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A Novel Bayesian Framework for
Discriminative Feature Extraction
in Brain-Computer Interfaces

Heung-Il Suk, Student Member, IEEE, and Seong-Whan Lee, Fellow, IEEE

Abstract—As there has been a paradigm shift in the learning load from a human subject to a computer, machine learning has been

considered as a useful tool for Brain-Computer Interfaces (BCIs). In this paper, we propose a novel Bayesian framework for

discriminative feature extraction for motor imagery classification in an EEG-based BCI in which the class-discriminative frequency

bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our

framework, the problem of simultaneous spatiospectral filter optimization is formulated as the estimation of an unknown posterior

probability density function (pdf) that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated

in a state. In order to estimate the posterior pdf, we propose a particle-based approximation method by extending a factored-sampling

technique with a diffusion process. An information-theoretic observation model is also devised to measure discriminative power of

features between classes. From the viewpoint of classifier design, the proposed method naturally allows us to construct a spectrally

weighted label decision rule by linearly combining the outputs from multiple classifiers. We demonstrate the feasibility and

effectiveness of the proposed method by analyzing the results and its success on three public databases.

Index Terms—Discriminative feature extraction, spatiospectral filter optimization, Brain-Computer Interface (BCI),

ElectroEncephaloGraphy (EEG), motor imagery classification

Ç

1 INTRODUCTION

A Brain-Computer Interface (BCI), also called a Brain-
Machine Interface (BMI), is a state-of-the-art technol-

ogy that translates neuronal activities into user commands,
and thereby can establish a direct communication pathway
between the brain and an external device. Due to the huge
potential of BCIs in medical and industrial applications for
both disabled and normal people, it has been of great
interest to many research groups [1], [2], [3], [4].

One of the revolutionary changes in the history of BCI is
that there has been a paradigm shift in the realization of the
BCI system; the learning burden has shifted from the subject
to the computer [5]. Consequently, machine learning has
been considered as the main tool for the classification or
analysis of brain signals. A comprehensive review of
machine learning algorithms for BCI is available in [6].

Despite the successful application of machine learning
techniques to BCI, the high complexity of the human brain
and the low signal-to-noise ratio in EEG signals prevent
EEG-based BCI systems from decoding every humanmental

state or intention. Among a small subset of brain states
widely considered in BCI, increasing attention has been
devoted to the analysis of EEG signals induced by imagined
body-part movement, called motor imagery [1]. This is
because of its active and voluntary strategy for generating a
specific regulation of an EEG pattern in frequency band(s),
known as Event-Related Desynchonization (ERD) or Event-
Related Synchronization (ERS). The neurophysiological ERD
or ERS phenomenon during motor imagery is, respectively,
the suppression or augmentation of the signal power in the
motor and somatosensory cortex due to the loss of
synchrony, in particular, in the frequency ranges: �-rhythm
(8-14 Hz) and �-rhythm (14-30 Hz).

However, the ERD/ERS patterns exhibit high variability
across subjects and even trials for the same subject [7].
Therefore, finding the ERD/ERS-related frequency band(s)
and the class-discriminative spatial patterns have been the
main issues in the BCI community. Considerable efforts
have been devoted to these problems in terms of signal
processing, computational modeling and recognition, and
analysis of brain signals [6], [8].

In this paper, we propose a novel framework of
spatiospectral filter optimization for discriminative feature
extraction in BCI. The main contributions of the paper are
threefold. First, we build a Bayesian framework in which
the class-discriminative frequency bands are probabilisti-
cally selected and the corresponding spatial filters are
optimized. In our framework, a frequency band is repre-
sented as a random variable. The problem of optimizing
the spatiospectral filter is formulated as the estimation of the
posterior probability density function (pdf) that represents
the relative probabilities of different states in discriminating
single-trial EEGs. Second, we propose a particle-based
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approximation method for the estimation of the posterior pdf
by extending a factored-sampling technique with a diffusion
process, and an observation model, which measures dis-
criminative power of features between classes, by means of
an information-theoretic approach. Third, thanks to the
features of the proposed pdf estimation method, we can
construct a spectrally weighted label decision rule by
linearly combining the outputs from multiple classifiers. A
preliminary partial version of this work was presented in [9].

The rest of the paper is organized as follows: We start by
reviewing work on motor imagery classification in the
literature in Section 2. A novel Bayesian framework for
discriminative feature extraction by means of spatiospectral
filter optimization, particle-based posterior pdf estimation,
information-theoretic likelihood computation, and a spec-
trally weighted classification rule are described in Section 3.
The experimental results are compared with competing
methods in the literature and the discussions on this are
detailed in Section 4. We conclude this paper by summariz-
ing the proposed method and providing directions for
future work in Section 5.

