ija

l

j
with a0

j ¼ Xj ð5Þ

Oh
i ¼ f ah

i

� �
¼ f

X

X\h

X
j
whl

ij d
l
ija

l

j

 !
with O0

j ¼ Xj

ð6Þ

where dl
ij is a gating 0-1 Bernoulli variable with P(

dl
ij=1) = pl

j. Therefore, in dropout, the output of

layer l using element-wise product (*) is then pre-
sented as:

z
ðlþ1Þ
i ¼ w

ðlþ1Þ
i pl

i � yl
� �

þ b
ðlþ1Þ
i ð7Þ

Accordingly, the expectation of the activity of
all neurons for a fixed input vector taken over all

possible dl
ij variables, and thus the possible ensemble

models, can be achieved as:

Eðah
i Þ ¼

X

l\h

X
j
whl

ij pl
jEðal

j
Þ for h[0 ð8Þ
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The dropout is not applied on a fixed input that

produces a constant output in the lth layer ( Ol
j);

thus, the dropout on the hth hidden layer is then
presented as:

Var ah
i

� �
¼
X

l\h

whl
ij

� �2
Ol

j

� �2
pl

jð1� pl
jÞ ð9Þ

where Var is the variance. Therefore, the expecta-
tion of dropout gradient as a random variable is the
regularized ensemble error associated with all pos-
sible models (Eens) and is expressed as:

E
@ED

@wi

� �
¼

@ð0:5ðt �
Xn

i¼1
piwiXiÞ2Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{regularized Eens

@wi
þ wipið1

� piÞX2
i

@ð0:5ðt �
Xn

i¼1
piwiXiÞ2Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{regularized Eens

@wi

þ wiX
2
i VarðdiÞ

ð10Þ

E½dropoutgradient� ¼ Eens þ 0:5
Xn

i¼1

w2
i X2

i VarðdiÞ

ð11Þ

where t is the target value of input Xj and ED de-
notes the error of the network with dropout. With
recourse to Eqs. 8 and 11, additional layers corre-
sponding to real-valued output for error or variance
can be attached to the optimum topology. This im-
plies producing a multi-objective model, where the
output of error and variance are also predicted using
the same fixed optimum DNN with an added lay-
er(s).

Referring to presented block procedure of the
proposed ARDCW (Fig. 5), it does not require any
changes in optimum topology and thus can even be
used for already trained models. In this process, the
optimum topology was captured through the pro-
posed automated strategy by Abbaszadeh et al.
(2021b). The performance of the optimum model is
then monitored through the randomly sampled
deactivated weights using an automated dropout
procedure for the achieved database. Since all
deactivations occur for the one optimum topology,
the ARDCW captures different models and, as
shown in Figure 3a, it can be interpreted as an
ensemble-based Bayesian approximation of the
Gaussian process probabilistic model. Accordingly,
the inadvertent tuning on the model is addressed
through a regularization strategy, which needs a
robust implementation that accounts for floating-
point stability and reproducibility in geo-engineer-
ing-related problems. The minimum number of
sampled weights in this study is 1, while the maxi-
mum number of desired droppings was set at 50% of
the whole connective weights. Although selecting
this rate for dropout is flexible and user defined, the
dependency on the topology and network type
(shallow or deep) that overfits the training data
should be considered. Moreover, the greater the
number of deactivations, the more examined
ensembles, which thus requires more analysis time.

As an advantage, in each examination, the
model is trained using a constant topology but with a
different set of randomly deactivated weights in the
layers. Therefore, the outcome can be considered as
an averaging ensemble of many different models
trained on one batch of data only. The ARDCW can
be regularized to calculate the mean and variance of
randomized data and can then predict unlabeled

Figure 4. Overview of MCD modeling process mimicking ensemble-based method (highlighted and dash lines correspond to

dropped neurons and weights).
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data. Moreover, using the optimum model will
minimize the problem of overfitting, while the
overall performance of the DNN topology due to

randomly switched off weights in each layer be-
comes less sensitive.

Figure 5. Block diagram of the proposed ARDCW approach for UQ modeling (n: number of weights, Wi: weight components,

J: number of models, m: number of randomly sampled weights).

