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ABSTRACT

Since convolutional neural networks (CNNs) have revo-
lutionized the image processing field, they have been widely
applied in the audio context. A common approach is to
convert the one-dimensional audio signal time series to two-
dimensional images using a time-frequency decomposition
method. Also it is common to discard the phase informa-
tion. In this paper, we propose to map one-dimensional
audio waveforms to two-dimensional images using space fill-
ing curves (SFCs). These mappings do not compress the
input signal, while preserving its local structure. Moreover,
the mappings benefit from progress made in deep learning
and the large collection of existing computer vision networks.
We test eight SFCs on two keyword spotting problems. We
show that the Z curve yields the best results due to its shift
equivariance under convolution operations. Additionally, the
Z curve produces comparable results to the widely used mel
frequency cepstral coefficients across multiple CNNs.

Index Terms— Space filling curve, audio representa-
tion, deep learning, MFCC

1. INTRODUCTION

The first step when building an audio model is to choose
the input space. Usually the data is pre-processed to ob-
tain an intermediate low-level representation, which is sub-
sequently used as model input. Most of these methods are
frequency-based. For example, Tanweer et al. [1] used mel
frequency cepstral coefficients (MFCCs) for speech recogni-
tion [2]. These coefficients are computed over a sliding win-
dow and stacked together to obtain a two-dimensional time-
frequency image. During the computation, only the magni-
tude of the complex numbers is kept and the phase is dis-
carded. This approach has shown some limitations in speech
enhancement [3] and performing the Fourier transform adds
extra computational costs.

Since the success of deep neural networks in image classifi-
cation [4] and the arrival of dedicated hardware to train large
models in parallel, deep neural networks have been widely
applied to audio signals outperforming previous approaches
[5]. A large variety of image networks have been proposed,
such as convolutional neural networks (CNN, [6]).These can
be used in combination with time-frequency images, although
the two axes are semantically different from the horizontal
and vertical axes of an image.

Separating the construction of an appropriate audio rep-
resentation from the design of the model architecture might
∗This work was supported by Logitech Europe SA.

not be optimal for the task at hand. Hence some authors (e.g.
[7, 8]) used raw audio waveform representations as inputs of
one-dimensional CNNs. Although the additional cost of the
pre-processing step is suppressed, connecting signals that are
far apart, typically requires deeper architectures to increase
the receptive field (RF).

In this study, we investigate a novel approach as an al-
ternative to frequency domain based inputs and to raw audio
waveforms. Space filling curves (SFC) enable us to map au-
dio waveforms to two-dimensional images. In our approach,
the input signal is not compressed and no information is lost
since the SFCs act as bijective maps. By converting the audio
samples to two-dimensional images, it is possible to lever-
age advanced deep neural networks from Computer Vision
(CV). SFCs also reduce the distance between indices com-
pared to one-dimensional indexing schemes, which guaran-
tees the same receptive field with fewer layers. Finally, in a
potential hardware implementation, the mapping is constant
and does not need any runtime computations.

SFCs have been used together with CNNs in the past. For
example, Yin et al. [9] have used the Hilbert curve [10] to
combine consecutive representation of k-mers for the predic-
tion of the chromatin state of a DNA sequence. Tsinganos et
al. [11] have used the Hilbert curve to associate surface elec-
tromyography (sEMG) signals with hand gestures. In their
experiments, the input image was obtained by mapping the
time series into a two-dimensional image for each sEMG chan-
nel, which is similar to our technique. SFCs were also used for
malware classification and detection [12, 13]. In their work
the authors have mapped the code of the program, which can
be viewed as a sequence of bytes, to pixels of an image. To
the best of our knowledge, SFC mappings have not been used
in the context of audio representation.