2 RELATED WORK

Utilizing ERD/ERS patterns in a single-trial EEG, many
works in the literature perform the following three
prevalent steps for motor imagery classification:

1. spectral filtering: z ¼ h� x,
2. spatial filtering: y ¼ Wyz,
3. feature extraction: f ¼ logðvarðyÞÞ,

where x denotes a single-trial EEG, h and W denote,
respectively, a spectral filter and a spatial filter, z denotes
the spectrally filtered EEG, and y denotes the spatially
filtered signal of z. Hereafter, the superscript y denotes a
matrix transpose operation throughout this paper. The
feature vector f composed of the logarithmic (log) values of
the second-order statistics (var) of the signal y is fed into a
classifier for training or evaluation.

Unfortunately, as stated above, the motor imagery
responsive frequency band(s) varies across subjects and
trials even for the same subject, and there is no general
analytic method for finding the optimal frequency band(s),
accordingly the spectral filter. Hereafter, we use the terms
spectral filter and frequency band interchangeably. While
some groups have considered subject-dependent frequency
band selection [10], [11], [12], the frequency bands on which
the rest of the processes in a BCI system operate are either
selected manually based on visual inspection or unspecifi-
cally set to a broadband in many researches [6], [7], [13],
[14], [15]. Contrary to the subject-dependent approach,
there have also been the efforts of developing subject-
independent methods for more practical applications short-
ening time-consuming calibration recordings [16], [17], [18].

For the optimization of a spatial filter W, in contrast, the
CSP algorithm [7] that utilizes a generalized eigenvalue
problem is widely used [14], [15], [19]. The algorithm finds
spatial patterns that transform signals of two classes to be
maximally discriminative based on the ratio of the variance
of the data conditioned on one class and the variance of
the data conditioned on the other class. The learned spatial

pattern is, however, highly dependent on the operating
frequency band, thereby a spectral filter h. Therefore, from
an optimization point of view, the spatiospectral filter
should be simultaneously optimized from data in a unified
framework for each subject.

Lemm et al. proposed a common spatiospectral pattern
method that puts it into a CSP algorithm for spatially
augmented signals with embedding of the time-delayed
signals as new channels, resulting in doubling of the
number of channels [20]. But the flexibility of the method
is very limited due to the first-order FIR filter optimization
approach. Furthermore, the time delay parameter should be
tuned empirically. Later, Dornhege et al. extended Lemm
et al.’s work, increasing the flexibility of FIR filters by
optimizing an arbitrary FIR filter within the CSP analysis
and enforcing sparse filter coefficients with an introduction
of a regularization term [21].

Tomioka et al. devised a method that alternatively
optimizes the spatial projection matrix and nonhomoge-
neous weighting coefficients of the cross-spectrum matrices
[22]. Wu et al. tried to directly optimize spectral filters, FIR
in the spectral domain, to achieve maximal classification
accuracy. They proposed an iterative spatiospectral pattern
learning method that employs a statistical learning theory
for automatic learning of spatiospectral filter [23].

More recently, some groups have focused on finding an
optimal spatiospectral filter by constructing a filter bank
and applying a CSP algorithm in each frequency band
independently. Ang et al. proposed a Filter Bank CSP
(FBCSP) that first dissects a broadband frequency range of
interest into predefined small nonoverlapping frequency
bands with a fixed bandwidth [19]. The method applies a
CSP algorithm to each band independently and uses a
maximal mutual information criterion to select a discrimi-
native feature set. Thomas et al. proposed a method of
selecting subject-specific discriminative filter bank CSP
using a coefficient decimation technique [24]. Last but not
least, Zhang et al. proposed an Optimal Spatiospectral Filter
Network (OSSFN) for which a gradient-based learning
algorithm was devised to find optimal spatial filters in
conjunction with a filter bank and mutual information [25].
Although the application of a filter bank covering the �- and
�-rhythms and the optimization of spatial patterns in each
band improved the classification performance in their work,
the frequency bands were still predetermined and fixed
based on prior neurophysiological knowledge.

In this paper, we propose a novel framework of optimiz-
ing spatiospectral filter in probabilistic and information-
theoretic approaches, which extracts discriminative features
to improve classification performance. Table 1 gives a brief
comparison of various methods in the literature for feature
extraction and recognition ofmotor imagery tasks in an EEG-
based BCI. To the best of our knowledge, this is the first time
a method of finding the optimal spatiospectral filter in a
probabilistic Bayesian approach has been proposed.

3 BAYESIAN SPATIOsPECTRAL FILTER
OPTIMIZATION (BSSFO)

In order for discriminative feature extraction, we consider
the following problems: 1) How should we compose a filter
bank—how many frequency bands should there be and
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how wide should each frequency band be? and 2) how can
we measure the discriminative power of features between
classes?

We use a discriminative approach and propose a novel
Bayesian framework for simultaneous optimization of the
spectral and spatial filters, which we call Bayesian Spatios-
pectral Filter Optimization. A particle-based posterior pdf
estimation method and an information-theoretic observation
model are also devised. Taking advantage of the particle-
based pdf estimation technique, a spectrally weighted
classifier construction is also described. Refer to Table 2 for
the description of the notations used throughout this paper.

