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ABSTRACT Modulation recognition plays an indispensable role in the field of wireless communications.

In this paper, a novel attention cooperative framework based on deep learning is proposed to improve

the accuracy of the automatic modulation recognition (AMR). Within this framework, a convolutional

neural network (CNN), a recurrent neural network (RNN), and a generative adversarial network (GAN) are

constructed to cooperate in AMR. A cyclic connected CNN (CCNN) is designed to extract spatial features

of the received signal, and a bidirectional RNN (BRNN) is constructed for obtaining temporal features.

To take full advantage of the complementarity and relevance between the spatial and temporal features,

a fusion strategy based on global average and max pooling (GAMP) is proposed. To deal with different

influence levels of the signal feature maps, we present the attention mechanism in this framework to realize

recalibration. Besides, modulation recognition based on deep learning requires numerous data for training

purposes, which is difficult to achieve in practical AMR applications. Therefore, an auxiliary classification

GAN (ACGAN) is developed as a generator to expand the training set, and we modify the loss function of

ACGAN to accommodate the processing of the actual in-phase and quadrature (I/Q) signal data. Considering

the difference in distribution between generated data and real data, we propose a novel auxiliary weighing

loss function to achieve higher recognition accuracy. Experimental results on the dataset RML2016.10a

show that the proposed framework outperforms existing deep learning-based approaches and achieves 94%

accuracy at high signal to noise ratio (SNR).

INDEX TERMS Automatic modulation recognition (AMR), attention mechanism, convolutional neural

network (CNN), generative adversarial network (GAN), recurrent neural network (RNN).

I. INTRODUCTION

Automatic modulation recognition (AMR), referring to the

identification of the modulation type of the received signal,

is essential for reducing the protocol overhead and ensuring

the reliable performance of the communication system in

non-cooperative scenarios. On the one hand, it is of con-

siderable significance to achieve AMR to promote spectrum

efficiency and transmission reliability for the link adaptation

in next-generation communications [1]. On the other hand,

obtaining the modulation types of hostile signals to develop

the interfering or anti-interfering strategy is an essential appli-

cation in the field of military communications.

The associate editor coordinating the review of this manuscript and

approving it for publication was Guan Gui .

Maximum likelihood (ML) hypothesis testing methods

based on decision theory and statistical pattern recogni-

tion (PR) methods based on feature extraction are two pri-

mary categories of AMR solutions [2]. The former is based on

the likelihood function, and AMR is completed by comparing

the likelihood ratio with an appropriate threshold theoreti-

cally. ML methods have the best performance according to

the Bayesian minimum misjudgment cost criterion and are

applied in [3]–[5]. However, the calculation of the statis-

tics is complex, and some prior probability information is

required. In most information interception scenarios, modu-

lation recognition has to be completed in a blind manner [2],

i.e., there is no prior information that can be utilized. In con-

trast, the latter is less subject to prior information and has

a lower complexity. These PR methods based on feature
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extraction can achieve sub-optimal performance and broad

applicability when adequately designed.

For PR methods, AMR can be regarded as a multi-pattern

classification problem with multiple parameters. The pro-

cess can be divided into two stages, extracting fea-

tures and training classifiers. A variety of features were

extracted and employed in [6]–[18], containing amplitude

with phase and carrier frequency [6], instantaneous fea-

tures [7], high-order statistical features [8], [9], cyclic spec-

trum parameters [10], [11], bispectrum features [12], wavelet

features [13], [14] and constellation diagram [15], [16]. For

the choice of the training classifier, the classifiers based on

machine learning like support vector machine (SVM) in [6],

[13], [17], [18], decision tree in [7], [8], [14], k nearest

neighbor (KNN) in [10], compressive sensing in [12], genetic

algorithm in [15], and neural network (NN) in [9], [11], [16],

were widely used due to their robustness, self-adaption, and

nonlinear processing ability [19]. However, the performance

of these PR methods largely depends on empirical feature

extraction due to the limited capacity of classifiers [19]. For

PR methods, feature design relies on an empirical judgment.

For specific signals, if the empirical feature design is inap-

propriate, the performance of classification will be greatly

degraded.

In recent years, deep learning has performed well in

various tasks due to its outstanding deep feature extrac-

tion capabilities. In the field of wireless communications,

Gui et al. proposed a novel and effective deep-learning-aided

non-orthogonal multiple-access (NOMA) system, in which

several NOMA users with random deployment are served

by one base station [20]. Authors in [21] focused on

channel estimation and direction-of-arrival (DOA) estima-

tion, and a novel framework that integrates the massive

multiple-input multiple-output (MIMO) into deep learning

was proposed. To avoid the limitations of empirical feature

selection engineering, many researchers also have applied

deep learning to AMR. O’Shea et al. used convolutional neu-

ral network (CNN) to extract features from in-phase and

quadrature (I/Q) data and identified modulation schemes

in [22]. The result showed that CNN outperformed the

traditional machine-learning-based classifiers. Inspired by

the excellent performance of CNN in image processing,

the authors in [23]–[28] characterized the signal in the form of

an image to achieve AMR. CNN-based methods mentioned

above only considered the spatial features of the signal, and

the temporal features were ignored. In [29], the authors uti-

lized the signal temporal features extracted from the uni-

directional recurrent neural network (RNN). This method

only considered the forward temporal features of the sig-

nal. However, the temporal features of the signal should

be contextually bidirectionally correlated. Authors in [30]

