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A novel artificial bee colony (ABC) algorithm to detect structural damage via modal and frequency analyses is proposed (named as
TCABC algorithm). Compared to the standard ABC algorithm, tabu search method and chaotic search method are adopted in the
proposed algorithm to enhance the exploration and exploitation ability. +e tabu search method uses a memory function to avoid
the solution being trapped in a local minimum, which increases the exploitation ability. Chaotic search method generates more
searching points for finding the global minimum, which increases the exploration ability. Additionally, the first roulette wheel
selection is replaced by the tournament selection to enhance the global searching ability of the TCABC algorithm. Several explicit
test functions and an implicit damage detection function are employed to check the numerical results obtained from ABC and
TCABC algorithms. Afterward, the damage detection accuracy of the TCABC algorithm is verified under different circumstances,
and several recommendations are given for using the TCABC algorithm to detect structural damages under actual conditions.
Finally, an experimental study is applied to examine the performance of TCABC algorithm for damage detection.+e results show
the following: (1) compared to traditional ABC algorithm, TCABC algorithm performs better; (2) fewer groups lead to faster
convergence as demonstrated by both algorithms used in the same damage situation; (3) TCABC algorithm can infer the locations
and extents of the damage when the groupings are inaccurate; (4) the accuracy of the field test data profoundly affects the precision
of the damage detection results. In other words, stronger noises result in worse identification results; (5) whether or not the noises
exist, the more data are measured, the more accurate the results can be achieved; (6) the TCABC algorithm can efficiently detect
structural damage in the experimental study.

1. Introduction

Early-stage damage detection is one of the main tasks in
structural health monitoring [1], and this task is accom-
plished by fundamental damage detection method and
parameter identification. Once the structural parameters are
identified or the structural uncertainties are reduced, the
corresponding structural numerical model can be updated
and used to predict relevant structural responses under
possible catastrophic events, such as earthquake and hur-
ricane [2, 3]. Besides, with the detected damages, structural
repair cost and maintenance parameters can be dynamically
evaluated [4]. However, traditional local damage detection
methods, such as the visual detection method and x-ray
method, require specific prior knowledge, which is difficult
to obtain. Hence, global damage detection methods based on

physical quantities, such as natural frequencies [5, 6], modal
shapes [7], accelerations [8, 9], static displacements, and
strain responses [10, 11], become popular.
For these global damage detection methods, an idea to

obtain structural damages is to transfer the damage detec-
tion problem to the finite element (FE) model updating
problem; the theoretical basis of the updating is that, in
numerical calculation, a real structure with infinite degrees
of freedom can be discretized into the FE model. +e
structural vibration properties (i.e., frequencies and modal
shapes) vary with the changes in physical parameters (i.e.,
stiffness and mass) of the FEmodel.+us, obtaining physical
parameters via vibration properties is an inverse problem of
modal and frequency analyses or a pattern-recognition
problem [12]. Onemain difficulty of this pattern-recognition
problem lies in a large number of unknowns. To simplify the
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problem, Moslem and Nafaspour [13] assumed that any
change in the properties of each element due to the damage
is equivalent to a change in its elastic modulus. By this
simplification, the FE model updating-based damage de-
tection problem can be formulated as an optimization
problem with a simple-structured implicit objective func-
tion. For example, the norm of the residuals between the
numerical results of the FE model and the test data of the
actual structure is defined as the objective function. Once the
objective function reaches the global minimum, the input
parameters of the FE model will be treated as the physical
parameters of the actual structure.
+e structural damage detection problem is transferred

to find the extreme values of the corresponding objective
function. However, these extrema cannot be seen by the
traditional method because the objective function is
expressed by implicit functions. To overcome this problem,
several metaheuristic algorithms and artificial intelligence
(AI) are used. Perera and Torres [14] identified the damage
of a simply supported beam by genetic algorithm (GA), and
these detection results are better than those calculated with
the method that Hu et al. [15] proposed. Park et al. [16]
updated bridge boundary conditions using artificial neural
networks (ANN) and verified the results by both laboratory
and field tests; it was concluded that the ANN reduces the
uncertainties of the boundary conditions in FE model
updating. Pathirage et al. [12] introduced dimensionality
reduction and relationship learning in the ANN to optimize
the weights in neural networks; the laboratory test indicated
that the detection results of this method are better than the
results of the traditional ANN. Qiao and Yang [17] intro-
duced a quantum search dolphin swarm algorithm (QDSA)
in finding the optimal solution of large-scale functions; they
confirmed that the QSDA has outstanding advantages than
dolphin swarm algorithm (DSA). Kang et al. [18] proposed
an improved particle swarm optimization (PSO) algorithm
to identify structural damages using vibration data, and the
results showed that compared to differential evolution (DE)
algorithm, the improved PSO algorithm is more efficient in
determining the sites and the extents of structural damages.
Qiao et al. [19] combined the Volterra adaptive filter and an
improved whale optimization algorithm (WOA) to predict
the short-term natural gas consumption; the study showed
that the proposed prediction model is better than some
advanced prediction models.
Besides the abovementioned algorithms, the artificial bee

colony (ABC) algorithm also attracted the attention of many
scholars in the optimization area since it was proposed. ABC
algorithm was suggested by Karaboga [20], and this algo-
rithm is motivated by the intelligent behavior of honey bees
when seeking a high-quality food source. In 2009, Karaboga
and Akay [21] first conducted a detailed and comprehensive
analysis of ABC algorithm and tested it with 50 numerical
benchmark functions and other well-known evolutionary
algorithms such as GA, PSO, DE, and ant colony algorithm
(ACO); the results indicate ABC algorithm has several ad-
vantages in getting the extrema of the function than other
methods. In the same year, the influences of changing pa-
rameters in the ABC algorithm were analyzed by Akay and

