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Abstract—Our understanding of macroevolutionary patterns of adaptive evolution has greatly increased with the advent
of large-scale phylogenetic comparative methods. Widely used Ornstein-Uhlenbeck (OU) models can describe an adaptive
process of divergence and selection. However, inference of the dynamics of adaptive landscapes from comparative data is
complicated by interpretational difficulties, lack of identifiability among parameter values and the common requirement
that adaptive hypotheses must be assigned a priori. Here, we develop a reversible-jump Bayesian method of fitting multi-
optima OU models to phylogenetic comparative data that estimates the placement and magnitude of adaptive shifts directly
from the data. We show how biologically informed hypotheses can be tested against this inferred posterior of shift locations
using Bayes Factors to establish whether our a priori models adequately describe the dynamics of adaptive peak shifts.
Furthermore, we show how the inclusion of informative priors can be used to restrict models to biologically realistic
parameter space and test particular biological interpretations of evolutionary models. We argue that Bayesian model fitting
of OU models to comparative data provides a framework for integrating of multiple sources of biological data—such
as microevolutionary estimates of selection parameters and paleontological timeseries—allowing inference of adaptive
landscape dynamics with explicit, process-based biological interpretations. [bayou; comparative methods; macroevolution;

Ornstein—Uhlenbeck; Reversible-jump models.]

The phenotypic adaptive landscape has been
widely used as the conceptual foundation for
studying phenotypic evolution across micro- to
macroevolutionary scales (Arnold et al. 2001). The
concept has been applied to microevolutionary studies
of selection (Lande and Arnold 1983), studies of
paleontological time-series (Simpson 1944, 1953; Hunt
et al. 2008; Reitan et al. 2012) and to stochastic models
of trait evolution fit to phylogenetic comparative
data (Hansen 1997; Butler and King 2004; Hansen
et al. 2008; Uyeda et al. 2011; Eastman et al. 2013).
Consequently, the adaptive landscape has the potential
to unite micro- to macroevolution into a single cohesive
theoretical framework (Arnold et al. 2001; Hansen
2012). However, a major disconnect between micro- and
macroevolutionary formulations of adaptive landscapes
is that microevolutionary studies typically examine
static landscapes, whereas macroevolutionary patterns
result from the dynamics of adaptive peak movement
over long evolutionary timescales (Gavrilets 2004;
Hansen 2012). Although the fact that macroevolutionary
models fit to phylogenetic comparative data almost
certainly describe the cumulative dynamics of adaptive
landscapes, these phenomenological models are
disconnected from adaptive landscapes at shorter
timescales, and thus become difficult to interpret in
terms of biological processes. Synthesis will require
a unification of theory and data across scales that
allows inference of the dynamics of the movement of
adaptive landscapes directly from macroevolutionary
data (Uyeda et al. 2011).

Existing models of adaptive evolution at
macroevolutionary scales typically rely on the Ornstein—-
Uhlenbeck (OU) model of trait evolution (Hansen 1997;

Butler and King 2004), which has a strong connection
to the concept of adaptive landscapes (Lande 1976).
Fitting OU models to macroevolutionary data allows
researchers to test hypotheses regarding the existence
of distinct phenotypic optima between groups of
species (Butler and King 2004; Beaulieu et al. 2012)
and more generally, infer evolutionary regressions
between phenotypic traits and predictor variables
(Hansen et al. 2008; Hansen and Bartoszek 2012).
Hansen (1997) introduced the method to phylogenetic
comparative methods as a means to test specific
adaptive hypotheses—such as the hypothesis that
phenotypic optima for browsing vs. grazing horses
are different. Butler and King (2004) extended this
method to test among competing adaptive hypotheses
and provided a widely used implementation as
an R package (ouch). However, ouch and other
software typically require a priori assignment of
adaptive hypotheses to the phylogeny, with optima
“painted” onto branches according to the researcher’s
preexisting hypotheses (but see Ingram and Mahler
2013). Following model-fitting by maximum likelihood,
model selection is used among hypothesized scenarios
and the best-fitting model is chosen (Butler and King
2004). However, it can be difficult to ascertain whether
the specific hypothesis chosen by the researcher is
a good hypothesis, or simply better than the tested
alternatives. Furthermore, to infer the dynamics of
adaptive landscapes themselves, we do not wish to
assume a limited set of hypotheses a priori, but to
estimate the dynamics of phenotypic optima directly
from the data. This of course does not mean that we
want to throw away biologically informed hypotheses.
Rather, we seek a framework for evaluating whether
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a priori hypotheses adequately describe the statistical
patterns in the data.