and [31] applied convolutional long short-term deep neural

networks (CLDNN) as the optimal architecture and achieved

an accuracy approximately 88.5% at high signal to noise ratio

(SNR). Nevertheless, the accurate and complete feature set

is still needed, and the rate of recognition accuracy still has

room for improvement. In addition, the performance of deep

learning-based methods relies heavily on a large amount of

data, which are difficult to collect due to the cost and time

consumption. It is crucial to utilize the collected samples

efficiently to improve recognition accuracy.

In this paper, we propose a novel attention cooperation

framework from the perspective of feature completeness and

sample sufficiency to effectively realize AMR. For feature

completeness, the spatial and temporal features of signals

are extracted by CNN and RNN, respectively. Then, these

features are fused by the global average and max pool-

ing (GAMP) strategy to achieve final classification. For sam-

ple sufficiency, a generative adversarial network (GAN) is

designed for data augmentation to provide adequate sample

support.

The main contributions of this paper are summarized as

follows:

(1) A novel framework that combines CNN, RNN, and

GAN is proposed to realize AMR cooperatively. The atten-

tion mechanism is employed in this framework to improve

the efficiency of the features. Based on the data set

RML2016.10a, it is shown that the proposed framework is

superior to the existing deep learning-based methods.

(2) Considering the spatial and temporal features of the

signal to achieve feature completeness. For the spatial fea-

tures, a cyclic CNN (CCNN) is designed to achieve the fusion

of different levels of abstract features in different update

stages. For the temporal features, a one-layer bidirectional

RNN (BRNN) is designed to perform full mining of the signal

context temporal information. The performance of AMR is

promoted by adequate extraction and efficient reuse of the

signal spatial-temporal features.

(3) We propose the GAMP strategy to capture the intrinsic

correlation between temporal and spatial features and achieve

feature fusion, and proved by experiments that this mecha-

nism is better than the simple concatenation on recognition

accuracy. In order to expand training data, an auxiliary classi-

fication GAN (ACGAN) is introduced to this framework, and

we modify the loss function to accommodate the processing

of the actual I/Q signal data.

(4) A new auxiliary weighing loss function is proposed to

measure the influence of the generated data on the classifica-

tion model. The auxiliary classification accuracy of ACGAN

is exploited to automatically score the weight of the generated

data so that the recognition performance is optimized by

indirectly changing the distribution of the training data.

The remainder of this paper is organized as follows.

In Section II, details of the proposed attention cooperative

framework are described. In Section III, the experimental

setting is introduced. The results are shown in Section IV.

Section V concludes this paper.

II. ATTENTION COOPERATIVE FRAMEWORK

In this section, we introduce the operating mechanism of

the attention cooperative framework, which is illustrated

in Figure 1. The data flow in the direction of the arrows,
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FIGURE 1. Architecture of attention cooperative framework.

it and qt represent the in-phase component and quadrature

component of the tth sampled point, respectively. The orig-

inal dataset only contains the actual collected data. GAN is

first trained to complete data augmentation. The hybrid data

in the extended dataset, which consists of the actual collected

data and generated data, is delivered to the BRNN containing

one layer on time dimension to capture the global temporal

features. The spatial features are extracted by the CCNN,

which contains three cyclic blocks. The attention mechanism

is employed with diverse forms to facilitate the effectiveness

of the features. Then, GAMP incorporates the feature maps

to realize the fusion. The reconstructed feature maps are

transmitted to the fully connected layer to make the final

classification. The detailed descriptions of the framework are

introduced as follows.

A. I/Q DATA AUGMENTATION BASED ON THE ACGAN

For modulation recognition, the insufficiency of signal data

has a negative influence on the signal feature analysis.

Notably, the deep learning method requires a large amount

of training data as support. Adequate training data is ben-

eficial to enhance the generalization performance of the

classification model to further improve the classification

accuracy. Therefore, a GAN is designed to complement the

training data. For actual collected data, the process of data

augmentation can be regarded as the expansion of data

scale by the samples. When the generator can approach

the real sample distribution infinitely, the generated data

has a significant probability of containing the useful fea-

tures required for the classification so that the samples

provided by GAN can be used to expand the scale of

the training set. GAN is composed of a generator and a

discriminator. The generator maps the vectors in the ran-

domly distributed noise space to the target space to establish

a distribution model. The goal of the discriminator is to

distinguish between the real sample obeying the actual spatial

distribution and the fake sample produced by the generator.

The two networks are iteratively optimized with minimax

countermeasures.

Fundamentally, the purpose of the data augmentation is

to assist in classification tasks to improve accuracy. For

generated data, it is necessary to add label restrictions to

highlight their specific attributes. Therefore, we exploit an

ACGAN to achieve data augmentation. The ACGAN intro-

duces conditional information into the input of the generator.

Besides judging the real or fake, an auxiliary classifier is

added to the discriminator to give the category estimation.