Karaboga [22]. With the benefits such as simple structure,
easy implementation, and outstanding performance, the
ABC algorithm is widely used in many fields. Awan et al.
[23] applied the ABC algorithm to optimize the connection
weights of neurons in the ANN for electric load forecasting.
Uzlu et al. [24] combined ABC and ANN to predict the
annual output of hydroelectric power in Turkey. Menon and
Ramakrishnan [25] used the ABC algorithm to process brain
tumors segmentation in magnetic resonance images. Wen
et al. [26] applied the ABC algorithm to achieve global
optimization of controlled-source audio-frequency mag-
netotelluric data. However, there are limited researchers
utilizing the ABC algorithm in structural damage detection.
Combining the ABC algorithm with the Nelder–Mead
simplex method, Sun and Betti [27] identified the structural
parameters and the input forces of buildings even when the
structural responses are noise contaminated. By applying the
hybrid search strategy in the ABC algorithm for structural
damage detection, Ding et al. [28] got better identification
results compared with those from GA and traditional ABC
algorithms. Nevertheless, there are some flaws in Sun and
Betti [27] and Ding et al. [28]. +e calculations of Sun and
Betti [27] are purely numerical-based and lack of experi-
mental verification. +e data from the experiment are dif-
ferent from those artificially assumed and used in the
numerical models. So, an experimental study should be used
as a verification after the numerical study; Ding et al. [28] did
not consider several factors that influence the target function
and corresponding identification results. However, the
implicit target function highly relies on the observed fre-
quencies and modal shapes, and these observed data are
easily affected by the test conditions such as grouping, noise
effect, mode shape order, and sensor location, which should
be taken into account.
Based on the fact that there are limited research studies

in ABC-based structural damage detection, and the assumed
identification condition is relatively simple. In this study,
ABC algorithm combined with the tabu search method [29]
and chaotic search method [30] (named as TCABC algo-
rithm) is used to detect structural damages under different
identify conditions such as grouping, noise effect, mode
shape order, sensor location and is also evaluated by several
explicit test functions. Recommendations for realistically
using the TCABC algorithm in damage detection are also
put forward. Furthermore, an experimental study is used to
examine the damage detection results of TCABC algorithm.
+e rest of the paper is organized as follows. Section 2

describes how the structural damage detection problem is
transferred to an optimization problem; traditional ACB
algorithm and proposed TCABC algorithm are presented in
Section 3, and their numerical results are compared in
Section 4; also, in Section 4, the accuracy of TCABC algo-
rithm for damage detection is verified under different cir-
cumstances (i.e., influences of grouping size, noise effect,
mode shape order, and sensor location), and several rec-
ommendations are given for using TCABC algorithm to
detect structural damages under actual conditions; in Sec-
tion 5, an experimental study is used to examine the per-
formance of TCABC algorithm; Section 6 is the conclusions.
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2. Theoretical Background

2.1. Parameterization of Damages. When a real structure is
discretized into an N-DOF system, the modal characteristics
can be obtained by

K − ω2j ·M  · Φj  � 0, j � 1, 2, . . . , N, (1)

where M and K are the N×N global mass and stiffness
matrices of the structure, respectively, ωj is the jth eigen-
value, and Φj is the corresponding modal vector.
For actual structures, theM (or K) for the damaged and

the undamaged ones are different. However, in damage
detection problems, the mass matrix is assumed constant
because the internal structural damage usually does not
result in losses of materials, and the stiffness of the ith el-
ement is expressed as follows [13]:

Ki � f Ai, Ii, Ji, ti, Li, Ei, Gi( , (2)

in which Ai, Ii, and Ji are cross-sectional area, bending, and
polar moments of the inertia of the ith element; ti and Li
are the element dimensions; and Ei andGi are, respectively,
the elastic and shear modulus. To reduce the number of
input parameters in the FE model, Moslem and Nafaspour
[13] mentioned that any change in the properties of each
element due to the damage is equivalent to the change in its
elastic modulus (Ei). According to the abovementioned
statements, the stiffness of the ith element can be expressed
as follows:

Ki � 1 − ai(  · Ei, (3)

where ai is defined as the damage index; ai� 0 represents no
damage and ai� 1 represents absolute damage of the ith
element.

2.2. Implicit Objective Function. +eoretically, when the
input parameters of the FE model are exactly the same as the
physical parameters of the damaged structure, for both the
FEmodel and real structure, their natural frequencies should
be the same and the value of modal assurance criterion
(MAC) [31] should be equal to one. So, the objective
function can be set as a combination of the natural fre-
quencies and the values ofMAC. Perera and Torres [14] used
GA with two objective functions to detect the damage of a
beam, and the objective function with better performance is
used in this paper. +e used MAC is defined as follows:

MAC ΦTj , ΦFj   � ΦTj t[W] ΦFj  2

ΦTj t[W] ΦTj   ΦFj t[W] ΦFj  ,
(4)

whereΦTj andΦFj are, respectively, the jth test and FE modal
vectors, t represents transpose, and [W] is a diagonal square
weight matrix to ensure all test data are effectively used. +e
kth diagonal element of [W] is defined as follows:

Wkk � ΦTjk − 1
, (5)

where ΦTjk is the kth coordinate of the jth test modal vector.
+e objective function is defined as follows:

F � 1 − m
j�1

MAC ΦTj , ΦFj  
1 + aj  , (6)

in which F and m, respectively, represent the objective
function and the number of the total measured orders and aj
is a penalty function to account for differences between the
test and the FE model frequencies:

aj �
fFj 2 − fTj 2
fFj 2 + fTj 2


. (7)

fFj and f
T
j are the jth frequencies of the FE model and

the test; the factor aj accelerates the convergence of the
objective function as well.
+eoretically, when the global minimum of this implicit

objective function equals to zero, the input parameters of the
FE model equally represent the physical parameters of the
actual structure.