3.1 Problem Formulation

Let us denoteB ¼ ½bs; be�y as a continuous random vector for
a frequency band, where bs and be are, respectively, the start
and the end frequency of the band range with the constraint
of bs < be. We define the probability of a frequency band b,
pðbÞ, as the chance that the b bandpass-filtered signals can be
correctly classified between two classes.

Since we are presumably uncertain about the discrimi-
native frequency band, we encode this uncertainty as a
prior distribution pðBÞ over a random variable B. Given a

set of single-trial EEGs X ¼ fxig
D
i¼1 and the corresponding

class labels � ¼ f!ig
D
i¼1, where D is the number of trials,

we can compute the posterior pdf, pðBjX;�Þ, by the Bayes

rule as follows:

pðBjX;�Þ ¼
pðX;�jBÞpðBÞ

pðX;�Þ
: ð1Þ

The prior, pðBÞ, describes the relative probabilities of

different states, i.e., frequency bands, in which single-trial

EEGs pertinent to motor imageries are correctly discrimi-

nated. The term pðX;�jBÞ is called the likelihood function.

If the hypothesis B, i.e., the frequency band, were true, this

term indicates the probability that the single-trial EEGs X

in conjunction with the class labels � would have been

available to support it. The posterior distribution pðBjX;�Þ

defines the probability of frequency band B being true,

given the observations of X and �. Thus, it indicates the

relative likelihood of the single-trial EEGs X being correctly

classified into � by B bandpass filtering along with the

ensuing computational processes. Note that in this paper

we do not make any functional assumption about the

288 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 2, FEBRUARY 2013

TABLE 1
A Summary of Spatiospectral Filter Optimization Methods in the Literature



densities pðBÞ and pðBjX;�Þ, such as linearity, Gaussianity,
unimodality, etc.

Given a frequency band B and raw EEG signals X, the
bandpass-filtered signals Z are deterministically obtained.
Hence, the likelihood pðX;�jBÞ and the evidence pðX;�Þ
are equal to pðZ;�jBÞ and pðZ;�Þ, respectively. We can
then rewrite (1), replacing the raw EEGs X with the
bandpass-filtered signals Z as follows:

pðBjZ;�Þ ¼
pðZ;�jBÞpðBÞ

pðZ;�Þ
: ð2Þ

The posterior pðBjZ;�Þ represents all the knowledge about
B that is deducible from the bandpass-filtered single-trials
Z and the corresponding class labels �.

Note that a spatial filterW is found from Z via a standard
CSP algorithm [13] or its variants [14], [15], [16], [26], inwhich
W is analytically obtained by computing a generalized
eigenvector problem. As described above, a feature vector is
extracted by computing simple matrix multiplication be-
tweenZ andW and the second-order statistics followed by a
monotonically increasing logarithmic function. It means that
the posterior pðBjZ;�Þ can be indirectly estimated from
pðBjF;�Þ, where F ¼ log½varðWyZÞ�, without losing infor-
mation in the data. Therefore, we can rewrite (2) as follows
with the feature vector set F extracted from the spatially
filtered signals of Z:

pðBjZ;�Þ ¼
4
pðBjF;�Þ

¼
pðF;�jBÞpðBÞ

pðF;�Þ
;

ð3Þ

where pðF;�Þ ¼
R

B
pðF;�jBÞpðBÞdB. Thus, our goal of

finding the optimal spatiospectral filter for discriminative
feature extraction, ultimately improving classification accu-
racy, can be defined as estimation of the posterior pdf
pðBjF;�Þ in (3).

3.2 Posterior Estimation

Although there exists informative neurophysiological
knowledge about the rhythmic activity involved in motor
imagery, the functional form of the pdf pðBÞ is unknown.
Furthermore, in this case, where pðF;�jBÞ in (3) is
sufficiently complex that pðBjF;�Þ cannot be directly

evaluated in a closed form, a particle(sample)-based approx-
imation technique can be used. Hereafter, we use the term
“particle” instead of “sample” in order to avoid the termino-
logical confusion with the sample in an EEG.

We utilize the sophisticated factored-sampling algorithm
[27] for the estimation of the unknown-formed pdf. Assume
that a particle-set B ¼ fbkg

K
k¼1 is generated from the prior

density pðBÞ, where bk denotes a particle representing a
single frequency band. Based on these particles we can
compute the weight of each particle as follows:

�k ¼
pðFk;�jbkÞ

PK
i¼1 pðFi;�jbkÞ

; ð4Þ

where Fk denotes a feature vector set extracted from the
spectrally (bk) and spatially (Wk) filtered signals and
pðFk;�jbkÞ denotes the conditional observation density.
As a result, the weighted particle-set B ¼ fbk; �kg

K
k¼1

approximates the distribution of the posterior pðBjFk;�Þ
and it converges to the true density as the number of
particles increases.