The ability to generate specific data based on labels makes
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FIGURE 2. Signal data augmentation with the ACGAN.

ACGAN suitable for data augmentation of the modulation

classification problem.

The process of data augmentation is illustrated in Figure 2.

First, the label and the data initialized with the standard

Gaussian distribution are submitted to the generation net-

work, and the generated signal data are obtained through a

series of deconvolution operations. The generated data are

delivered to the discriminating network, and the discrim-

inating network ultimately gives a prediction of the data

source and the modulation type probability. After iterative

training, the network reaches the Nash equilibrium point. The

discriminator cannot distinguish the source of the data, and

the auxiliary classification accuracy tends to be stable. Then,

we hybrid the generated data labeled with class and auxiliary

weight to the original dataset. Finally, the extended dataset

will be utilized to train the classification model in subsequent

procedures.

However, the network is prone to gradient disappearance

when the actual collected signal data are used to train the

ACGAN. On one hand, compared with image data, the dis-

tribution of the two-dimensional signal data labeled with

modulation is more stochastic. On the other hand, from the

perspective of the model, for the real data distribution and

the generator distribution, an optimal segmentation surface

can separate them in the high-dimensional space. If the neural

network corresponding to discriminator can fit the segmenta-

tion surface infinitely, there is an optimal discriminator which

gives a constant probability (1 or 0) on the support set of

the real data distribution and the generated data distribution,

causing the gradient of the generator to disappear. In response

to this problem, we improve the adaptability of the loss

function of the ACGAN.

The objective function of the original ACGAN has

two parts: the log-likelihood of the correct source, LS ,

and the log-likelihood of the correct class, LC [32]. The

log-likelihood of the correct source can be expressed as

LS = E
x∼Pr

[log(DS (x))]+ E
x̃∼Pg

[log(1− DS (x̃))] (1)

where Pr is the real data distribution and x ∼ Pr . Pg is the

model distribution implicitly defined by x̃ = G(z), z ∼ Pz.

The input z to the generator is sampled from noise distribution

Pz [33]. DS (x) represents the source probability of sample x

given by discriminator. E [·] denotes the expectation operator.

It is obvious that the objective function is presented in the

form of binary cross-entropy which easily leads to discrim-

inator sensitivity. Inspired by [33] and [34], we replace the

binary cross-entropy with Wasserstein entropy with gradient

penalty as the loss function of discriminator to predict real or

fake. Therefore, the optimization problem can be redefined as

L ′S = E
x̃∼Pg

[

DS (x̃)
]

− E
x∼Pr

[DS (x)]

+λ E
x̂∼Px̂

[

(∥

∥∇x̂DS
(

x̂
)∥

∥

2
− 1

)2
]

(2)

where Px̂ is implicitly defined as sampling uniformly along

straight lines between pairs of points sampled from the

real data distribution Pr and the generated data distribution

Pg [34], and x̂ ∼ Px̂ , x ∼ Pr , x̃ ∼ Pg. ‖∇ [·]‖2 denotes

the l2 − norm of the calculated gradient vector and λ is the

penalty factor. Different from the original ACGAN, discrim-

inator is limited in the set of 1-Lipschitz functions, which is

implemented by gradient clipping in the model. Wasserstein

entropy reduces the discriminator sensitivity to distribution

differences by limiting the bounds of the network parameters

15676 VOLUME 8, 2020



S. Chen et al.: Novel Attention Cooperative Framework for Automatic Modulation Recognition

so that the training stability can be enhanced. On this basis,

the gradient penalty with factor λ is added to further improve

the convergence of the model by solving the centralized

problem of parameter distribution caused by weight clipping.

For the modulated signal data, we employ the improved loss

function for the ACGAN, which finally solves the problem

that the gradient disappears in the process of training.

B. AUXILIARY WEIGHING LOSS FUNCTION

In this proposed framework, an ACGAN is designed to

achieve data augmentation. While exploiting the commonal-

ity of generated data with real data, inherent differences in

support of classification should also be taken into account.

In the case that the amount of data is limited since the

generated data cannot fully represent the real data for the

classification task, we propose an auxiliary weighing loss

function to balance the influence of the generated data to

improve the performance of the classification model.

When a GAN is trained to converge, the discriminator is

considered to be indistinguishable from the original signals

and the generated signals. However, as the training data with

category labels, in addition to the commonality to be distin-

guished from noise, features derived by classification should

be paid more attention. Therefore, ACGAN is designed to

indirectly increase the inter-class difference of the generated

data by adding an auxiliary classification function to the

discriminator, which can be used as a quantitative indicator.

As is shown in Figure 2, we labeled the generated data with

auxiliary weight besides the class label. As the optimization

target of the classification problem, the inter-class difference

directly reflects the influence of training data. Therefore,

a new auxiliary weighing loss function is proposed to balance

the effect of the real data and the generated data.