3. Algorithms for Damage Detection

3.1. StandardABCAlgorithm. ABC algorithm is proposed by
Karaboga [20], and the colony of artificial bees is categorized
into three main groups: employed bees, onlooker bees, and
scout bees. +e number of the employed bees and the on-
looker bees is the same as the number of the food sources. In
some cases, an employed bee should be transformed into a
scout bee. Each bee can only exploit one food source each
time. +e employed bees first explore the food sources
according to their memories and explore possible food
sources in corresponding neighborhoods, and then they fly
back to the hive and share the information of the food
sources by dancing. After digesting the information, the
onlooker bees select the food sources one by one and become
employed bees (the food sources with more nectar have a
higher probability of being chosen). When a food source is
exploited several times and no other better food sources are
found in the neighborhood, the employed bee of this food
source transforms into a scout bee. +e scout bee randomly
selects a new food source and continues its work as an
employed bee. +e main parts of ABC algorithm are as
follows [32]:

Initialization: the location of an initial food source, or a
candidate solution, is a multidimensional parameter
vector. +e parameters of this vector are generated by
the following equation:

xij � x
min
j + rand(0, 1) × xmaxj − xminj , (8)

where i and j are individually selected from [1, SN] and
[1, D]; SN is the number of the food sources; D is the
number of the dimensions; xij is the jth dimension of
the ith food source; xminj and xmaxj are, respectively, the
lower and upper bound of the jth dimension; and rand
(0, 1) is a random real number in the range [0, 1].
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Employed bee phase: first, each employed bee is as-
sociated with a food source (xi), and then a new food
source (vi) is produced.+e parameters of the new food
source are as follows:

vij � xij + rand(− 1, 1) × xij − xkj , (9)

where xkj represents the jth dimension of another food
source (xk) selected randomly from the remaining
population. +e employed bee compares the results of
the two food sources (i.e., xi and vi) and brings back the
information of the better one; for the optimization
problem of finding the global minimum, the better
means a smaller objective value (the greedy selection
strategy).

Onlooker bee phase: before the onlooker bees start
working, the fitness values of the food sources brought
back by the employed bees are calculated as follows:

fiti �

1

1 + fi
, fi ≥ 0,

1 + abs fi( , fi < 0,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(10)

where fiti and fi are, respectively, the fitness value and
the objective value of the ith food source. +e selection
probability of the ith food source equals to pi (roulette
wheel selection):

pi �
fiti

SNm�1fitm, (11)

After the selection, the onlooker bees fly to the selected
food sources one by one and generate corresponding
new food sources in a similar way as in equation (9).
Again, each generated food source is compared with the
corresponding previous food source via the greedy
selection strategy.

+e updating process of the employed bees and the
onlooker bees is the same, except that the employed
bees update all food sources while the onlooker bees
only update the selected food sources.

Scout bee phase: a food source may be visited several
times without a better food source founded nearby.
+is kind of food source is abandoned after a pre-
defined number of visits. +en, the corresponding
employed bee transforms into a scout bee to randomly
generate a food source via equation (8) and continues
its work as an employed bee. +e schematic of the ABC
algorithm is shown in Figure 1.

3.2. TCABC Algorithm. In this paper, two searching
methods, the tabu search method [29] and chaotic search
method [30], are adopted to enhance the exploration and
exploitation ability of the traditional ABC algorithm (named
as TCABC algorithm). Additionally, the original roulette
wheel selection is replaced by the tournament selection to
enhance the global searching ability of TCABC algorithm.

3.2.1. Tabu SearchMethod. +e tabu search, a simulation of
the human intelligence process, is first proposed by Glover
[29] as an extension of local neighborhood search. As a
global stepwise optimization algorithm, it effectively
avoids the solution falling into the local optima and
prevents the algorithm from entering an infinite loop. +e
so-called tabu is to prevent exploiting the previous visited
and bad food sources. By using a tabu list to record these
visited food sources, the repetition of the previous work
can be prohibited, and the total exploitation ability is
improved. +e tabu search method avoids roundabout
search by introducing a flexible storage structure and
corresponding tabu criteria. Simultaneously, some pro-
hibited good food sources are “unlocked” by the aspiration
criterion.
In this paper, the tabu search is applied throughout the

whole process of the TCABC algorithm, and two tabu lists
(i.e., T1 and T2) are introduced into the algorithm. T1 is a
tabu list with a limited length, which stores the recently
visited food sources. By applying the T1 list, other bees
cannot search recently visited food sources. In detail, the
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Figure 1: Schematic of the ABC algorithm.
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length of T1 is assumed as n. When the n+ 1 food source is
recorded in T1, the first food source in T1 is taken out. T2
saves the deserted food sources (i.e., the food sources, where
the scout bees are generated); those food sources are
exploited several times, and no improvement is found, which
means their qualities are not good. Unlike T1, which only
ban finite food sources within a limited time, those aban-
doned food sources in T2 are banned eternally and the
length of the T2 list is infinite.