Incorporating biological realism into comparative
models remains a challenging goal. Statistical models
fit to phylogenies are inherently phenomenological,
and may be consistent with multiple biological
interpretations. For example, Brownian motion (BM)
processes can result from neutral genetic drift of trait
means, neutral drift of adaptive peaks, or drifting
adaptive zones (Lande 1976; Felsenstein 1985, 1988).
Rate tests derived from these models have generally
rejected genetic drift as a model for macroevolutionary
patterns (Turelli et al. 1988; Lynch 1990; Hohenlohe
and Arnold 2008), and simple drift of adaptive peaks
seems inconsistent with observed microevolutionary
and macroevolutionary data (Estes and Arnold 2007;
Uyeda et al. 2011). As with BM models, OU models have
an explicitly microevolutionary interpretation in terms
of the process of stabilizing selection and genetic drift
onstatic adaptive landscapes (Lande 1976). Alternatively,
these optima may represent adaptive zones within which
adaptive peaks drift stochastically, or even broad ranges
around which dynamically evolving adaptive zones
evolve (Hansen 1997). The boundaries between these
latter interpretations can become fuzzy, and whereas
a tendency for a species to return to an optimal state
is suggestive of adaptive evolution, it remains unclear
how fitted models reflect evolutionary processes and
patterns. Because of this difficulty, previous authors
have tended to use terms such as “adaptive regimes”
or “selective regimes” to describe optima fit via OU
modeling. Throughout the rest of the manuscript, we
will likewise use “regime” to denote a set of lineages
that share an OU optimum, but note that this term only
vaguely connects model parameters to the process of
adaptive evolution. We return to the interpretation of
these regimes in the discussion.

We present a Bayesian framework for studying
adaptive evolution using multi-optima OU models,
which attempts to provide solutions to these challenges.
We implement a reversible-jump algorithm that jointly
estimates the location, number, and magnitude of shifts
in adaptive optima from phylogenetic comparative data
(Green 1995; Huelsenbeck et al. 2000, 2004; Eastman
et al. 2011, 2013; Rabosky et al. 2013). We use simulations
to demonstrate the effectiveness of this method at
identifying the location of shifts and estimating
parameters. Furthermore, we demonstrate how the
method can be used to compare specific hypotheses,
and how informative priors can be incorporated from
different data sources to test mechanistic interpretations
of phylogenetic patterns of trait divergence. We
incorporate these methods into a flexible software
package, bayou, for the R statistical environment
(R Core Team 2014).

Our approach has a number of distinct advantages
over existing methods. First, the reversible-jump
framework will produce a full posterior of credible
models and parameter values and therefore incorporates
uncertainty in regime number, placement, and

parameter estimates. This is particularly important
when modeling OU processes, as these models often
have flat ridges on likelihood space, particularly for

the correlated parameters a and o (Ho and Ané 2013).
However, some parameter values along these ridges are
inconsistent with particular biological interpretations
of the model. A natural way of restricting model
exploration to interesting regions of parameter space is
to place priors on the parameters. We compare model
fits between biologically informed a priori hypotheses
of adaptive evolution against the full posterior of
credible models using marginal likelihoods. From these
comparisons, we can conclude whether a particular
hypothesis captures the relevant signal of adaptive peak
movement in the data. Furthermore, we show how
alternative priors and parameterizations of OU models
based on different biological interpretations can be
compared, and suggest how additional sources of data
may be incorporated into analyses. By using informative
priors, we can incorporate data on microevolutionary
biological processes (e.g., strength of natural selection,
population size, genetic variance) and/or constrain the
dynamics of the model to be consistent with patterns
observed at other biological scales (e.g., stasis, rapid
evolution over short timescales, etc.). By doing so, we
obtain a clearer picture of what our comparative models
are actually measuring and how we can interpret
macroevolutionary patterns.