We iteratively apply the factored-sampling algorithm
until it converges in the estimation of the posterior
pðBjFk;�Þ in order to circumvent the effect of the biased
prior density; this is similar to the burn-in step in theMarkov
chain Monte Carlo algorithm [28]. We believe that iteration
helps obtain a stabilized approximation of the pdf by
considering the potential states around a given state, i.e.,
frequency band, as described below.

It is clear that the algorithm needs to begin with a prior
density pðBÞ from which we can generate particles at each
iteration. From a Bayesian point of view, the effective prior
for the tth iteration should be derived from the output of
the previous iteration, i.e., the weighted particle set
representation Bðt�1Þ ¼ fbt�1

k ; �t�1
k gKk¼1.

In the tth iteration, our first task is to choose a particle btk
with a probability �t�1

k with replacement from Bðt�1Þ, and
we repeat the operationK times, resulting in a new particle-
set BðtÞ. In this manner, some particles, especially those with
high weights, can be chosen multiple times, leading to
identical copies in the new particle set. We therefore apply
a diffusion method to the new particle set by adding a
Gaussian noise as follows:
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b0
k ¼

bk þ � if;  ðkÞ > 1;
bk; otherwise;

�

ð5Þ

where  ðkÞ denotes the number of times that the kth particle

in Bðt�1Þ is chosen while composing the new particle set BðtÞ

and � is a normally distributed diffusion noise. By applying

the diffusion process only to the particles that have already

been in the new particle set BðtÞ, we can avoid losing the

current optimal state. The rationale for the application of

the diffusion method in pdf estimation is that it first allows

us to consider the states around the current optimal

frequency band, which might prevent us from falling into

a local optimum, and it also prevents the particles from

converging to a single local optimal solution as the method

iterates. The sequential application of the factored-sampling

and diffusion method is similar to the Sequential Monte

Carlo algorithm [29], also known as the particle-filter

algorithm, which is developed for object tracking in

computer vision [30].
The main advantage of this particle-based approximation

of the posterior density pðBjF;�Þ is that we can naturally

obtain a data-driven filter bank that is composed of multiple

particles, each of which may have a different weight and

bandwidth and can possibly be overlapped. This overcomes

the limitation of the previous work of [19], [24], [25] in

which the authors constructed a filter bank by dissecting a

broadband into predefined and fixed nonoverlapping

frequency bands with a uniform bandwidth. Another

important feature of the proposed method is that the set

of the particles fbkg
K
k¼1 and the corresponding weights

f�gKk¼1 allows us to design a spectrally weighted classifica-

tion rule as described below.

3.3 Likelihood Estimation with Mutual Information

The likelihood computation in (3) is another big challenge. In

order to meet this challenge, this paper introduces mutual

information, which measures the mutual dependence of two

random variables or reduction in uncertainty of random

variables. The information-theoretic approach has recently

received considerable attention in both the BCI [25], [31], [32]

and the machine learning communities [33], [34], [35] for the

selection of an informative subset from original features.

Unlike that use of mutual information, in this paper, we

consider it for the likelihood computation in the proposed

Bayesian framework.We use it tomeasure the discriminative

power of features in terms of classifying single-trial EEGs

from the probabilistic viewpoint.
We define the likelihood pðFk;�jbkÞ in (4) as follows:

pðFk;�jbkÞ � exp IðFk;�Þ½ �; ð6Þ

where IðFk;�Þ denotes the mutual information between the

feature vector set Fk and the class label set �. This clearly

reflects our intention of computing the discriminative

power between classes based on the features extracted

from the bk bandpass-filtered andWk spatially transformed

signals.
The mutual information IðFk;�Þ is defined as follows:

IðFk;�Þ ¼ HðFkÞ �HðFkj�Þ; ð7Þ

where Hð�Þ and Hð�j�Þ denote, respectively, the entropy and
the conditional entropy. For continuous random variables,
the entropy and mutual information are defined as

HðFkÞ ¼ �

Z

pðFkÞlog pðFkÞð ÞdFk; ð8Þ

HðFkj�Þ ¼ �
X

!2�

Z

pðFkj!Þlog pðFkj!Þð ÞdFk; ð9Þ

where ! is a particular class label, which is either positive
(þ) or negative (�) in this paper. Given a feature vector set
Fk ¼ ff ikg

D
i¼1, the entropy and the conditional entropy can

be approximated by

HðFkÞ ffi �
1

D

X

D

i¼1

log
�

p
�

f ik
��

; ð10Þ

HðFkj! ¼ cÞ ffi �
1

Dc

X

j s:t:!j¼c

log
�

p
�

f
j
kj! ¼ c

��

; ð11Þ

where c 2 fþ;�g, D denotes the total number of trials, and
Dc denotes the number of trials of the class c.