3.2.2. 2e Tournament Selection Strategy. In the standard
ABC algorithm, the roulette wheel selection is used to decide
the probability of each food source selected by the onlooker
bees. However, some food sources may have immense fitness
values. According to the roulette wheel selection in equation
(11), many onlooker bees may fly to these food sources,
which reduces the global searching ability of the algorithm.
To avoid this flaw, the tournament selection is employed to
replace the original roulette wheel selection in TCABC
algorithm.
In the tournament selection strategy, the fitness values

of every two food sources are compared. +e one with a
bigger fitness value gains 1 point and the other gains 0
point, and each food source is also compared to itself (to
guarantee the worst food source gains 1 point). After the
comparison, each food source (xi) has a corresponding
score (si), and the possibility of food source xi being se-
lected equals

pi �
si

SNm�1sm, (12)

where SN means the number of food sources. +is strategy
guarantees that those food sources with significant fitness
values do not overly affect the selection tendency. +erefore,
the onlooker bees will not fly to the same food source in
droves.

3.2.3. Chaotic Search Method. Mathematically, logistic
mapping is a straightforward chaotic mapping with several
characteristics, such as uncertainty, ergodicity, and regu-
larity. +e logistic mapping is expressed as follows [30]:

βn+1 � μβn 1 − βn( . (13)

Equation (13) is chaotic when μ� 4 and 0≤ β0≤1. Figure 2
displays the calculation results when μ� 4 and β0 � 0.27.
As can be seen, the initial information is lost after several
times of iterations, and the output is like a stochastic
output.
In this paper, a chaotic search method is applied during

the onlooker bees’ phase and the scout bees’ phase. +e
operation steps are as follows: (1) capturing the new food
source generated by the onlooker bee (or capture the
abandoned food source); (2) mapping this food source into a
uniform space; (3) applying the chaotic search method to the
uniform space-based food source several times, record all
results; (4) transferring all these results back to the normal

space; (5) calculating the fitness values of all these food
sources and bringing back the information of the best one.
Compared to the standard ABC algorithm, the chaotic

search method allows each bee fly to several food sources
simultaneously; by doing so, more food sources are visited
at the same time and the population diversity of the al-
gorithm is improved. OpenSees platform [33], a widely
used software in civil engineering, is also used to establish
the numerical model of the studied structure in this paper.
+e schematic of the TCABC algorithm is shown in
Figure 3.

4. Numerical Study

4.1.Descriptionof theBenchmarkBeam. WithMATLAB [34]
and Opensees [33], the algorithm’s main procedure and
corresponding FEmodel are established, and the accuracy of
the TCABC algorithm in structural damage detection is
validated and verified.
In this paper, a twenty-four-meter steel beam with two

fixed ends shown in Figure 4 is modeled as the benchmark
case. +e density and the elastic modulus of steel are set as
7850 kg/m3 and 206GPa, respectively. +is beam is dis-
cretized into a twenty-four-element structure; every two
connected elements are assigned as a group and share the
same elastic modulus.

4.2. Comparison of Standard ABC and TCABC Algorithms

4.2.1. Comparison by Explicit Test Functions. Before directly
applying the TCABC algorithm to the damage detection
problem, several explicit test functions are used to com-
pare the performance between ABC and TCABC algo-
rithms. By comparing the calculation results, differences
between the two algorithms can be obviously observed,
and the generality and accuracy of the TCABC algorithm
can also be verified. +e used explicit test functions are
listed in Table 1.
To purely compare the differences between ABC and

TCABC algorithms and to simplify the calculation
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Figure 2: +e output of equation (13) when μ� 4 and β0� 0.27.
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Figure 4: +e 24m benchmark beam.

Table 1: Used explicit test functions.

No. Test functions Searching range Global minimum

F1 f1(x) � Di�1x2i (− 10, 10)D 0

F2 f2(x) � Di�1(106)(i− 1)/(D− 1)x2i (− 10, 10)D 0

F3 f3(x) � Di�1ix2i (− 10, 10)D 0

F4 f4(x) � Di�1|xi| +D
i�1|xi| (− 10, 10)D 0

F5 f5(x) � (1/4000)Di�1x2i − D
i�1cos(xi/

�
i

√
) + 1 (− 10, 10)D 0

F6 f6(x) � Di�1ix4i (− 10, 10)D 0
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procedure, corresponding input parameters of the two al-
gorithms in the six test functions are set as the same. +e
calculation generations are set as 500 and each generation
contains 100 food sources; the abandoned limitation of the
food sources is set as 1800, which is the same as 0.6× SN×D
in [21]. Besides, the dimensions (D) of all six test functions
are set to 30. After trial calculations (which is introduced
later), two more parameters (i.e., the length of T1 and the
times for chaotic search) of the TCABC algorithm are
separately set to 100 and 30. Each test function is calculated
20 times, and the corresponding results are displayed in
Table 2. It can be observed that except for the worst solution
and the standard deviation of F5, the TCABC algorithm
performs better than the ABC algorithm.
To study how the generation number, the length of T1,

and the times of chaotic search influence the performance
of TCABC algorithm, a single variable method is applied
and corresponding results are compared. +e benchmark
parameters and the calculation times are set the same
as previously defined. Different generation numbers
are analyzed (i.e., conduct the analysis every 50 from 200
to 700 generations), and the results are shown in Table 3
and Figure 5. +e growth rate in Figure 5 is defined as
follows:

Growth rate �
Vn − Vp
Vp

, (14)

where Vn and Vp, respectively, represent the value of present
and previous studied generations.
In Figure 5, the growth rates of both mean and standard

deviation are always negative, whichmeans by increasing the
generations, the results are closer to the global minimum.
Similar to the generation number, different chaotic

search times and different lengths of T1 are studied; Figures 6
and 7 display the relevant mean results of the target
functions. All results are normalized by the identified value
when the times of chaotic search (or the length of T1)
equals zero (i.e., the dashed line). As can be observed,
except for 2 results in Figure 7, all other results are below
the dashed line, which means by introducing the tabu
search method and chaotic search method, the algorithm
performs better. However, the two parameters show dif-
ferently to the result of each target function; trial analyses
are recommended to find appropriate T1 and chaotic
search times when using this method.