2. SPACE FILLING CURVES

In this paper, a SFC is a bijective mapping Ck : [N2
k ]→ [Nk]×

[Nk], where Nk = bk, [n] = {1, . . . , n} and the SFC image
representation of an audio sample s = {si}L

i=0 is obtained
by Ik(s)(i, j) = s

C−1
k

(i,j). A SFC can be interpreted as an
ordering of the pixels of an image, or as an indexing scheme
for time series. Note that this definition differs from the usual
one given by Peano [14], which refers to the limiting process
(k → ∞) after a proper normalization of the input and the
output. We can distinguish two families of SFCs: recursive
space filling curves (RSFC) and non-recursive space filling
curves (NRSFC).
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2.1. Recursive space filling curves

A RSFC is built recursively, where Ck+1 is obtained by sub-
dividing the cell (i, j) of the curve Ck into b2 cells and by
modifying the curve Ck according to a set of rules. A large
number of RSFCs exist. In this paper, we focus on the follow-
ing RSFCs: the Hilbert curve [10], the Z curve (also known
as the Z-order [15]), the Gray curve [16], the H curve [17],
and a curve, that we will call OptR, proposed by Asano et
al. [18]. A representation of these curves with k = 3 can be
found in Figure 1. Consecutive points Ck(i), Ck(i + 1) are
connected by a line. Dotted lines represent jumps.

Fig. 1: Recursive space filling curves of order k = 3.
The Hilbert curve shows good performance in locality

preservation, which is desirable in the context of audio sam-
ples: data points close in time should be close in the image
representation in order to exploit the local nature of the con-
volution layers. Depending on the locality metric, the Hilbert
curve outperforms the Z curve and the Gray curve [19], but is
also inferior to the Z curve [20]. Nonetheless, the Z curve and
the Gray curve include jumps between consecutive indices,
which don’t preserve locality. We included both of them to
study the impact of this behavior on models.

Niedermeier et al. [17] have shown that the H curve al-
most reaches the optimal lower bound among closed cyclic
curves (i.e. ‖Ck(i) − Ck(i + 1)‖∞ = 1, ∀i). In particu-
lar, they have shown that ‖Ck(i) − Ck(j)‖p, p = 1, 2,∞
roughly behaves like

√
a|i− j|+ b in the worst case. This

bound is smaller than |i − j|, which is the lower bound in
the one-dimensional case achieved by the identity mapping.
It shows the benefit from using two-dimensional inputs over
one-dimensional inputs, as the distance between indices is re-
duced. Note that the OptR curve is particularly complex,
which might lead to poor performance, since regular patterns
of the curve are harder to identify.

2.2. Non-recursive space filling curve

This category groups all curves that cannot be built recur-
sively. We investigate three additional curves: the Scan
curve, the Sweep curve, and the Diagonal curve [21]. Figure
2 shows their representation when k = 3. The Sweep curve is
a two-dimensional ordering scheme, where the sequence is cut
into equally long intervals and stacked together to obtain an
image. The Scan curve is obtained by reversing one interval
out of two, which removes all jumps. Finally, the Diagonal

curve is a 45 degrees rotated version of the Scan curve re-
stricted to the Nk × Nk grid interior. These curves do not
have particular locality preservation properties apart from
being continuous mappings, i.e. ‖Ck(i) − Ck(i + 1)‖∞ = 1
(except for Sweep). Moreover, ‖Ck(i) − Ck(j)‖∞ scales like
|i− j| in the worst case, which is much larger than

√
|i− j|.

Fig. 2: Non-recursive space filling curves of order k = 3.

2.3. Pre-processing steps

We distinguish two pre-processing steps: functions f ∈ P
that are applied on the raw audio signal and transformations
g ∈ T that are performed on images. Assuming that the SFC
mapping could be implemented in hardware, transformations
in T should be preferred over functions in P.

We might first center audio recordings in the middle of
the frame. The procedure consists of first computing the
weighted average energy in separate windows of size w using
a Gaussian kernel with standard deviation σ, and aligning
the signal that is above the threshold th with the middle of
the output sequence. Note that center ∈ P.

We might also use two additional data augmentations:
mixup [22] and shift. Mixup encourages the model to behave
linearly in-between two training examples by taking random
convex combinations. This operation is parametrized by λ,
which follows a Beta distribution λ ∼ B(α, α), where α > 0 is
some hyperparameter. In the audio setting, this method can
be applied either to the raw audio waveform or to the image
representation. Since the SFC mapping is a linear operator,
both approaches are equivalent. We choose to apply it to the
image (i.e. mixup ∈ T ). Shift consists of applying random
shifts su from a uniform distribution su ∼ U(−L/4, L/4),
where L is the input length, to reduce the location depen-
dency. This operation requires that the input is already cen-
tered in order to lose less information.