The traditional cross-entropy function can be expressed as

F(p, q) = −
∑

c

p(c) log q(c), (3)

where p and q stand for the actual and predicted probability

value, respectively. c represents the class. Cross-entropy cal-

culates the distance between the two probability distributions,

which describes the difficulty of expressing the probability

distribution p through the probability distribution q. In order

to weigh different sources of data, the auxiliary classifica-

tion accuracy of ACGAN is utilized as the quantification

of the influence factor. The proposed loss function can be

expressed as

F(p, q) = −α
∑

c

p(c) log q(c),

α =

{

1 p(c) ∈ preal(c)

m p(c) ∈ pgenerated(c)
(4)

where α is the influence factor, and m denotes the auxiliary

classification accuracy of the discriminator. This proposed

loss function is actually designed to realize the data-level

attention mechanism to facilitate AMR.

C. TEMPORAL FEATURE EXTRACTION

BASED ON THE BRNN

The modulated signal can be viewed as the time-series

data, and thus its global temporal features are indispens-

able for AMR. Therefore, we design a BRNN to perform

time-series analysis on modulated signals to extract effective

features for classification. Different from the previous work

using the simple classical RNN to extract and classify time

series [29], the proposed framework simultaneously performs

forward and reverse processing on the signal, which is shown

in Figure 3. Each hidden node containing two units outputs

a two-dimensional data, which represents the information

captured from the previous and subsequent sampling points

of the current timestamp. The computing unit is expressed

as un. For the observation of themodulation type of the signal,

the context information before and after the observation point

is valid and worthy to be comprehensively analyzed. A one-

layer BRNNmodel is designed in the proposed framework to

capture the overall temporal features of the modulated signal

adequately.

The signal vector at timestamp t can be denoted as

st = [it , qt ], {t = 1, ...,N } (5)

where the it and qt are the in-phase (I) and quadrature (Q)

components. For the first layer, the computing process of unt

is defined as

−→
h

(1)
t = σ (

−→
U st +

−→
V

(1)−→
h

(1)
t−1 +

−→
b

(1)
) (6)

←−
h

(1)
t = σ (

←−
U st +

←−
V

(1)←−
h

(1)
t+1 +

←−
b

(1)
) (7)

The arrow indicates the direction of the process.
−→
h

(1)
t and

←−
h

(1)
t denote the calculation result of forward and backward

processes of the tth hidden node of the first layer. In particu-

lar,
−→
h

(1)
0 and

←−
h

(1)
N+1 are generated by random initialization.

U and V denote the linear parameters of the input signal sam-

ple point and the output of the previous node, respectively. b is

the bias and σ denotes the non-linear transformation which is

performed by an activation function such as ReLU, sigmoid

and tanh. For the BRNN in this proposed framework, the tanh

function is chosen. The output value range is -1 to 1 and the

average value is fixed at 0, which facilitates the management

of the subsequent layers. The state value of the hidden node

h
(a)
t in the ath layer at timestamp t can be expressed as

h
(a)
t = [

−→
h

(a)
t ,
←−
h

(a)
t ] (8)

where
−→
h

(a)
t and

←−
h

(a)
t denote the calculation result of for-

ward and backward proceses of the tth hidden node of the

ath layer, respectively. The concatenate method is chosen

here instead of simply summing, which ensures a non-linear

interaction between the forward and backward information

of the sequence modulated signal in subsequent process. The

computing process of unt in ath (a > 1) layer can be

defined as

−→
h

(a)
t = σ (

−→
W

(a)
h
(a-1)
t +

−→
V

(a)−→
h

(a)
t−1 +

−→
b

(a)
) (9)
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FIGURE 3. The comparison of the original RNN and the BRNN.

←−
h

(a)
t = σ (

←−
W

(a)
h
(a-1)
t +

←−
V

(a)←−
h

(a)
t+1 +

←−
b

(a)
) (10)

whereW is the matrices representing the linear relation of the

hidden nodes of previous layer at current time. The parame-

ters represented by W, V , b are shared throughout the cor-

responding layer to realize the recurrent. In particular,
−→
h

(a)
0

and
←−
h

(a)
N+1 are generated by random initialization. Processed

by a one-layer BRNN, the overall temporal features of the

modulated signal data are extracted.

Nevertheless, the influences of the vectors in the out-

put feature map on the modulation type discrimination are

actually different. Therefore, we introduce the self-attention

mechanism to recalibrate the features to extract valid infor-

mation. The soft attention is chosen due to the global recep-

tive field and continuous differentiability, which benefits the

gradient computation. The process of self-attention is illus-

trated in Figure 4. The attention map is obtained by a linear

transformation of the processed feature sequence, and non-

linear transformation and normalization are performed by the

softmax function. The calculated attention map is multiplied

by the feature sequence to achieve temporal self-attention.

D. SPECIAL LOGICAL FEATURE EXTRACTION

BASED ON THE CCNN

Similar to the image data, a logic relationship exists in spatial

points of the two-dimensional matrix formed by the I/Q sig-

nal. In order to obtain the information contained in the local

spatial features which are useful for identifying the modula-

tion types, we design a CNN based on the cyclic structure to

make full use of the abstract features of different layers. The

basic structure of the cyclic block is shown in Figure 5.

In the first stage, the transmission process of the feature

maps is similar to the residual structure. The output features

calculated by convolution, pooling, and batch normalization

FIGURE 4. Soft self-attention mechanism.