1359A Novel Approach to Uncertainty Quantification



RESULTS OF EXPERIMENTAL
APPLICATION

The randomization process increases the pre-
dictability skill of system in training and dedicate
more generalize findings. It then leads to more
powerful developed predictive systems in evaluating
the unseen data. This implies that, through random
shuffling, the chances of last few batches being dis-
proportionately noisy will reduce. Because there are
no special rules in percentage of randomizations, 65,
20 and 15% for training, testing and validation were
used (e.g., Xu & Goodacre, 2018; Ghaderi et al.,
2019). In configuring the optimum model, the regu-
larization and tuning of hyperparameters (e.g.,
training algorithm, number neurons, layer arrange-
ments, learning rate, activation function and archi-
tecture) played a significant rule to overcome
trapping in local minima, overfitting and early con-
vergence. Therefore, the automated approach pro-
posed by Abbaszadeh et al. (2021a) as presented in
Figure 5 was employed to capture the optimum
model. This system using several inner nested loops
integrated with constructive technique can auto-
matically monitor the different combinations of
hyperparameters and thus provide faster learning
procedure. According to Figure 5, by applying 65%
of the 244 compiled GWT data, a 3-32-8 topology
subjected to hyperbolic tangent activation function
trained with quasi-Newton algorithm was considered
as the optimum, which was then retrained using two
extra predicted outputs, including the error and
variance. Considering the y and ŷ as the target and
model output, respectively, the error and variance
were predicted through (y � ŷ) and (y � ŷ)2.
Referring to Figure 4, a series of models was re-
trained using the updated dropout weights database
(Fig. 5) subjected to the fixed defined custom loss
function in optimum topology for each mini batch.
To visualize the range of predicted distribution, the
results of the randomly deactivated weight using K-
fold validation for a series of dropout test sets are
presented in Figures 6 and 7. Accordingly, Figure 6a
shows the variation of the predicted GWT from all
the K-fold validations using ARDCW, and uncer-
tainties at each point can be estimated from these
outcomes. Subsequently, the errors between the
observed and predicted GWT in each K-fold vali-
dation are reflected in Figure 6b, which shows high
error values and thus high uncertainties at data
points. Figure 6c depicts the variance of errors as
described where uncertainties are high. According

to these outcomes, PE and PV derived from UQ,
when subjected to different random dropouts are
more preferred due to lower variance estimators.
Proper experimental measurement associated with
an estimated level of confidence not only allows a
scientific hypothesis to be confirmed or refuted, but
also facilitates the judgments on the quality of the
data and leads to meaningful comparisons with other
similar values or predictive models. Accordingly,
95% prediction interval (PI), which is often used in
regression analysis, shows the certain probability of
an estimation of future observation (Fig. 8).

Due to the dynamic nature of areas without
data, creating a 3D visual perspective depicting the
predictive spatial distribution of the GWT levels is a
challenging task, but this can provide more utility in
interpreting the subsurface characterization (Ab-
baszadeh et al., 2020, 2021a). However, the level of
accuracy and the confidence of the model can vary
depending on the quality of available data and the
approach. This is the reason why pseudo data can
therefore play an important role in building knowl-
edge for unsampled locations (Tacher et al., 2006;
Cruzes & Dyba, 2011; Abbaszadeh Shahri et al.,
2020). Figure 9 shows the step-by-step creation of
the 3D model of the study area depicting the re-
trieved outlines of the uncertainties. In this process,
the produced digital elevation model of the area
(Fig. 9a) was incorporated with the 3D spatial dis-
tribution of acquired GWT (Fig. 9b) and corre-
sponding results of the automated predictive
optimum topology (Fig. 9c). The estimated uncer-
tainties of the optimum topology in the level of 95%
using the proposed ARDCW were then added
(Fig. 9d, e). Referring to the estimated uncertain-
ties, more comprehensive spatial GWT patterns can
be realized to avoid the relevant risk of facing
aquifers during geo-engineering projects. Due to the
ease of updating with new data, the flexibility of such
models provides a preferred tool for geo-engineers
and decision planners in the observation and anal-
ysis of geo-environmental engineering issues within
a project.

DISCUSSION AND VALIDATION

Predictive AIT-based models are indispensable
tools in geo-engineering applications, not only to
ensure the function in labeled variables but also to
estimate uncertainty in unlabeled data. In recent
years, several studies have been dedicated to the
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importance of UQ in GWT modeling and decision-
making at different scales (WWAP, 2012; Middlemis
& Peeters, 2018). However, from geo-engineering
point of view, each parameter of a geologic object
can be a source of uncertainty and, thus, in practice,
the number of involved sources can be innumerable.
To evaluate the robustness and accuracy of the
predictive spatial pattern of GWT, UQ is often re-

quired. Because standard AIT-based procedures of
UQ are still limited, developing an efficient method
that uses DNN predictive models in particular is of
great interest for industrial-scale and real-world
applications. In the current paper, the presented UQ
approach, ARDCW, is discussed and validated using
contour maps of predicted error in different drop-

Figure 6. Predictability of the optimum model subjected to applied dropouts in training and testing stages for GWT (a) data,

(b) mean and (c) variance.