3. EXPERIMENTS AND RESULTS

3.1. Experimental setup

We used MFCC, one of the most common audio represen-
tations, as a baseline in this study1. We focused on key-
word spotting using two different datasets: Google Speech
Commands V2 [23] and a dataset based on the 1000 most
frequent words of LibriSpeech’s “clean” split [24], for which
Beckmann et al. [25] have provided aligned labels2. The
Speech Commands dataset contains 105829 words classified
into 35 classes, where 84843, 9981, 11005 of them were re-
spectively used for training, validation, and test. Among
the 1000 most frequent words in LibriSpeech, we have se-
lected 31 words that were appearing between 4000 and 8000

1Code available at https://github.com/amari97/sfc-audio
2Available at https://github.com/bepierre/SpeechVGG

https://github.com/amari97/sfc-audio
https://github.com/bepierre/SpeechVGG


times in order to have a balanced dataset and spoken words
of similar duration. We ended up with 164674, 2519, 2400
training/validation/test examples. All audio recordings were
sampled at 16 kHz and had a duration of one second.

To properly compare both approaches, chosen models
should process inputs of different sizes without changing
their structure. This was achieved by introducing an average
pooling layer with an area equal to the input size. Several CV
networks using this layer were tested: the small MobileNetV3
network (Mo) [26], ShuffleNetV2 (Shuffle) [27], SqueezeNet
(Squeeze) [28], MixNet (Mix) [29] and EfficientNet B0 (Eff)
[30]. Additionally, the representations were evaluated using
Res8 [31], a small network that was specifically designed for
keyword spotting tasks with MFCCs. Few modification were
needed since the models had different input requirements.
Since Mo accepts three channel images (RGB), we added
a pointwise convolution to expand the input, followed by
a ReLU activation layer and BatchNorm normalization layer
[32]. Our implementation of Squeeze added BatchNorms
after the squeezing layer and the classifier was replaced by a
fully connected layer.3 Finally, the pooling area of Res8 was
extended to 4× 4 to increase the RF, and the dilation of the
convolutions was set to 1,1,1,2,2,2, following the increasing
dilation strategy of the Res15 network [31]. As a result, the
RF of Res8 was changed from 54 to 78.

Unless specified otherwise, all models were trained with
stochastic gradient descent (SGD) with learning rate 0.5 and
batch size 256 on 2 GPUs with distributed data parallel. We
used an early stopping rule with 50 waiting epochs and we
set to 300 the maximal number of epochs. We set the mixup
hyperparameter α = 0.2, as in [22]. We set th = 0.0001, such
that only signals that were 1.6 higher than a flat audio signal
exceeded it. We also set the Gaussian kernel parameters to
w = 100 and σ = 25, such that boundary values had a weight
close to zero. We used 40 MFCCs that were computed on
frames of 0.025 seconds with overlaps of 0.015 seconds [31, 33].
Finally, we used curves of order k = 7 to represent one second
of audio, since 16000 < 16384 = 27 × 27.

3.2. Results

Curve comparison As shown in Table 1, the data augmen-
tations improved the accuracy of the model, even if this effect
was slightly less evident in the case of LibriSpeech. The ben-
efits of these augmentations were larger for SFCs: the gen-
erated images were very different, improving the selection of
invariant features. The Z curve yielded the best results in all
situations and reached the baseline performance with Data
Aug. Non-recursive curves performed equally well, but were
inferior to Z and H. Finally, OptR was the worst one.

Ablation study As shown in Table 2, centering the au-
dio clip inside the one second frame improved the accuracy for
almost all curves. In particular, the improvement was larger
for recursive curves. The Shift step provided a large gain by
forcing the model to select features that are shift invariant in
time. Mixup still improved the previous accuracy.

Model comparison Table 3 gives the results of the com-
parison between the Z curve and the MFCC approach. Ex-
cept for Res8, there was no difference with the baseline. The

3We use the version 1.1 as described in the official code https:
//github.com/forresti/SqueezeNet.

Dataset Speech Commands LibriSpeech
SGD* Data Aug. SGD Data Aug.