However, it is still verydifficult for the continuousvalue f ik
to estimate the pdfs, pðf ikÞ and pðf ikj!Þ. In this paper, we
estimate the underlying pdfs using a Parzen window
density estimator [33], which involves the superposition
of a normalized window function centered on a set of
training data, i.e., single-trial EEGs. Given the feature vector
set Fk, the density function pðfkÞ is estimated by

p̂ðfkÞ ¼
1

D

X

D

i¼1

’
�

fk � f ik; �
�

; ð12Þ

where ’ð�Þ is a window function and � is a window width
parameter determining the smoothness of the window
function. With the appropriate selection of ’ð�Þ and �, the
estimated density function p̂ðfkÞ converges to the true
density [36]. Here, we use a multivariate Gaussian window
function defined as

’ða; �Þ ¼
1

2�ð Þd=2�dj�j1=2
exp �

ay��1a

2�2

" #

; ð13Þ

where � denotes a covariance matrix, a denotes a
d-dimensional random vector, and � denotes a width of
the window function.

We can rewrite (10) and (11) with the introduction of (12)
and (13) as follows:

HðFkÞ ffi �
1

D

X

D

i¼1

log
1

D

X

D

j¼1

’
�

f ik � f
j
k; �

�

" #

; ð14Þ

HðFkj! ¼ cÞ ffi �
1

Dc

X

ði s:t:!i¼cÞ

log
1

Dc

X

ðj s:t:!j¼cÞ

’
�

f ik � f
j
k; �

�

2

4

3

5;

ð15Þ

where D and Dc denote, respectively, the total number of
trials in a training dataset and the number of trials of the
class c. Based on the values obtained from (14) and (15), we
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can obtain an estimate of the mutual information between
the feature vectors and the class labels in (7). Thus, we can
eventually compute the likelihood of (6). Refer to Fig. 1 for
the complete algorithm of the proposed Bayesian
spatiospectral filter optimization method for class-discrimi-
native feature extraction.

3.4 Spectrally Weighted Classification

As explained above, the output from the proposed Bayesian
framework is the particle set fbk; �kg

K
k¼1 and the spatial filter

set fWkg
K
k¼1. That is, it finds the class-discriminative

frequency bands, represented by the particles comprising
the data-driven filter bank, and the spatial patterns, one for
each band. Consequently, a set of spatiospectral filters
fbk;Wkg

K
k¼1 optimized in probabilistic and information-

theoretic manners is obtained. An important point here is
that we also obtain the weights f�kg

K
k¼1 for the class-

discriminative frequency bands besides the spatiospectral
filter. We utilize the informative spectral weights in con-
structing a classifier.

The classifier training is preceded by frequency bands
selection based on the weights of particles. The motivation
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Fig. 1. The proposed Bayesian spatiospectral filter optimization algorithm for class-discriminative feature extraction.



for this step is the possibility of drawing a low-probability
particle because of the nature of particle-based posterior pdf
estimation. We compose an optimal filter bank S with the
set of class-discriminative frequency bands selected by the
following rule:

S ¼
[

k

�k > �ð Þ; ð16Þ

where k 2 f1; 2; . . . ; Kg and � denotes a threshold para-
meter that is determined empirically.

Then a Support Vector Machine (SVM) [37], which has
been proven to have strong performance in many applica-
tions, including BCIs [6], is trained for each frequency band
of the optimal filter bank with the feature vectors extracted
from the spectrally and spatially transformed data. In
evaluation, we linearly combine the outputs from multiple
classifiers with the weights assigned to each frequency
band. That is, given a single-trial EEG x�, the class label is
determined by the following rule:

ĉ ¼ argmax
c2fþ;�g

X

jSj

k¼1

�k � �
c
kðf

�
kÞ

( )

; ð17Þ

where jSj denotes the size of the optimal filter bank S, f�k
denotes the feature vector from the input single-trial EEG
x�, and �c

kðf
�
kÞ is the score of an SVM which classifies the

EEG into the class c, in the kth frequency band.

4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we describe experiments on three public
datasets available on the web: the Technische Universität
Berlin Dataset [38], BCI Competition III Dataset-IVa [39],
and BCI Competition IV Dataset-IIa [40]. We present the
effectiveness of the proposed Bayesian Spatiopectral Filter
Optimization by comparing its classification results with
those of the other competing methods, namely, the standard
Common Spatial Pattern (CSP) [7], Common Spatial
Spectral Pattern (CSSP) [20], Filter Bank CSP (FBCSP) [19],
Discriminative FBCSP (DCSP) [24], and Optimal
SpatioSpectral Filter Network (OSSFN) [25]. For the OSSFN,
we consider two approaches, each of which utilizes FBCSP
(OSSFNwFBCSP) or DCSP (OSSFNwDCSP) in composing a
filter bank. In our experiments, the proposed methods as
well as the competing methods are trained in a subject-
dependent way with trials of a single subject. For all the
datasets, the performance of the methods is evaluated by
measuring the ratio of trials correctly classified to the total
number of test trials for each subject. The source codes for
the proposed method is available at http://image.korea.
ac.kr/sources.