Figure 7. Comparison of distributions of optimum and dropout models for (a) training and (b) testing data sets.
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outs, accuracy metrics and success rate, and by
comparison with MCD and QR.

Effects of Dropout on Estimated Uncertainty

This concern was monitored by comparing
variations of captured distributions in post and prior
predictions with respect to the optimum topology.
These variations are referred to in the ARDCW by
using the saved updated database for each examined
model (Fig. 5). The comparison of different post
distributions and the corresponding residual contour
map of the area are given in Figure 10 to show how
the dropped weights can influence on the variation
of the captured functions in the optimum topology.
Therefore, the uncertainty of the optimum model
can be evaluated through the sampled weights,
where each plot depicts a single draw from the prior
functions. Accordingly, multiple repetition of
ARDCW can inspire an idea of the prior functions
and weight matrices over the fed inputs, which help
to find a function to fit variational objective data
with the minimum penalty with respect to the prior
distribution in the optimum model. This implies that
in case of a lack of observations, the uncertainty can

be interpreted through the interpolation of unla-
beled predictions.

Uncertainty is generally evaluated from data
and models due to the presence of noise and an
imbalanced training data distribution (Loquerico
et al., 2020). In AIT-based models, the source of
uncertainty occurs when the feed data are mis-
matched, where smaller differences between the
observed GWT and those predicted by ARDCW
show a higher degree of safety in the prediction
process (Fig. 11a, b). Subsequently, stronger differ-
ences can be interpreted as higher uncertainties in
prediction. Accordingly, the performance of the
optimum and examined GWT models using
ARDCW, as well as error for the measured and
unlabeled prediction datasets, are given in Fig-
ure 11c and d.

Figure 8. Calculated PI using the optimum model for GWT (a) data, (b) predicted mean and (c) predicted variance.

Figure 9. Incorporating results

of predictive optimum topology and the proposed ARDCW in

visualizing the estimated uncertainty: (a) surface of the area, (b)

measured GWT, (c) predicted GWT, (d) upper and lower limits of

estimated uncertainties, and (e) overlay of supplementary

perspective for the entire study area.

1362 Abbaszadeh Shahri, Shan, Larsson



1363A Novel Approach to Uncertainty Quantification



Comparing Different Uncertainty Models

Statistical Metrics

The coefficient of efficiency (Ec) (Nash & Sut-
cliffe, 1970) is one of the most widely used metrics
for evaluating the performance of hydrologic mod-
els, thus:

Ec ¼ 1:0�
PN

i¼1 Oi � Pið Þ2
PN

i¼1 Oi � O
� �2 O : observedmean

ð12Þ

where N is the total number of GWT data, Oi and Pi

denote observed and predicted data, Ece is interval
(� ¥, 1.0] in which the value of 1.0 expresses perfect
fit. Ec = 0 reflects large variability in the observed

data, while Ec< 0 indicates that the O would have
been a better predictor than the model. Further, Ec

is the ratio of mean square error (MSE), thus:

MSE ¼ N�1
XN

i¼1

Oi � Pið Þ2 ð13Þ

Therefore, Ec represents an improvement over
the coefficient of determination for model evalua-
tion purposes in that it is sensitive to differences in
the observed and model simulated means and vari-
ance (Leavesley et al., 1983; Wilcox et al., 1990).

To cover the lack and insensitivity of Ec and R2

in considering the calculated square differences be-
tween the observed and predicted means and vari-
ances (Legates & McCabe, 1999), the index of
agreement (Willmott, 1984), which is the ratio of
mean square and potential errors is defined as:

IA ¼ 1�
PN

i¼1 Oi � Pið Þ2
PN

i¼1 Pi � O


 

� Pi � O



 

� �2 ð14Þ

The percentage of observed GWT (NGWT)
bracketed by confidence interval (CI) in the 95%

level ( P95%
CI ) is defined as:

P95%
CI ¼ NGWT

N
� 100 ð15Þ

whereby the properly modeled uncertainty is justi-
fied based on the closeness to 100%.