4.2.2. Comparison by the Implicit Objective Function.
+e comparison between ABC and TCABC algorithms for
the implicit damage detection function (i.e., equation (6))
is studied in this section. Similar as in Section 4.2.1, the
input parameters of the two algorithms are set as the same,
and after trial analyses, the used parameters are listed in
Table 4. It is noteworthy that to damage detection prob-
lems, the recognition accuracy is not required as high as in
previously studied test functions. +e reason is that due to
the limitation of the existed experimental devices, those
errors less than one percent are unrecognizable. So, the
“extremely precise” to the identified parameters are

meaningless (e.g., for the benchmark beam, the elastic
modulus of group one that equals from 1.0003 E0 to 1.0007
E0 may result in very close vibration properties, and these
values cannot be distinguished under test conditions due
to the instrument accuracy). Nevertheless, evolution-
based algorithms intend to achieve the global minimum
and find input parameters as accurately as possible. To
achieve a balance between them, the identified parameters
are rounded to five decimal places in the damage detection
problem.
For the benchmark case in Section 4.1, the first ten

orders of modal vectors and frequencies are used for the
objective function (i.e., equation (6)); the modal vectors
and corresponding MACs are captured by all nodal dis-
placements (i.e., 23 nodes here). +e assumed damage
level of this beam is listed in Table 5, and the meaning of
damage index is described in equation (3). Negative values
here for the assumed damages are meaningful because for
actual tests, before detecting the damages, the structure
parameters should be modified first, and the range of the
modification is beyond the boundary (i.e., 0 and 1) of just
considering the damage. To verify the applicability of the
proposed algorithm under the implicit damage detection
function, the searching space is changed, and the negative
damage indexes are used. By combining the damage in-
dexes (Table 5), the lower bound and the upper bound
of the indexes’ searching space are set as − 0.5 and 0.5,
respectively.
+e convergence performance of the implicit objective

function is shown in Figure 8(a). In general, the results of
the TCABC algorithm are much closer to zero compared
to the results of the standard ABC algorithm, which means
the TCABC algorithm has a better performance.
Figure 8(b) displays the identified parameters; the y-axis
represents the corresponding damage index ai. +e results
indicate that to damage detection problems here, both
algorithms work well, but the TCABC algorithm is more
accurate.

4.3. Consideration of the Influences of Different Grouping
Techniques. For actual damage detection problems, how to
set the benchmark groups may influence the accuracy of the
identification results. +is section investigates the precision
of the TCABC algorithm through two cases with different
grouping techniques.

4.3.1. 2e Influences of Different Grouping Sizes.
Grouping sizes may alter even in the same damage situation.
For example, as shown in Figure 9, the elastic modulus of
element 9 to 12 are reduced to 0.65 of the undamaged ones
(the benchmark beam in Section 4.1 is used here, and E0 is
the elastic modulus of the intact beam), and three types of
grouping are used to detect the damage in this section; the
beam is, respectively, divided into 6, 12, and 24 groups in
Figures 9(a)–9(c). Same as in Section 4.1, the elements in
each group share the same elastic modulus; the input pa-
rameters and the searching space are set the same as in
Section 4.2.2.
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+e numerical results are shown in Figure 10.
Figure 10(a) indicates that (1) in the same damage situation,
both ABC and TCABC algorithms converge faster with
fewer groupings; (2) it is demonstrated again that the
TCABC algorithm performs better than the ABC algorithm
for the implicit damage detection function. Because the
focus here is the influences of the grouping sizes,
Figure 10(b) only displays the results of the TCABC algo-
rithm under different scales of grouping; it can be observed
that even though there are some noises, the damages are
detected by all three dimensions of grouping.

4.3.2.2e Influences of Inappropriate Groupings. In previous
studies, the assumed damage groups are set exactly the same

as the actual damage groups. However, it is complicated to
locate the damage position in actual tests precisely. In this
section, three scenarios are studied to demonstrate whether
the TCABC algorithm is able to detect structural damages in
inappropriate groupings. As shown in Figure 11, the
benchmark beam is divided into 12 groups. Figures 11(a)–
11(c) represent damage scenario 1 to 3, individually.
In Figure 11(a), the stiffness damage index of element 9 is

0.35 and the position of this damaged element is in group 5
(G5). +is sort of damage is named as “in-group” damage.
Scenario 1 is used to check the detection results of the
TCABC algorithm in this “in-group” damage situation. In
Figure 11(b), both elements 8 and 9 are damaged, and they
are exactly across the boundary of G4 and G5. Damage like
this is named as “cross-group” damage. +e performance of

Table 2: Performance comparison between ABC and TCABC algorithms.

No.
Best solution Worst solution Mean Standard deviation

ABC TCABC ABC TCABC ABC TCABC ABC TCABC

F1 0.017068 0.005334 0.037956 0.024644 0.024267 0.013655 0.007486 0.002975

F2 3.554567 1.468162 7.301145 3.746693 5.35974 2.534457 1.228749 0.774593

F3 0.283409 0.124682 0.382502 0.201409 0.325852 0.147296 0.030473 0.022702

F4 0 0 0 0 0 0 0 0
F5 0.006508 0.005878 0.067564 0.136364 0.042717 0.035809 0.019248 0.044153
F6 8.134684 2.758961 40.50607 12.24841 18.82364 6.891574 10.49996 2.536104

Table 3: Performance of TCABC with different generation numbers.