4.1 Preprocessing and Hyperparameters Setting

The EEG signals of all the datasets were bandpass-filtered
between 4 Hz and 40 Hz covering both the �-rhythm
(8-14 Hz) and �-rhythm (14-30 Hz). We then applied the
small Laplacian derivation calculated by subtracting four
surrounding channels with weights equal to the central one
in order to reduce artifacts and noise. All the single-trials
were baseline corrected by subtracting the mean of the
samples before cue-onset because, during recording, an

EEG undergoes slow shifts over time such that the zero
level might differ considerably across trials.

As stated in Section 3.1, since there is no functional
assumption of the prior density we are free to generate
particles for the initialization of the BSSFO. In our
experiments, we started by generating particles from a
mixture of Gaussians pðBÞ defined as follows based on
prior neurophysiological knowledge:

pðBÞ ¼
1

2
Nð����;�����Þ þ

1

2
Nð����;�����Þ;

where ���� and ���� denote, respectively, the �-rhythm and
�-rhythm, and the covariances � are set to be diagonal. Due
to the nature of the particle-based pdf approximation
embedded in the proposed BSSFO, we repeated the
experiments 10 times to obtain more statistically robust
results. The threshold � in (16) used for the selection of
optimal frequency bands is set to the mean weight of the
particles. We use the standard CSP algorithm [7] to learn an
optimal spatial filter in each frequency band.

The competing CSP method is applied for the signals
bandpass-filtered between 8-30 Hz [7], which is the most
commonly selected frequency range in the literature. For
the FBCSP and DCSP algorithms, we employed a filter
bank composed of nine frequency bands, as described in
the original papers [19], [24]. The time delay in CSSP is
varied from 1 to 30. For all the competing methods
including the proposed BSSFO, a fifth-order Butterworth
filter was used to bandpass-filter the signals for any given
frequency band. With respect to spatial filter learning, we
consider two spatial patterns obtained from the standard
CSP algorithm, i.e., the first and last column vectors in the
projection matrix.

Although some studies have shown that linear filters are
sufficient for sensory motor rhythm-based BCI in their own
experiments, there has been also other research that pre-
sented better performance with a nonlinear Gaussian SVM
than a linear SVM [6], [41], [42], [43]. In our preparatory
experiment, we considered both types of classifiers and
obtained a slightly better classification accuracy from a
Gaussian kernel-based SVM [37]. Therefore, we use a
Gaussian kernel-based SVM for all the three datasets.

4.2 Technische Universität Berlin Dataset

4.2.1 Description

During the experiment, a subject was instructed to perform
either left-hand or right-hand motor imagery according to
the visual cue. The EEGs were recorded using 51 electrodes
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Fig. 2. Electrode montages for the three datasets considered in this
paper. (a) Technische Universität Berlin Dataset (51), (b) BCI Competi-
tion III Dataset-IV (118). (c) BCI Competition IV Dataset-IIa (22). The
numbers in the parentheses denote the number of electrodes.



(Fig. 2a) and sampled at 100 Hz. There were 140 trials for
each task from a single subject. We considered the samples
between 0.75s and 4s after onset for both training and
evaluation. In our 10-fold cross-validation, we randomly
selected 70 trials per task for training and used the
remaining trials for evaluation. It should be noted that in
order to ensure a valid comparison among the competing
methods, the same training and test partitions were used for
evaluation in the cross-validation.

4.2.2 Results

Since the number of particles that is used to estimate the
posterior pdf in the proposed method can be an important
factor affecting the classification performance, we first
performed an experiment that involved varying the number
of particles. Fig. 3 presents a box plot of the classification
results according to the number of particles. We can see that
the classification performance increases in accordance with
the number of particles. However, the improvement of
classification accuracy slows down after 30 particles. In fact,
repeated experiments showed that the maximum accuracy
was obtained with 30 particles. Therefore, we decided to
use 30 particles for the rest of the experiments on not only
this dataset but also the other two datasets.

The classification performances are presented in Table 3,
from which we can see that the proposed BSSFO outper-
forms the other six competing methods with a smaller
standard deviation. We also illustrate the optimal spatial
patterns in Fig. 4 for each competing method. In Fig. 4, the
spatial patterns of the proposed method, which are
obtained in the frequency band of the largest weight,
exhibit the most localized ERD/ERS patterns.

In order to see the effectiveness of the proposed method
we computed the distribution of the discriminative fre-
quency band in (3) by calculating probabilities between 4 Hz
and 40 Hz at an interval of 0.5 Hz. The distribution is

visualized in Fig. 5. In the figure, we also marked the
optimized 10 frequency bands, which are selected by (16),
with black squares that are distributed around the �-rhythm.