FIGURE 5. Basic structure of the the cyclic block.

are concatenated with the input features to improve the effi-

ciency of information dissemination between different layers

and to enhance the feature reuse. The process of the first stage

can be expressed as

ol = g[Hl(ol−1), ol−1] (11)

where ol denotes the output of the lth (0 < l ≤ 3) layer in the

first stage. Especially, if l = 1, o0 denotes the inputs of the
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first layer. Hl and g represent the calculation of the lth layer

and the nonlinear operation, respectively. Considering the

features of higher-level output are more abstract and refined,

we design a cyclic structure for the network, which intro-

duces the second stage of feature propagation. This process

is to propagate the features of the high-level output forward.

In the second stage, the original map geometry is preserved

while merging the feature maps by concatenation and pooling

operations which can be expressed as

o
′

l = g
′

[Hl(o
′

l−1), ol+1] (12)

where o
′

l refers to the output of the lth (0 < l ≤ 2) layer

and g
′
represents the nonlinear operation in the second stage.

Especially, if l = 0, o
′

0 denotes the inputs of the first layer in

the second stage which can be denoted as

o
′

0 = g
′

[o1] (13)

The cyclic feedback structure in the second stage refines

the convolution kernel of the previous layer with higher-level

abstract information, which influences the spatial attention.

The result calculated by the last layer of the second stage

will be delivered to the attention block for further processing.

We design this cyclic structure so that the features of the

hierarchy can be fully interacted to extract information which

contributes to classification effectively.

FIGURE 6. The procedure of SE mechanism in attention block.

As for the attention block, because the influence ranks

are different between the channels inside each feature map,

we exploit squeeze and excitation (SE) attention mechanism,

which is shown in Figure 6 to achieve recalibration. First,

performing global average pooling on the feature maps which

can be expressed as

zc =
1

K × J

K
∑

k=1

J
∑

j=1

uc(k, j) (14)

where zc denotes the initialization weight value of cth chan-

nel uc, and K and J represent the width and height of the

feature map, respectively. Then, the feature weight vector

is generated after operating scaling and nonlinear transfor-

mation defined as the activation function sigmoid in the

channel dimension, which controls the weight parameters

value between 0 and 1. In brief, the global average pooling

performs initial extraction of the feature weight parameters,

and the scaling operation models the correlation between

channels. The corresponding channel feature is multiplied by

the weight vector to complete SE attention mechanism.

Then, the recalibrated features will be transferred to the

transition block, which is illustrated in Figure 7. We employ

a 1 × 1 convolution to construct the bottleneck structure for

channel dimensionality reduction, combined with the pooling

operation to complete the feature map compression. The

transition module is used for parameter reduction to improve

the computational efficiency of the network.

FIGURE 7. The basic structure of the bottleneck in transition block.

Considering the computational complexity and network

performance, we build three cyclic modules. The overall

CCNN architecture is shown in Figure 8. The output of

each cyclic block is pooled to simplify the parameters. After

the concatenation is completed, the integrated features are

delivered to the attention module to obtain an output feature

map of the network. Therefore, each block can directly access

the gradient information to accelerate network convergence.

In the pre-training phase, the feature map will continue

through a fully connected layer, and the classification prob-

ability will be calculated by softmax. Actually, for a trained

CCNN in the framework, the feature map is the final output

of the spatial features.

E. SPATIAL-TEMPORAL FEATURE FUSION BASED

ON THE GAMP STRATEGY

To utilize the correlation between the temporal and the spatial

features, we propose the GAMP strategy for spatial-temporal

feature fusion, whose mechanism is illustrated in Figure 9.

First, the output of the BRNN is converted to structurally

consistent with the output feature map of the CCNN through

a fully connected layer. Then, based on simple concate-

nation, we first perform a global average pooling (GAP)

and a max-pooling (MP) operation in channel dimension

and get the integration feature map. Next, inspired by the

SE structure, the max-pooling and global average pooling

are operated along the channel dimension and acquire their

weight maps. Then, the attention map is calculated by aver-

aging the sum of the weight maps. The reconstructed feature

map is obtained by multiplying the attention map with the

integration feature map, which can provide adequate infor-

mation for AMR. As is shown in Figure 1, the output of

GAMP is delivered to the final classifier to get the recognition

results.
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FIGURE 8. The architecture of the CCNN.

FIGURE 9. The fusion mechanism of the GAMP strategy.

III. EXPERIMENTAL SETTING

In this section, we present the dataset description, the hyper-

parameter configuration, and the parameter learning. The

tricks of improving performance are also discussed.

A. DATASET DESCRIPTION

RadioML2016.10a dataset [22] is used as the basis for

model performance verification. This dataset contains eleven

different digital and analog modulation formats, including

BPSK, QPSK, 8PSK, QAM16, QAM64, CPFSK, GFSK,

4PAM, WBFM, AM-DSB and AM-SSB, corresponding

220K sequences for 128 complex-valued baseband I/Q sam-

ples, which are collected at a sampling rate 1 M/s and 4 sam-

ples per symbol from the signals that pass through a wireless

channel with the effects of multipath fading, sample rate

offset, and center frequency offset [17]. It is widely used in

evaluatingAMRperformance such as in [22], [27], [29]–[31].