Calculation generation Results based on 20 calculations F1 F2 F3 F4 F5 F6

200
Mean 3.659166 844.5289 36.46164 0.087539 0.511423 875.2596

Standard deviation 0.520355 152.3502 7.336005 0.001679 0.088312 367.7924

700
Mean 0.000443 0.077873 0.004132 0 0.001442 0.344597

Standard deviation 0.000093 0.014836 0.001234 0 0.001476 0.174365
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Figure 5: +e growth rate of the TCABC algorithm with different generations for (a) mean and (b) standard deviation.
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the TCABC algorithm in this “cross-group” damage situa-
tion is studied in scenario 2. Multidamage condition (i.e.,
shown in Figure 11(c)), which combines “in-group” damage
and “cross-group” damage, is reviewed in scenario 3.

After trial calculations and setting reasonable input
parameters, the detection results of scenario 1 to 3 are
separately shown in Figures 12(a)–12(c). Due to the inap-
propriate groupings, the accuracy of the proposed algorithm
cannot be guaranteed. However, by checking the detection
results, the detected damaged positions (enclosed in those
black dash boxed) contain or near the real damage positions,
which means even though the groupings are inaccurate,
TCABC algorithm still contributes to locating the damage
under all three circumstances as well as under actual test
conditions. Compared to Figures 8(b) and 10(b), the damage
detection results in Figure 12 have a lower damage index.
+e reason is that due to the inappropriate groupings, the
theoretical global minimum (i.e., zero) of the objective
function cannot be achieved. So, a local minimum is found
instead. +e local minimum is obtained by adjusting the
damage indexes of all elements to let the value of equation
(6) be as small as possible, which causes the damage indexes
of the undamaged and damaged elements, respectively,
increased and reduced.

4.4. Consideration of the Influences of the Field Test Data.
Besides grouping size, the accuracy of the damage detection
results is affected by the field test data as well. It is easy to
obtain all the vibration properties by numerical analyses.
However, there are several obstacles to gain modal and
frequencies data in the field test. Firstly, the values of nodal
displacements and MACs are highly influenced by the
sensors, and usually, only limited numbers of sensors are
used; secondly, unlike numerical analyses, only first few
orders of frequencies and modal vectors can be obtained in
the field test, which controls the m value in equation (6);
thirdly, environmental, electromagnetic, and instrumental
noises are everywhere during the measurement and the
noise level is highly uncertain.
Subjectively, the more data are measured, the more

accurate the results will be; however, this is not confident
when these noises are introduced, by increasing the amount
of measured data, the amount of obtained noises also in-
creases. So, a quantitative analysis is needed. +is section
focuses on how the measured data influence the detection
results.

4.4.1. Measuring Noises. In an experimental study, mea-
sured data are all contaminated by noises. +erefore, when
different kinds of measured data are used to account for the
influences on the damage detection results, the artificial
noises should simultaneously be included. +e random
noises are applied to the theoretical frequencies and modal
vectors by equations (15) and (16), separately:

fNi � fi 1 + η1φ
N
i , (15)

where fNi and fi separately represent the noise-contami-
nated and noise-free ith frequency; η1 is a random real value
in the interval [− 1, 1]; and φNi represents the noise level of ith
frequency.
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Figure 6: Influences of the times of chaotic search for TCABC
algorithm.
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Table 4: Input parameters of the damage detection.

Input parameters ABC TCABC

Calculation generations 200 200
Number of food sources 60 60
Abandoned limitations 360 360
Length of T1 — 100
Times of chaotic search — 15
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ΦNij � Φij 1 + η2ξ
N
ij , (16)

where ΦNij and Φij separately represent the modal dis-
placement of the noise-contaminated and noise-free jth
position of ith modal vector; η2 is a different random real
value in the same interval as η1; and ξNij represents the
corresponding noise level.

During the field test, the noise level may be influenced
by a lot of factors (e.g., test condition, the precision of
the instrument, and testers’ skill). To verify the robustness of
the proposed algorithm, three levels of noise listed in Table 6
are studied; because the frequency measurements are more
stable, its noise levels are always smaller than those obtained
by modal displacements.

Table 5: Assumed damage level of the elastic modulus of the benchmark beam.

Group number G1 (%) G2 (%) G3 (%) G4 (%) G5 (%) G6 (%) G7 (%) G8 (%) G9 (%) G10 (%) G11 (%) G12 (%)
Damage index − 30 0 10 − 14 − 42 0 25 − 26 30 0 0 34
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Figure 8: (a) +e convergence performances of the objective function. (b) +e identified parameters of the damage detection.