MFCC 89.3 93.0 97.9 98.2

R
ec
ur
si
ve

Hilbert 80.1 89.0 94.9 94.1
Z 86.2 92.8 97.4 98.3
Gray 82.5 90.4 97.0 96.2
H 82.8 91.6 96.0 97.8
OptR 78.9 88.1 93.8 93.0

N
on

-r
ec
. Sweep 83.2 90.3 94.3 95.5

Scan 83.8 90.3 94.7 96.1
Diagonal 83.4 90.0 95.9 95.6

Table 1: Test accuracy of each SFC on Mo. SGD is the baseline
that only includes the SFC/MFCC computation. Data Aug.
includes mixup, shift and center. *trained with an early
stopping rule with 100 waiting epochs.

Recursive Non-recursive
Hilbert Z Gray H OptR Sweep Scan Diagonal

SGD* 80.1 86.2 82.5 82.8 78.9 83.2 83.8 83.4
+ Center* 83.1 87.3 84.4 84.4 81.8 83.5 84.6 83.3
+ Center + Shift 84.5 90.1 87.9 86.0 85.8 86.8 87.1 87.2
+ Center + Shift + Mixup 89.0 92.8 90.4 91.6 88.1 90.3 90.3 90.0

Table 2: Test accuracy on Mo. SGD is the baseline that
only includes the SFC/MFCC computation. *trained with
an early stopping rule with 100 waiting epochs.

best results were unexpectedly obtained with the largest net-
work (Eff), but Res8 achieved impressive results in terms of
efficiency and accuracy with MFCCs.

Res8 Mo Shuffle Squeeze Mix Eff
Parameters 111K 1’554K 1’289K 740K 2’653K 4’052K

Speech Commands MFCC 94.0 93.0 92.9 93.9 93.9 95.1
Z 85.3 92.8 92.0 91.2* 94.1 94.9

LibriSpeech MFCC 98.6 98.2 98.1 98.1 98.8 99.0
Z 95.9 98.3 97.8 97.9* 98.5 99.2

Table 3: Test accuracy with Data Aug. *trained with an
early stopping rule with 100 waiting epochs.

Receptive field influence Figure 3 shows the average
output probability p̄(s) of the true class as a function of time
shifts s. The figure revealed that p̄(s) was lower when the
audio signal was centered (s = 0), and when the RF was
much smaller than the size of the input image (78 < 128).
This effect was alleviated when increasing the RF to 125 by
setting the dilation of the Res8 filters to 1, 1, 2, 2, 4, 4. In this
case, the model accuracy reached 86.5.

Number of parameters Figure 4 shows the model ac-
curacy after changing the number of parameters by shrinking
or expanding the width of the network (i.e. the number of
channels of each convolution layer) by a factor width_mult.
The large gap with the baseline persisted on Res8. Moreover,
the difference remained similar when reducing the number
of parameters. Due to its prohibitively large computational
cost, the standard deviations were only computed for Mo us-
ing cross-validation, but they showed that the gap with the
baseline was not significant.

Curve Comparison on Res8 Table 4 shows the perfor-
mance of each curve with Res8. Non-recursive curves yielded
the best results, while the Z curve outperformed the other
recursive curves. The gap with the baseline was significant.

https://github.com/forresti/SqueezeNet
https://github.com/forresti/SqueezeNet


Fig. 3: Average output probabilities of the true label when
shifting the input sequence relatively to the center of the
frame. Results obtained with Res8 on Speech Commands.

width
mult.

Z MFCC

0.25 0.011 0.012
0.5 0.011 0.009
0.75 0.008 0.004
1.0 0.013 0.006

Fig. 4: Left: Test accuracy of Mo, Mix with width_mult ∈
{0.25, 0.5, 0.75, 1} and Res8 with width_mult ∈ {1, 1.5, 2, 3}.
Models are trained with Data Aug. on Speech Commands.
Right: Standard deviation of Mo accuracy using 10-fold cross-
validation.

3.3. Discussion

Despite having jumps between consecutive indices, which
could harm the model performance (see Figure 3), the Z
curve showed the best performance among other SFCs. Our
intuition is that the Z curve guarantees a rather simple
relation between the features of the hidden layers, when ran-
domly shifting the input in time. In particular, the Z curve
exhibits a shift equivariance under convolution operations
due to its regular patterns (Z shape) that are always oriented
in the same direction (Figure 1). More precisely,

Lemma 3.1. Let Wl be a 2l × 2l discrete convolution with
stride 2l in x, y direction on a 2k×2k image I, k > l, namely

Ol(I)(i, j) =
∑

m,n∈[2l]

I(i2l +m, j2l + n)×Wl(m,n).