METHODS

We model phenotypic evolution across phylogenies as
an OU process, which is a mean-reverting, continuous-
time stochastic process with three parameters describing

per unit time magnitude of uncorrelated diffusion (c?),
the rate of adaptation (a), and the optimum value of
the process (0) according to the stochastic differential
equation:

dz=o(0—2z)+odW, (1)

where dW is a continuous-time Wiener process and z
is the trait mean. If =0, the process reduces to a BM
model of trait evolution. The parameter a is measured

in inverse time units, whereas the parameter o2 is in
units of squared trait units per unit time. An easier
way to interpret a is by reparameterizing the value as
the phylogenetic half-life (Hansen et al. 2008), which is
defined as [n(2)/a and is measured in time units. It can be
interpreted as the amount of time it takes for the expected
trait value to get halfway to the phenotypic optimum.
Small values of phylogenetic half-life (i.e., large values
of o) also have the effect of eroding covariance at an
exponential rate between species following speciation.
A model with a phylogenetic half-life much greater
than tree height will thus resemble a BM process,
whereas a phylogenetic half-life much shorter than the
youngest split on a phylogeny will resemble a white
noise process (i.e., residual trait values are completely
uncorrelated). We will refer to both a and phylogenetic
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half-life throughout the manuscript, as doing so will
make certain patterns more clear and interpretable.
In addition, a useful compound parameter for OU
processes is the stationary variance [V}, = o2 /(2a)], which
is the equilibrium variance of an OU process evolving
around a stationary optimum 6.

Multi-optima OU models are modifications of the
standard OU model in which adaptive optimum, 6,
varies across the phylogeny according to discrete shifts
in adaptive regimes (Hansen 1997; Butler and King
2004). However, unlike most previous implementations,
we do not fix the number of shifts or their locations
on the phylogeny. Instead, we implement a reversible-
jump algorithm that estimates the number, location, and
magnitude of shifts in adaptive optima, while jointly
sampling OU parameters. Although we focus on shifting
values of 6 across the phylogeny, our method can be
extended to allow other parameters to differ among

regimes (i.e., o and o2, Beaulieu et al. 2012).

Reversible-jump Model

We consider a fully resolved phylogeny with N taxa.
We follow Hansen (1997) and Butler and King (2004) and
model a multi-optima OU model with discrete adaptive
states 6 ={6g, ..., 0x }, where 6 is the optimum at the root
and K is the number of shifts between adaptive optima.
The locations of shifts between adaptive states is given by
avector of shiftlocations mapped onto the phylogeny L =
{L1,...,Lx} witheach L; corresponding to beginning of an
adaptive regime assigned to the optimum 6;. Given these
parameters, the distribution of tip states Y is multivariate
normal with an expectation:

E[Y|Yy,a,L,0]=W8,

where Y| is the root state and W is a matrix of weights
used to calculate the weighted average of adaptive
optima, discounted by an exponentially decreasing
function that depends on the rate parameter a and
the elapsed time since the species evolved under a
given adaptive optimum. (For a full explanation and
derivation, see Hansen 1997; Butler and King 2004). The
elements of the variance—covariance matrix for Y are:

o2
Var[Yi[Yo, 0% al = o [1—e~2%0/]
20
and
2 at o? 2at
. _—at;  aty
Cov[Y;,YjYp,0%, a]=e ]2a[1 e J],

where £y ; is the time from the root to species i, t;; is the
total time separating species i and j, and ¢ j; is the total
time separating the root and the most recent common
ancestor of species i and j.

To calculate the likelihood, we assume that Yy = 6.
Alternatively, the likelihood can be calculated assuming
a stationary distribution or by estimating Y. However,
we found that assuming a stationary distribution

resulted in poor mixing when o was small (which is
typical during the beginning stages of the Markov Chain
Monte Carlo (MCMC)). We use a pruning algorithm to
speed computation and calculate conditional likelihood
(as in FitzJohn 2012). We use a reversible-jump algorithm
to search among varying shift numbers (K) and shift
locations (L) (Green 1995; Huelsenbeck et al. 2000, 2004;
Eastman et al. 2011; Rabosky et al. 2013). The reversible-
jump framework of Green (1995) uses a Metropolis—
Hastings algorithm to explore models with varying
dimensionality through the course of the MCMC.
The amount of time the MCMC spends in a given
model is proportional to its posterior probability, thus
providing inference on the best supported regime shift
placements and magnitudes, while accounting for model
uncertainty in all estimated parameters. Proposals in the
MCMC are accepted with the general probability:

R=min(1, LikelihoodRatio x PriorRatio x ProposalRatio
x Jacobian)

The proposal ratio and the Jacobian together compose
the “Hastings ratio” that is dependent on the specific
proposals used, as described below.