4.3 BCI Competition III Dataset-IVa

4.3.1 Description

The EEG signals were collected from five healthy subjects
(“aa,” “al,” “av,” “aw,” “ay”), who were asked to perform
left-hand, right-hand, or right-foot motor imaginary, but
cues for only the classes of right-hand and right-foot were
provided for the competition [39]. The EEG data was
acquired using 118 electrodes (Fig. 2b) at the positions given
by the extended international 10/20 system and sampled at
250 Hz. We used signals downsampled at 100 Hz. There
were 280 trials in total, 140 trials per task, for each subject.
The number of trials for training and test varied across
subjects as follows: subject(right-hand, right-foot)—
aa(80, 88), al(112, 112), av(42, 42), aw(30, 26), and
ay(18, 10) were for training and the rest were for evaluation.

4.3.2 Results

The sample points in a time period of 2s, between 0.5s
and 2.5s, were considered for both calibration and
evaluation. The samples of the first 0.5s period after cue-
onset were excluded since these might contain the
spontaneous responses to visual stimulus. The classifica-
tion accuracy of all the competing methods is presented in
Table 4, in which the best performance for each subject is
highlighted in boldface. The proposed method resulted in
the highest classification performance over all subjects
with a mean accuracy of 75.46 percent and a standard
deviation of 19.06 percent.

The small number of training EEGs for subjects av, aw,
and ay consistently resulted in low performance across
the methods, except for the proposed BSSFO and CSSP for
the subject aw. Based on the web announcement about the
results of the competition, the top three winners showed
better performance than all the methods considered in this
paper, including the proposed BSSFO, did. We believe that
the high performance of the winners resulted from the fact
that they applied an adaptation or retrainingmethodwith an
extended training set using data from other subjects to tackle
the problem of the small training sets. However, it is out of
scope of this paper for methods to combine information from
other subjects’ training data and would be our forthcoming
research issue, extending our method for the problems of
small training sets and subject-independent BCIs.

4.4 BCI Competition IV Dataset-IIa

4.4.1 Description

The EEG signals were recorded from nine subjects perform-
ing four different motor imagery tasks, i.e., left-hand, right-
hand, foot, and tongue, comprised of two sessions conducted
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Fig. 3. Performance variation over number of particles—experiment on
the Technische Universität Berlin Dataset.

TABLE 3
Classification Performances on the Technische Universität Berlin Dataset

SD: Standard Deviation.



on different days. Each session includes six runs separated
by short breaks, and a run is further composed of 48 trials;
there are 12 trials per motor imagery task and 288 trials in
total per session [40]. The EEG data were acquired using
22 AG/AgCl electrodes (Fig. 2c) and sampled at 250 Hz. The
signals were bandpass-filtered between 0.5 Hz and 100 Hz
and an additional 50 Hz notch filter was also applied to
suppress line noise.

4.4.2 Results

We consider the signals between 0.5s and 2.5s after onset
of the stimulus for both calibration and evaluation.

Although there are four different motor-imagery tasks,
here we consider motor imagery binary classification: left-
hand versus right-hand, left-hand versus foot, left-hand
versus tongue, right-hand versus foot, right-hand versus
tongue, and foot versus tongue, since the main concern of
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TABLE 4
Classification Performance on BCI Competition III Dataset IVa

� : a time delay in the sample points, SD: Standard Deviation.

Fig. 4. The most significant spatial patterns learned from the Technische Universität Berlin dataset in each method. For the BSSFO, these were
obtained from the frequency band of the maximum weight.

Fig. 5. Visualization of the distribution of the discriminative frequency
band for the Technische Universität Berlin dataset and the optimized
10 frequency bands, marked with black squares, obtained in the
proposed method. The online color version provides a clearer view.



this paper is discriminative feature extraction by means of
spatiospectral filter optimization, not multiclass motor
imagery classification.

The results of the six types of motor imagery binary

classification are presented in Fig. 6. Although there is high

variability in classification performance over subjects,

overall the proposed method clearly outperforms the other

methods. The mean and standard deviation for each type of

binary classification are also presented in Fig. 7. An

interesting result from the paired motor imagery classifica-

tion on this dataset is that the motor imageries of left-hand

and foot are the most discriminative, as shown in Table 5.

Left-hand versus tongue, right-hand versus tongue, right-

hand versus foot, left-hand versus right-hand, and foot

versus tongue follow in that order. This result conflicts with

the use of the stimuli exploited in the motor imagery-based

BCI literature, which mostly considered the left-hand and

right-hand tasks.
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Fig. 6. Binary classification performances on the BCI Competition IV Dataset-IIa.

Fig. 7. Summary of the results for the statistical significance test (paired t-test). The p-values in boldface mean that the null hypotheses can be
rejected beyond the 95 percent confidence level. (Left: Left-hand, Right: Right-hand).