141 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 24

24m

E = 0.65E0

G1 G2 G3 G4 G5 G6

24m

(a)

G1 G2 G3 G4 G5 G6 G7 G9 G10 G11 G12

(b)

G8

(c)

G1 G7 G24

Figure 9: +e same damage situation with different sizes of grouping.
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4.4.2. 2e Total Orders of the Measured Modal Shapes and
Frequencies. +e total orders of the measured frequencies
and modal shapes influence the format of the objective
function, and the accuracy of the proposed algorithm under
different objective functions may be different. In order to
compare the effects of different numbers of measured orders,
the first three, six, and ten orders of modal shapes and
frequencies are used separately to check the damage de-
tection results of the benchmark case in Section 4.2.2 (i.e.,
damage described in Table 5); the noises mentioned in
Section 4.4.1 are simultaneously added. It is noteworthy that
the modal displacements here are captured by all existed
nodes (i.e., 25 nodes in this case), and the influences of the
number of the measured nodes are introduced later.
Figures 13(a)–13(c) show the damage detection results of

only using the first three, six, and ten orders of modal shapes
and frequencies.
It can be found that (1) when there is no noise, the

detection results are not influenced by the number of the
measured orders. +is can be seen from the similar height of
the assumed damage bars and the non-noise bars in all three
cases, as shown in Figure 13; (2) when noises are included,
the damage detection results become better as the orders of
modal vectors and frequencies increase.+is can be obtained
by comparing the LV3-noise bars of Figures 13(a) and 13(c).
In Figure 13(a), the LV3-noise bars are far different from the
assumed-damage bars to some groups, such as group 2, 3, 10,
and 11; but, in Figure 13(c), their differences are not that
much; (3) when noises are included, the stronger the noises
are, the worse the identification results become. +is
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Figure 10: (a) +e convergence performance under different sizes of grouping. (b) +e identified parameters under different sizes of
grouping.
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phenomenon is easily observed by checking the LV1-noise
bars (which represent the lowest noise level) and the LV3-
noise bars (which serve the highest noise level). In general,
the damage indexes of the LV1-noise bars are closer to the
assumed-damage bars than the LV3-noise bars.

4.4.3. 2e Number of the Measured Nodes. Unlike in nu-
merical analyses whose information can be abstracted out
quickly, the number of sensors for field tests is usually
limited. In this section, twenty five, thirteen, seven, and five
sensors are assumed to be used in the field test for the
benchmark case in Section 4.2.2 (i.e., damage described in
Table 5). +ese sensors are applied at the nodes of the
benchmark beam, as displayed in Figure 14. Figures 11(a)–
11(d) correspond to the cases with twenty five, thirteen,
seven, and five sensors, individually. Since this section fo-
cuses on the influences of the number of the measured
modal displacements, other parameters are set the same as in
Section 4.2.2, including that the first ten orders of modal
shapes and frequencies are used. Figures 15(a)–15(c), re-
spectively, represent the numerical results of Figures 14(c)–
14(d). +e scenario given in Figure 14(a) is not displayed
again because it is the same as that in Figure 13(c).
+e numerical results show (1) the more the points are

measured, the more accurate the damage detection results
will be; combining this with conclusion (2) in Section 4.4.2, it
is concluded that regardless of noises, the results will be
more accurate when more data are measured; (2) it also
verifies conclusion (3) in Section 4.4.2 that stronger noises
result in worse identification results. +us, in the field test,
the measurement error should be reduced as much as
possible to guarantee detection accuracy.
It is noteworthy that, in Section 4.4.2, when noises are

not included, the accuracy of the damage detection results
is not influenced by the measured orders; however, in this
section, no matter whether the noises are included or not,

as more points are measured, the results will be better. +is
indicates that the damage detection problem with the
proposed objective function is more sensitive to the
number of the measured points than the number of the
determined orders. +erefore, ensuring sufficient sensors
has a higher priority to guarantee the accuracy of the
damage detection.

5. Experimental Study

All the case studies in Section 4 are numerically based.
+ough artificial noises are applied in them, these noises
cannot correctly represent the modeling errors between the
real structure and FE model. +us, an experimental study is
necessary for checking the accuracy and validity of TCABC
algorithm. As an example, the experimental study conducted
by Hu et al. [15] is used to verify the accuracy of TCABC
algorithm. +e experimental beam is shown in Figure 16.
+e used material constants are E� 70Gpa, v� 0.3, and
ρ� 2700 kg/m3. As shown in Figure 16, saw-cut damage at
the middle of the ninth element is applied and the depth of
the crack is one-quarter of the total height of the beam.
According to the section properties and the assumption of
Moslem and Nafaspour [13], the elastic modulus of element
9 is between 0.125E0 and 1E0, where E0 is the undamaged
elastic modulus of the beam. +is experimental study
considered the errors of inappropriate groupings, noises,
and lack of measured data (only the first three orders of
vibration data are obtained), which can influence the de-
tection results.
Hu et al. [15] abstracted the first three orders of vibration

data of both the damaged and the undamaged models and
used two identification algorithms to detect the damage; in
the first algorithm, the global analytical stiffness and mass
matrices are not needed, and the algorithm is cited as
DDNKM; for the second one, only the analytical mass
matrix is employed, which is named as DDNK. Perera and
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Figure 11: +e inappropriate groupings.
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Table 6: Different noise levels.

Noise level φNi (%) ξNij (%)

LV1 3 8
LV2 5 15
LV3 8 20
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Figure 13: Continued.
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Torres [14] used the same case but GA to identify the
damage; GA shows a significant improvement compared
with DDNK. However, both Hu et al. [15] and Perera and
Torres [14] did not establish a baseline model before the
damage detection; the baseline model, which reduces the
influences of lacking the prior knowledge of the structure, is
always developed first in actual tests. So, to compare the
detection results with Hu et al. [15] and Perera and Torres
[14], the unmodified numerical model is used first and then
the baseline model is adopted, as well to simulate a more
general situation. +e input parameters are the same, as
shown in Table 4. +e indexes’ searching spaces are indi-
vidually set as [− 0.5, 0.5] and [0, 1] in different trial

calculations, and their final identification results are similar.
To maintain consistency with Hu et al. [15] and Perera and
Torres [14], the identification results based on indexes’
searching space of [0, 1] are listed. By applying the same
domain, the accuracy of the proposed algorithm can be fairly
compared.
Figures 17 and 18 display the first three orders of modal