Let also s be a sequence of numbers of length 22k and let
Ik(s)(i, j) = s

C−1
k

(i,j) be the corresponding image using the
Z curve Ck. Then, if the sequence s is circularly shifted by
r = d22l, for some d ∈ N (i.e. sr(i) = s(i + r mod 22k)),
then I−1

k−l ◦Ol ◦ Ik(sr) is equal to I−1
k−l ◦Ol ◦ Ik(s) up to a shift

of d units.

Proof. Note that the Z mapping of some index z, expressed
in binary z ≡ z2k . . . z0, zi ∈ {0, 1}, is obtained by in-
terleaving the bits of its binary expression, namely x =
z2k−1 . . . z1, y = z2k . . . z0. Let i ≡ am . . . a0, j ≡ bm . . . b0,

Recursive Non-recursive
MFCCHilbert Z Gray H OptR Sweep Scan Diagonal

Speech Commands 94.0 80.0 85.3 76.0 80.2 77.7 88.3 89.7 89.8
LibriSpeech 98.6 92.5 95.9 92.8 93.0 90.6 96.5 97.2 96.9

Table 4: Test Accuracy on Res8. Models were trained with
Data Aug.

we have Ik(s)(i, j) = sambm...a0b0 . Shifting the output se-
quence by d22l ≡ d2k . . . d2l0 . . . 0 doesn’t modify the digits
al−1 . . . a0, bl−1 . . . b0. Therefore Ik(sr)(i, j) = sr

ambm...a0b0 =
sãm b̃m...al−1bl−1...a0b0 . Similarly, using a stride of 2l only
modifies digits that are after the 2l-th index. Let’s con-
sider the case i = 0, j = 0. Then Ol ◦ Ik(sr)(0, 0) =
Ol ◦ Ik(s)(d2k−1 . . . d2l+1, d2k . . . d2l). Unfolding the im-
age finally yields I−1

k−l ◦ Ol ◦ Ik(s)(d2k . . . d2l) = I−1
k−l(Ol ◦

Ik(s)(d2k−1 . . . d2l+1, d2k . . . d2l)) = I−1
k−l(Ol ◦ Ik(sr)(0, 0)) =

I−1
k−l ◦Ol ◦ Ik(s)(0), which proves the lemma for i = 0, j = 0.
For the general case the result follows because we have
Ol ◦ Ik(sr)(i, j) = Ol ◦ Ik(s)(ãm . . . ãl, b̃m . . . b̃l).

On the other hand, curves like the Hilbert curve (Fig-
ure 1) include some rotation of its elementary block, which
destroys the equivariance property. This intuition is further
assessed by the fact that the Z curve performed well with-
out imposing some shift invariance with data augmentations
(Table 1), which shows that the model has already built a
coherent feature extraction.

Table 3 shows that the SFC approach was competitive
with the baseline when trained with Data Aug., except for
the Res8 network, for which the large jump in the middle
of the Z mapping had an influence on the accuracy (Figure
3). Increasing the RF of the network improved the accuracy
from 85.3 to 86.5, but remained substantially smaller than
the baseline (86.5 � 94.0). The number of parameters was
not sufficient to justify the discrepancy observed in Table 3,
since the gap persisted on Figure 4. It might be related to
the network architecture, which was specifically designed for
MFCC inputs and which contained a small number of layers.
Indeed Res8 worked best with non-recursive curves (Table 4),
which have an image structure similar to the MFCC represen-
tation: the image can be decomposed into two perpendicular
axes — a time axis and a feature axis — which is not possible
for the recursive curves (see Figure 1).

4. CONCLUSION

We have proposed an alternative audio representation to
frequency-based images and raw audio waveforms using
space filling curves. We have shown that it achieves compa-
rable performance to the widely used MFCC representation
when combined with deep CNNs in the context of keyword
spotting tasks. In particular, the Z curve yields the best
results, which is probably due to its shift equivariance under
convolution operations. Our study suggest that to leverage
DNNs time-frequency decomposition should not be consid-
ered as a central dogma and simpler one-dimensional to
two-dimensional mappings such SFCs might perform just as
well. Future work could aim at checking the robustness of the
image representation under noisy inputs and at generalizing
the method to variable input lengths.
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