Referring to Jin et al. (2010), the quality of the
predicted uncertainty can be assessed using the
average relative interval of the CI (ARIL), thus:

ARIL%95
CI ¼ 1

n

Xn

i

UCLGWT
pred;i � LCLGWT

pred;i

GWTobs
i

ð16Þ

where UCLGWT
pred;i and LCLGWT

pred;i express the calculated

upper and lower CI of the ith predicted GWT, and n
is the number of total observations; thus, a lower

ARIL%95
CI value represents better performance.

A comparison of the above indices in evaluating
the predicted uncertainty using three different
methods, namely ARDCW, QR and MCD, is given

in Figure 12 and Table 1. Referring to P95%
CI , al-

though both ARDCW and QR showed competitive
coverages of the true GWT levels (95%) with re-
spect to MCD (68%), the ranking score of ARDCW
was superior to those of the other methods. The
closeness statistics of the ARDCW and QR methods
can be interpreted as similar properties of posterior
distribution of predicted GWT for these methods.

Success Rate Using Confusion Matrix

A confusion matrix can intuitively describe the
performance of a model based on a set of data using
the true labeled instances (Asheghi et al., 2019). This
concept conceptualizes the error probabilities of
developed models in assigning the individual pre-
dicted outputs into the classified input. The best
performance is defined by zeroes, except on diago-
nals. Referring to obtained confusion matrix (Ta-
ble 2), ARDCW and QR methods provide more true
predicted instances (33 and 29 out of 37) compared
to MCD. As presented in Table 3, the performance
of ARDCW in terms of classification accuracy and
misclassification error at an 89% correct classifica-
tion showed 22 and 14% improvement in estimated
uncertainty over those by MCD and QR, respec-
tively.

Uncertainty Intervals in Studied Area

Sufficiently accurate modeling procedures are
essential tools in subsurface geo-engineering disci-
plines to reflect fidelity between the real and coun-
terparts. However, despite enhanced computational
power, different sources such as modeling errors in
describing the real system, numerical errors gener-
ated by mathematical equations, and data errors
caused by uncertainties can cause the appearance of
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Figure 10. Contour maps of residuals for different results of ARDCW.

Figure 11. Variations of predicted GWT and error for (a), (c) validation data and (b), (d) unlabeled data.
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differences. A critical part of prediction is assess-
ment of how much a predicted value will fluctuate
due to noise or variations in the data. Figure 13
shows the 95% uncertainty intervals estimated using
ARDCW for the studied area. It can provide the
distribution of different uncertainty levels and it
gives an indication of the reason for high uncer-
tainties; for example, if uncertainty arises from lack
of observed data or from sudden big changes in the
groundwater levels. This map can also help in the
planning of future data collection and determining
where to drill more groundwater boreholes to re-
duce high uncertainties in estimating the ground-
water surface.

Comparison of CI and PI

Due to the dynamic nature and time-dependent
behavior, the exact modeling of GWT problems is a
complex issue to resolve. The time-dependent GWT
data points over an interval can benefit from outlier
removal to present an overall perspective of varia-
tion in the study area as well as a better analysis and
understanding and thus uncover patterns in datasets
for future forecasting (Shumway, 1988; Keogh &
Kasetty, 2003). However, the problems regarding
generalization from a single study, difficulty in
obtaining appropriate measures, and accurately
identifying the correct model to represent the data
should be considered.

Therefore, the bias and discrepancy of the ap-
plied models can be interpreted through comparison
of the estimated uncertainty. Statistically, a predic-
tive model is stable and under control if most of the
predictions fall within the range of the CI. This
range refers to the long-term success rate of the
method in capturing the predicted output, whereby
the wider the CI, the greater the instability. The CI
level of 95% reflects a range of values where 5% can
contain the false mean of the population. Due to
lack of knowledge, observation error (variability of
experimental measurements) and the underlying
physics in GWT problems, such a comparison
(Fig. 14) can show how accurately a mathematical
model describes the true system in a real-life situa-
tion. Mathematically, the variations in predicted
uncertainty come from the adjusted model parame-
ters and, correspondingly, the implemented algo-
rithm as well as feed input variables whose exact
values are unknown or cannot be inferred by sta-
tistical methods (Kennedy & O’Hagan, 2001).
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Therefore, the dimensionality of an engineering
problem would cause variability in its performance,
whereby the implemented algorithm can provide
discrete numerical uncertainty.