shapes of the undamaged and damaged beams; Table 7
shows the corresponding MAC values; Tables 8 and 9
contain the related frequencies information. When com-
paring the data obtained from the baseline model and the
original model with the test data, as shown in Figures 17 and
18 and Table 7, the modal data based on the baseline model
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Figure 13: (a)+e identified parameters with the first 3 orders of modal shapes and frequencies. (b)+e identified parameters with the first 6
orders of modal shapes and frequencies (c) +e identified parameters with the first 10 orders of modal shapes and frequencies.
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Figure 14: +e applied sensors and corresponding positions.
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Figure 15: (a)+e identified parameters with 13 sensors. (b)+e identified parameters with 7 sensors. (c)+e identified parameters with 5 sensors.
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are closer to the test data, which is consistent with the
expectation that the adoption of the baseline model im-
proves the performance of the FE model. However, as a
similar reason is shown in Section 4.3.2, the global minimum
is replaced by a local minimum due to test noises and
modeling errors, which leads to the frequencies error of the
baseline model more significant than the error of the original
model in this specific case.

+e final identification results obtained from Hu et al.
[15] (DDNK), Perera and Torres [14] (GA), original model,
and baseline model are listed simultaneously in Figure 19. As
expected, due to the inappropriate grouping and noises,
several elements besides the damaged one (i.e., element 9)
are identified as damaged, which is similar to the results in
Section 4.3.2. In this case, a smaller number of damaged
elements means better performance (because there is only
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Figure 16: +e structure for the experimental study.
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Figure 17: Modal shapes of the undamaged beam of (a) the first modal, (b) the second modal, and (c) the third modal.
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Figure 18: Modal shapes of the damaged beam of (a) the first modal, (b) the second modal, and (c) the third modal.

Table 7: MAC of the experimental beam.

MAC of +e first model +e second model +e third model

Undamaged beam
Original model 0.999225688 0.997261687 0.996034642
Baseline model 0.999423431 0.998165522 0.997671728

Damaged beam
Original model 0.994524097 0.996194531 0.950126061
Baseline model 0.995630316 0.997770042 0.960814259

Table 8: Frequencies of the undamaged beam.

First-order frequency (Hz) Second-order frequency (Hz) +ird-order frequency (Hz)

Numerical Test Error (%) Numerical Test Error (%) Numerical Test Error (%)

Original model 87.232
85.726

1.76 240.454
238.572

0.79 471.359
467.694

0.78
Baseline model 84.638 1.23 234.937 1.52 461.950 1.17
∗Error� |numerical − test|/test.
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one damaged element), and a more extensive damage index
of the element suggests a higher damage probability at this
location. In other words, the two identified models using the
TCABC algorithm work better in this case, and elements 8
and 9 have a more significant probability of being the real
damage part. +us, it can be conducted that the TCABC
algorithm, as a better method, can precisely locate damage
position in a smaller approximate range. And the identified
baseline model has the best identification ability.

6. Conclusions

A novel ABC algorithm (i.e., TCABC algorithm) for
structural damage detection via modal and frequency ana-
lyses is presented; two searching methods, tabu search
method and chaotic search method, are adopted to enhance
the exploration and exploitation ability. +e tabu search
method uses a memory function to avoid the solution being
trapped in a local minimum, which increases the exploi-
tation ability. +e chaotic search method generates more
searching points for finding the global minimum, which
increases the exploration ability. Additionally, the original
roulette wheel selection is replaced by the tournament se-
lection to enhance the global searching ability of TCABC
algorithm. Several explicit test functions and an implicit
damage detection function are employed for comparing the
numerical results obtained from ABC and TCABC

algorithms.+e numerical results show that compared to the
standard ABC algorithm, the performance of TCABC al-
gorithm is improved. +e applicability of the TCABC al-
gorithm for damage detection is verified under different
numerical circumstances. +e results show the following: (1)
fewer groups lead to faster convergence as demonstrated by
both ABC and TCABC algorithms in the same damage
situation; (2) even though the precision of TCABC algo-
rithm cannot be guaranteed when inappropriate groupings
are assigned to the structure, the approximate damage
position can still be identified; (3) the environmental,
electromagnetic, and instrumental noises in the field test
influence the damage detection results. Stronger noises
result in worse identification results; (4) regardless of
whether or not the noises exist, the more data are measured,
the more accurate the results can be. Based on the above
statements, to obtain better-damaged detection results in
actual tests, a large amount of measured data, good test and
equipment conditions, and reasonable groupings are all
required. A detailed and complete analysis of setting rea-
sonable groupings will be considered in subsequent research.
An experimental study is used for checking the accuracy and
validity of the TCABC algorithm for structural damage
detection. Compared with DDNK and GA, the proposed
TCABC algorithm performs much better, and the detection
results based on the baseline model are better than the
original model.

Table 9: Frequencies of the damaged beam.

Identified by
First-order frequency (Hz) Second-order frequency (Hz) +ird-order frequency (Hz)

Numerical Test Error (%) Numerical Test Error (%) Numerical Test Error (%)

Original model 82.978
83.984

1.20 232.007
235.792

1.61 458.107
462.712

1.00
Baseline model 81.876 2.51 229.305 2.75 453.064 2.09
∗Error� |numerical − test|/test.

0

10

20

30

40

50

60

D
am

ag
e 

in
d

ex
 (

%
)

17 1993 6 158 1610 13 18 207 11 1442 121 5

Element number

DDNK

GA

Identified-original model

Identified-baseline model

Figure 19: +e identified parameters of the experimental study.
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