4.5 Discussion

From the experimental results on the three public datasets
presented above, the following questions arise: 1) How
statistically significant are the classification performances?
and 2) how does the classification performance change
according to the number of frequency bands considered in
designing the classification system?

4.5.1 Statistical Significance Testing

The null hypothesis in this paper is that the proposed BSSFO

method produces the same mean accuracy as the competing

methods, e.g., BSSFO ¼ CSP;BSSFO ¼ CSSP, etc. We com-

pute the p-values using a paired t-test to assess whether the

differences in classification accuracies between twomethods
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TABLE 5
Comparison over Different Types of Motor Imagery Binary Classification

The numbers are the average classification accuracies of all the competing methods.

Fig. 8. Evolution of the classification accuracies according to the number of particles used in the label decision. The number of particles for each
subject is considered up to the size of the filter bank that resulted in the performances presented above.



are at a significant level on each dataset. A paired t-test was
performed among subjects for both BCI Competition III
Dataset IVa and BCI Competition IV Dataset IIa. Meanwhile,
for the Technische Universität Berlin Datadet, it was done
among folds in cross-validation as if theywere frommultiple
subjects since the dataset was from a single subject.

The summary of results for the statistical significance tests
over the datasets is presented in Fig. 7. In the figure, we
highlighted the cases in boldface that the null hypothesis can
be rejected beyond the 95 percent confidence level. From the
statistics shown in Fig. 7, it is clear that the proposed BSSFO
significantly outperforms the competing methods: There are
seven cases for CSP, six cases for CSSP, eight cases for FBCSP,
six cases for DCSP, eight cases for OSSFNwFBCSP, and eight
cases forOSSFNwDCSPamong the eight binary classification
experiments (cases).

4.5.2 Effect of the Number of Frequency Bands

Since we apply a simple threshold-based method in our
framework for selection of the optimal number of particles,
i.e., frequency bands, the selected particle set can be
suboptimal in the sense of classification enhancement. In
order to see the effect of the number of frequency bands used
in the class label decision, we illustrate the evolution of the
classification accuracies according to the number of particles
up to the size of a filter bank chosen by the threshold-based
method in Fig. 8, where the results are on the BCI
Competition IV Dataset-IIa.

Although the classification accuracies vary slightly for
some subjects along with the number of particles, our filter
bank determined by the threshold-based method showed
high performance, as illustrated by the last value for each line
in the graph. However, for Subjects 2 and 5, we achieved the
same or better performance with a smaller number of
particles than the threshold-determined filter bank. That is,
it is possible to reduce the computational cost for those
subjects in our BCI system and would be an interesting issue
for further research.

5 CONCLUSIONS AND FUTURE RESEARCH

In the history of BCI research, one of the revolutionary
changes in BCIs may be a paradigm shift with respect to the
learning load from the subject to the computer. Meanwhile,
machine learning has emerged as the most useful tool for
real-life BCIs, helping minimize the amount of subject
training time and improve the classification performance.
However, there are still two main problems that make it a
challenge to classify a single-trial EEG of motor imagery
and to prevent the application of BCIs in real-life. First, the
frequency bands, in which ERD/ERS patterns reflect
sensorimotor activation and deactivation, are highly vari-
able across subjects and across event trials for the same
subject. Second, EEG signals are generally contaminated
with artifacts and noise that can cause performance
degradation in classification.

In this paper, we proposed a novel Bayesian framework to
simultaneously optimize spectral filters and spatial filters
along with a modified factored-sampling method for pdf
estimation, an information-theoretic observation model, and
a spectrally-weighted decision fusion method. In our experi-
ments on three public databases, the proposed method
outperformed the state-of-the-art methods in terms of

statistical significance, rejecting the null hypothesis beyond
the 95 percent confidence level.

While, in this work we considered only ERD/ERS
features for motor imagery classification, there is another
well-known neurophysiological feature of slow shifts of the
cortical DC potential revealed during imagined or intended
movement, BereitschaftsPotential (BP) or readiness poten-
tial. Babiloni et al. [44] argued that ERD/ERS and BP
represent different aspects of cortical processing and
Dornhege et al. [39], [45] presented the improved classifica-
tion performance with the combination of both aspects of
the ERD/ERS and the BP. Inspired by their work, we
believe that it would be a meaningful issue to adapt the
proposed framework for feature combination.

We would like to note that the proposed method is also
applicable to other kinds of single-trial EEG classification
problems that are based onmodulations of brain rhythms, so
it is by no means limited to motor imagery-based BCIs. In
order to further increase the discriminability of brain signals,
it is necessary to incorporate the problem of task-related
electrodes selection into the proposed Bayesian framework.
It is also an important issue to combine information from
trials of other subjects to overcome the problems of small
training sets and subject-independent BCIs.
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