CONCLUDING REMARKS

AI-based models are becoming a standard
computational and decision-making tool in civil and
construction industries. However, due to inherent
complexities, computational costs and poor perfor-
mance, most of the AI-based methods of UQ rarely
make the leap from research to production. There-
fore, in this context the need for a validated coding
procedure able to meet the regulatory requirements
was highlighted in this paper. In order to gain insight
into the predictability level of the complex AIT-
based predictive subsurface geo-engineering model,
an evaluation of the estimated uncertainty using
simulation codes with iterative analyses is required.
Moreover, because a model or method can be ad-
justed using a wide range of internal characteristics,
subsequently presenting reliable but robust uncer-
tainty estimates presents a significant challenge.
Therefore, if AI systems could reliably identify
unlabeled data, they could be deployed with a
greater degree of certainty. This concern is espe-
cially vital for geo-engineering applications, where
the expectation is to achieve the same distribution
for observations and the training data.

In response to greater demand for DNN-based
methods of UQ, the ARDCW, as a new state-of-the-
art approach that applies randomly weighted com-
ponents that dropout at test time, was introduced
and developed. Using ARDCW, the estimated
uncertainty was visualized using the average results
of many ensembled predictive models derived from

a demonstrated learned optimum automated DNN
topology through K-fold validation and randomly
deactivated weights. The issue of underestimated
uncertainty, which is usually observed in most AIT-
based methods of UQ, originates from changes in
model and optimization process. In this point of
view, the ARDCW approach does not require any
changes in the topology and can be applied on al-
ready trained models. Because the ARDCW is built
on a weight database, it does not have restrictions in
application on time-dependent data such as GWT
with sequences of seasonal fluctuations in monitored
data over different intervals of the year. However,
presenting a seasonal time-dependent GWT model
was beyond the scope of this paper.

An experimental application of the proposed
ARDCW was applied to 244 measured GWTs from a
geo-engineering project in Stockholm, Sweden. The
3-32-8-1 predictive DNN topology, as the charac-
terized optimum model, showed significant compe-
tence in comparison with MCD and QR. The results
showed that due to the use of different topologies,
the MCD can behave differently at training and
inference time, while for assured dropout creating a
custom layer with predefined training parameters for
regular dropout should be employed.

Using the ARDCW, the estimated uncertainty
boundaries with 95% level of CI were visualized and
presented on the generated 3D predictive spatial
pattern of subsurface GWT data. This cost-effective
and adequately accurate tool can reflect the poten-
tial risks associated with the distributed spatial
aquifers, thus preventing water inrush, or facing
underground geo-structures. The validity of most
analyzed GWTs with respect to both engineering
and societal challenges is limited in the findings as it
is often not included in uncertainty assessment. This
implies that uncertainty should be estimated in

Fig. 12. Comparison of P95%
CI of the three models based on the validation dataset.
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many previously presented GWT models, which are
intended for efficient decision support. Using the
created 3D predictive model, the geospatial distri-
bution of GWT and corresponding variations within
subsurface geo-formations can be pursued. This
concern can significantly influence the design of
underground transport infrastructures for the city of
Stockholm, where, in geo-engineering perspective
the drainage of the GWT through tunnelling can
cause ground settlements in the surrounding build-
ings. This phenomenon can be particularly prob-
lematic in weak soil/rock formations and manifest as

a defective injection process. Moreover, the created
model can decrease the risk of water inrush from
excavation. By adding more geological data, the
ability to recognize swelling clayey material which is
a major threat in tunnelling projects can also be
achieved. This implies that the presented GWT
model is an indispensable tool for decision makers in
urban development projects (e.g., building detached
homes, roads, railways and bridges), where sub-
stantial land surface processes can be imposed.

Table 3. Improvement of ARDCW in UQ compared to MCD and QR

Model Classification accuracy (%) Misclassification error (%) Progress (%) Improvement compared to other models (%)

Test Validate Test Validate MCD ARDCW QR Rank

MCD 0.69 0.73 0.31 0.27 0.04 – � 22 � 6.8 3

ARDCW 0.77 0.89 0.23 0.11 0.12 22 – 14 1

QR 0.73 0.78 0.27 0.22 0.05 6.8 � 14 – 2

Figure 13. Estimated uncertainty intervals using GWT data (black dots) in the entirety of the study area.
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