Proposals

The proposals to the parameters a, o2, and ; do
not change the dimensionality of the model, and can
therefore be updated using standard MCMC proposal

mechanisms. We update the parameters a and ¢ using a
multiplier proposal mechanisms, whereas 6; parameters
are updated using a sliding-window proposal (described
in Eastman et al. 2011).

The dimensionality of the model can change via either
a birth or a death step, which adds or subtracts a
regime shift from the model, respectively. A branch is
chosen from the phylogeny at random. If the branch
currently contains a shift, then a death step is proposed.
If the branch does not contain a shift, a birth step is
proposed. During a birth step, a location for the shift
is drawn from a uniform distribution over the length
of the branch. The value of the adaptive optima before
and after the shift are simultaneously updated according
to the following proposal. A random uniform number
(u) between (—0.5,0.5) is drawn. New values of 6 are
obtained by splitting the value of this random uniform
number proportionally to the amount of branch length
across the entire tree inherited by each optimum after
splitting:

/ /
/ /

Where r]/- is the proportion of the branch lengths across

the tree that will evolve under 6. and 7/ 41 18 the

proportion of branch lengths that will evolve under

/ : . .
6]. 41, and b is a tuning parameter. Thus, whichever
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optimum inherits the most branch length will have the
most conservative proposal, whereas the optimum that
inherits smaller amounts of branch length will have more
liberal proposals (i.e., its value will change the most). The
new optimum 9]/- 41 cascades down the phylogeny until
it reaches a tip, or a preexisting shift. The acceptance
ratio for the move from parameter set Ox — Og1 is
then (Green 1995; see online Appendix I (available on
Dryad; http:/ /dx.doi.org/10.5061 /dryad.t342m) for the
derivation, which follows Jialin 2012):

p(Y[0k+1)p(K+1)(K+1)p(0))p(0;, 1)

A ® ) =
(K, Ok+1) p(Y[6x)p(K)2N —2—K)p(6;)

Death steps operate in reverse, collapsing two regimes
into a single regime. The new value of this proposed
regime is a weighted average of the previous two regimes
according to the equation:

Consequently, proposed values of optima during death
steps are deterministic weighted averages, and the
acceptance ratio is simply the inverse of (2).

In addition to birth and death proposal mechanisms
for adding and subtracting regime shifts, we allow shifts
to slide along branches without changing the number
of parameters in the model with two different proposal
mechanisms. The first (slidel) allows the position of the
shift to move within a branch via a sliding-window
proposal mechanism. Proposals are reflected back at the
nodes so that the proposed shift location remains on the
same branch. A second proposal allows shifts to slide
up or down onto neighboring branches (slide2). When
this move is proposed, the total number of allowable
shifts are counted across the tree for all K shifts. Moves
are not allowed to branches that already contain shifts,
or tipward at the tips and rootward at the root. Each
allowable move has an equal probability of being chosen.
For example, a shift surrounded by three empty branches
(two tipward and one rootward) has three times the
probability of being chosen for the proposal than a shift
surrounded by only one empty branch and two branches
with existing shifts. Once a branch with a shift is chosen,
one of the available neighboring branches is chosen with
equal probability. The proposed location of the shift on
the new branch is drawn from a uniform distribution and
regimes are cascaded tipward until reaching an existing
shift.

The proposal probability for the regime birth—death
move was set at a fixed value (in our study we used
¢pg=0.45). The remaining proposal probability was
divided between the five other proposal mechanisms:
the two sliding shift proposals (slidel and slide2) and
proposals to o, 6> and 8. We placed equal proposal
weight on updating o, and 0, which were set to 3.5
times the proposal weight of updates to o2 and the two
sliding shift proposals. We chose these values based
on preliminary explorations which indicated that these

proposal probabilities resulted in roughly equal effective
sample sizes for all parameters. Thus, for 0 <K < Kj;ax,
we set ¢q =09 =0.1925 and 2 = dglige1 = Psliger =0.055.
When K =0, both slidel and slide2 are disallowed, and the
proposal probabilities for these two moves are divided

evenly between the updates to a, o2, and .