The samples are taken with 2 dB interval within the range

from -20 dB to 18 dB [22], and are processed as a matrix

with the size of 2 × 128, where the in-phase and quadrature

parts of the signal samples are separated.

B. HYPERPARAMETER CONFIGURATION

AND PARAMETER LEARNING

For the optimizer configuration, the optimizer for the CCNN

is based on Nesterov momentum method. The momentum

parameter is set as 0.9, which corresponds to a maximum

gradient update speed of ten times that of the gradient

descent algorithm. The initial learning rate is set as 0.1.

The BRNN, the ACGAN, and the final classifier of the

whole framework employ Adam optimizer. For the BRNN,

the learning rate is set as 0.001. The first-order and

second-order moment parameters of the BRNN are set as

0.9 and 0.999, respectively. For the ACGAN, the learning rate

of the generator and discriminator is set as 0.0001, the first-

order moment parameter is set as 0.5, and the second-order

moment parameter is set as 0.9. For the final classifier,

the parameter setting is the same as BRNN.

For the parameter learning algorithms, the CCNN,

the ACGAN, and the final classifier are trained through

backpropagation (BP) algorithms. The BRNN is trained with

backpropagation through time (BPTT) algorithms.

As for iterations, the ACGAN is trained first and converges

after 20,000 training iterations. The extended training set is

delivered to the classification module containing the CCNN

and the BRNN. The CCNN and the BRNN are first trained

separately and converge after 200 and 50 training iterations,

respectively. According to the reconstructed feature map,

the final classifier after the GAMP fully converges, i.e., the

classification accuracy of testing data is no longer improved,

after 20 training iterations.

The proposed framework is built and trained with Tensor-

flow deep learning library on Ubuntu 16.04 with an Nvidia

GeForce GTX 1080 Ti GPU.

C. TRICKS OF IMPROVING PERFORMANCE

In the process of building the framework, we investigate some

tricks which can effectively facilitate the training process or

improve the classification accuracy.

1) ZERO PADDING

In consideration of the characteristics of CNN, zero padding

has the effect of maintaining boundary information. For I/Q

modulated signal, zero padding is performed in two dimen-

sions of the row and column in the CCNN. The operation

actually takes into account the retention of the head and the

tail specialties, and correlations of in-phase and quadrature

components.

15680 VOLUME 8, 2020



S. Chen et al.: Novel Attention Cooperative Framework for Automatic Modulation Recognition

2) BATCH NORMALIZATION

Batch normalization (BN) normalizes the first and second

moments of the data so that the data still has zero mean

and unit variance after it is processed through the network

layers. In order to fully utilize the nonlinear expression ability

of activation functions, the result of BN is multiplied by a

scaling factor and added with bias before being passed to the

nonlinear units. The scaling factor and bias are learned by

the network. BN is employed in the CCNN, the BRNN, and

the final classifier in the proposed framework to accelerate the

convergence speed of the network and improve the classifi-

cation accuracy.

3) DROPOUT

While the fitting ability is improved, the dropout is adopted to

take into account the generalization ability. According to the

different characteristics of the network structures, the dropout

rate is set as 0.8, 0.3, and 0.5 in the CCNN, the BRNN, and

the ACGAN of the proposed framework, respectively.

4) WEIGHT DECAY

To avoid over-fitting of the training data, a regularization

term, which can be expressed as the l2−norm of the network

weight vector, is added to the loss function. Intuitively, weight

decay makes the model prefer to learn the weight with a

smaller l2−norm, while the decay factor quantifies the degree

of preference. In the proposed framework, the decay factor is

set as 0.0001 to balance the fitting and generalization ability.

5) MSRA INITIALIZATION

In the proposed framework, the ReLU activation function

is introduced into the CCNN for nonlinear transformation.

Corresponding to the characteristics of the ReLU activa-

tion function, in order to avoid the gradient disappearing,

MSRA initialization is used for initializing the weight values

of the CCNN. The weight distribution after initialization is

a Gaussian distribution. The MSRA initialization method

effectively improves the classification accuracy in the pro-

posed framework.

6) LEAKY RELU

Unlike the classical ReLU function, leaky ReLU assigns a

non-zero slope to a negative region. We use leaky ReLU as

an activation function in the ACGAN to avoid the instability

of the training process caused by gradient disappearance and

accelerate convergence.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

framework from different perspectives.

A. SIMULATION RESULTS OF BRNN

In our framework, RNN is introduced to extract the temporal

characteristics of signals, and the bidirectional structure is

designed to fully obtain the context information. To evaluate

FIGURE 10. The comparison of the BRNN and the unidirectional RNN.

the performance of the BRNN separately, we temporarily

remove the ACGAN, the CCNN, and the final classifier from

this framework, and add the fully connected layer and the

softmax after the BRNN for the training and the testing.

In this section, BRNN is compared with the unidirectional

structure. The effect of the number of BRNN layers on clas-

sification accuracy is also studied.

As is shown in Figure 10, the recognition performance of

BRNN and unidirectional RNN below 0 dB is approximately

consistent. When SNR is above 0 dB, the average recognition

accuracy of BRNN is 0.6 higher than that of unidirectional

RNN. The reason is that the bidirectional transmission struc-

ture enables the contextual temporal information of the signal

to be fully extracted to obtain complete temporal features.

FIGURE 11. The comparison of the self-attention and the full connection.

Moreover, the self-attention mechanism is introduced in

BRNN as mentioned in Section II.B. Figure 11 illustrates the

performance comparison between the attention mechanism

and full connection.When SNR is above 0 dB, the recognition

accuracy of the attention mechanism is about 1.5% higher

than that of the full connection, because the self-attention

mechanism captures the internal correlation of features and

improves the precision of temporal feature representation.
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FIGURE 12. The comparison of the BRNN with different layers.

In Figure 12, we analyze the influence of the BRNN layer

number on recognition accuracy. As the number of BRNN

layer increases from one to three, the recognition accuracy is

not improved. For three-layer BRNN, the recognition accu-

racy even decreases, which is probably due to the over-fitting.

Increasing the layer number also brings additional computa-

tional overhead. Therefore, in the proposed framework, a one-

layer BRNN is constructed to extract temporal features.

B. SIMULATION RESULTS OF CCNN

CNN is introduced to extract the spatial features of the signal

in this framework. To evaluate the performance of the CCNN

separately, we temporarily remove the ACGAN, the BRNN,

and the final classifier from this framework, and add the fully

connected layer and the softmax after the CCNN for the train-

ing and the testing. The cyclic block structure is designed to

increase the information flows in the CCNN. In order to prove

the superiority of the cyclic structure, it is compared with the

residual structure and the densely connected structure.

FIGURE 13. The comparison of the cyclic block and the structures only
built with forward connections.

As is shown in Figure 13, when SNR is above 0 dB,

the cyclic structure outperforms the other two structures,

which are only built with forward connections. The reason is

that the feature reusability is improved since the cyclic struc-

ture establishes forward and backward connections between

every two layers. The two-stage data propagation implements

the loop feedback operation, which achieves the feature refin-

ing and spatial attention mechanism.

FIGURE 14. The comparison of the SE attention and simple concatenation.

We introduce the SE attention mechanism in CCNN to

achieve feature recalibration. Figure 14 illustrates the per-

formance comparison between SE attention mechanism and

the simple concatenation. Under the condition of high SNR,

the recognition accuracy of the attention mechanism is about

1% higher than that of simple concatenation. The reason is

that the feature recalibration completed by attention mech-

anism strengthens the discrimination of the output feature

maps.

C. SIMULATION RESULTS OF GAMP

GAMP is proposed to fully fuse and recalibrate the spatial and

temporal features of the signal. To evaluate the performance

of the GAMP, we temporarily remove the ACGAN, and take

the temporal and spatial features provided by the trained

BRNN and CCNN as the input for the training and the testing.

As a feature fusion strategy, we compare the GAMP strategy

with simple concatenation and apply the recognition accuracy

of the final classifier as the performance indicator.

As is shown in Figure 15, under the condition that the SNR

is −14 dB to −4 dB, the recognition accuracy of GAMP

is higher than that of simple concatenation. GAMP also

provides a 0.007 improvement when the SNR is above 6dB.

The reason is that the pooling operation, which is combined

with the attention mechanism, allows GAMP to facilitate

the interaction of spatial and temporal features to extract

sufficient information for AMR.

D. SIMULATION RESULTS OF IMPROVED ACGAN AND

AUXILIARY WEIGHING LOSS FUNCTION

To evaluate the performance of the ACGAN and the pro-

posed loss function, all the networks, including the CCNN,

the BRNN, and the final classifier, are trained with the
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FIGURE 15. The comparison of the GAMP strategy and simple
concatenation.

extended dataset and the auxiliary weighing loss function

again, and the accuracy of the final classifier is taken as the

performance indicator. Different proportions of training data

are studied to explore the effects of data augmentation. The

influence of auxiliary weighing loss function on the final

classification accuracy is also studied.

TABLE 1. Recognition accuracy improvement of the ACGAN at 6 dB.

As is illustrated in Table 1, when the SNR is 6 dB,

the expansion of generated data to the training set improves

the recognition accuracy. However, due to the existence of an

objective difference between the generated data and the actual

collected data. When the generated data volume exceeds 50%

of the actual collected data volume, the recognition accuracy

is no longer improved. On this basis, an auxiliary weighing

loss function is proposed to balance the influence of the two

kinds of data, and the recognition accuracy is improved to

93.66%. The reason is that the increase in the amount of train-

ing data can facilitate the generalization of the classification

model in a specific range to improve classification accuracy,

and the auxiliary weighing loss function modifies the data

influences to further enhance the performance of AMR.

E. PERFORMANCE COMPARISON WITH EXISTING WORKS

The proposed framework is compared with the existing

works, which represent AMR techniques based on deep

learning.

1) CNN based on VGG architecture. VGG architecture,

containing series of narrowing convolutional layers fol-

lowed by fully-connected layers and terminated with a

dense softmax layer, is leveraged in [22].

2) GoogleNet based on inception structure. The incep-

tion structure is used to extract multi-scale information

using convolution kernels of different scales in the

same layer, and the exported feature maps are concate-

nated in the channel dimension. Essentially, features

are extracted and retained in different receptive fields.

The 1 × 1 convolution kernel is used to reduce the

number of parameters. GoogleNet used for AMR is

studied in [30].

3) ResNet based on shortcut structure. The residual

module can be implemented by attaching a short-

cut connection to the forward neural network. The

shortcut connection is equivalent to simply performing

the equivalent mapping without generating additional

parameters. The residual structure solves the problem

of performance degradation due to the deepening of

the network layers. ResNet used for AMR is studied

in [31].

4) Classical RNN based on gated recurrent unit (GRU)

structure. RNN with GRU as the basic structure is

widely used in the field of natural language processing

(NLP). The time-series properties of modulated signals

make the application of RNN in AMR reasonable.

A two-layer classical RNN based on GRU is used for

AMR in [29].

5) CLDNN. CLDNN is originally used by Google for

natural machine translation models, and demonstrates

superior performance in the field of speech recogni-

tion. The basic structure of CLDNN is the cascade of

CNN and LSTM units. Some previous works like [30]

and [31] employ CLDNN to achieve AMR.

6) CNN-CSCD (CNN based on cyclic spectra (CS)

and constellation diagram (CD)). A two-branch CNN

model is developed in [27]. The features learned from

CS and CD are fused to achieve AMR.

At the same experimental condition, the recognition accu-

racy results of the proposed framework and other com-

parative techniques with well-tuned parameters are shown

in Figure 16.

The recognition accuracy of the proposed framework is

similar to other structures at low SNR stages. When the

SNR is above -8 dB, the recognition accuracy curve has a

significant upward trend. When the SNR is 0 dB, the recog-

nition accuracy of the proposed framework is up to 90.1%,

the GoogleNet is 68.1%, the VGG is 72.4%, the CNN-CSCD

is 78.2%, the RNN-GRU is 78.3%, the CLDNN is 80.2%,

and the ResNet is 82.4%. Moreover, the accuracy of the

proposed framework at 18 dB is 94.1%, which is 75.7%,

79.9%, 81.2%, 86.3%, 88,4%, and 88.5% of the VGG,

the GoogleNet, the RNN-GRU, the ResNet, the CNN-CSCD

and the CLDNN, respectively. When the SNR is above 0 dB,

the accuracy of attention cooperative framework outperforms
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FIGURE 16. Recognition performance comparison versus SNR.

the CLDNN by about 5.5%. The reason is that the spatial and

the temporal features of the signal are extracted by the CCNN

and the BRNN, and are fully fused by the GAMP strategy in

the proposed framework to guarantee feature completeness.

The training set is extended by the ACGAN, and is balanced

with auxiliary weighing loss function to realize sample suf-

ficiency. In addition, attention mechanism is employed in

the proposed framework to enhance the effectiveness of the

features so that the accuracy of AMR is further improved.

FIGURE 17. Confusion matrix of the proposed framework (SNR = 18 dB).

Figure 17 shows the confusion matrix of the proposed

framework when the SNR is 18 dB. The distinction between

AM-DSB and WBFM is difficult by the small observation

window and low information rate with frequent silence

between words of the data in RML2016.10a [22]. In [22], it is

noted that QAM16 and QAM64 are confused because they

share common points in constellations, which suffers from

short-time observations. However, as is shown in Figure 17,

the confusion severity of QAM16 and QAM64 are

prominently reduced. The reason is that the proposed frame-

work extracts the spatial and the temporal features together so

that the periodic inner trends corresponding to themodulation

types are captured more accurately.

V. CONCLUSION

A novel attention cooperative framework was proposed to

improve the modulation recognition accuracy. An improved

ACGAN was designed to achieve data augmentation, and an

auxiliary weighing loss function was proposed to balance the

influences of the training data. The CCNN and the BRNN

with attention mechanisms were constructed to extract the

spatial and temporal features of the signal. The GAMP strat-

egy was proposed to export the spatial-temporal correlation

feature map, which provided more effective information for

AMR. We utilized dataset RML2016.10a to demonstrate the

performance of the proposed framework. The BRNN with

the self-attention mechanism was compared with the original

RNN and showed the advantages in the temporal feature

extraction. The layer number of the BRNN was also studied

to present a trade-off between the accuracy and the network

complexity. The CCNN constructed with the cyclic structure

and the SE attentionmechanismwas demonstrated to be supe-

rior to the residual structure and the densely connected struc-

ture in the spatial feature extraction. For the spatial-temporal

feature fusion, the GAMP strategy was compared with the

simple concatenation and showed considerable superiority.

Moreover, we introduced the ACGAN and modified its loss

function to accommodate the I/Q data augmentation. Differ-

ent proportions of training data were studied, and an appropri-

ate data proportion was obtained. The auxiliary weighing loss

function brought a further improvement of the recognition

accuracy. In addition, we compared the attention coopera-

tive framework with several existing works based on deep

learning. The recognition accuracy showed that the developed

framework outperformed existing deep learning-based tech-

niques and showed significant potential for AMR.
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