Each shift in our model leads to a unique adaptive
optimum. In other words, we do not allow convergence
of adaptive regimes in our reversiblejump model
(though such models may be fit in bayou with a
fixed number of parameters without a reversible-jump
proposal). This is because satisfying the “detailed
balance condition” of the reversiblejump MCMC
requires both forward and reverse proposals to calculate
the acceptance probability (Green 1995). However, under
convergent regimes, a new shift added to the tree can
actually reduce the number of shifts (K) by replacing
multiple downstream transitions to 6; in a single move.
Since the reverse move would require several proposal
steps rather than one, satisfying the detailed balance
condition is substantially more complex. It is likely
that clever proposal mechanisms can be designed to
adequately explore across models with and without
convergent regimes with sufficient mixing, but we leave
this to future work. Regardless, our primary goal is
not to estimate the amount of convergence (which
remains quite challenging for single-trait data sets, but
see Mahler et al. 2013), but instead to provide a flexible
Bayesian framework for exploring among alternative
hypotheses and for incorporating prior information to
test specific biological interpretations of comparative
models. Furthermore, the amount of convergence can
be assessed post hoc by the degree of overlap among
regimes, or by comparing the marginal likelihoods
among fixed convergent regimes.

Priors

We placed a prior on the number of shifts
between adaptive regimes using a conditional Poisson
distribution, with a maximum number of shifts equal to
half the number of tips in the phylogeny. Informative
priors for this distribution may be taken, e.g., from
the duration of chronospecies or genera in the fossil
record. These may suggest the typical duration of a
static adaptive regime. Alternatively, a given adaptive
hypothesis may suppose only a few adaptive shifts across
a radiation of species.

We placed a normal prior on adaptive optima. Setting
a prior on adaptive optima allows us to avoid fitting
models in unrealistic regions of parameter space that
allow species to track unrealistically distant adaptive
optima. For example, if we are studying primate body
size evolution, it may be reasonable to take the prior
for the adaptive optima of body sizes by using the
distribution of body sizes across all terrestrial mammals.
Alternatively, we may place the prior based on how
distant the optima will be from any extant species.
Thus, the prior on the optima would be based on both
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the observed range of phenotypes in the data being
studied plus the prior belief in how distant any given
species is from its adaptive optimum. In our model,
shifts between adaptive regimes can occur in any region
of parameter space. Future implementations could
penalize unreasonably large shifts between adaptive
regimes by modeling shifts in optima as a compound
point process. Landis et al. (2013) proposed fitting
models that include these so-called “Levy processes”
that model rare jumps in phenotypic space where the
rate and magnitude of jumps follow a regular stochastic
process model. Integrating Levy and OU models would
add considerable realism to models of phenotypic
evolution and allow statistical inference on the rates and
distribution of the shifts themselves, but is beyond the
scope of the current article.

Finally, we assign an equal probability of each branch
having a shift, with no more than one shift allowed per
branch. Although shifts may occur directly ata node, this
isno more likely than any other location on the branch. A
more realistic model may allow the probability of shifts
between regimes to occur proportional to the length of
the branch, and to allow multiple shifts per branch. We
leave these enhancements to future work. Shifts may
occur anywhere on a branch with a uniform probability
distribution, thereby allowing uncertainty in the location
of the shift to affect estimation of other parameters.

Simulation Study

To assess the performance of the method given the
assumptions we have made above, we conducted a
simulation study. Phylogenies were simulated under a
pure-birth process using the R package TreeSim (Stadler
2011) with 64 tips (except for when the effect of sample
size was being examined, see below) and a constant birth
rate of 0.1. For all simulations, the resulting phylogenies
were scaled to unit height and starting parameters
were drawn from the prior distribution to initialize the
chain. Two independent chains were run for at least
200,000 generations, with a thinning interval of 20 and
the first 60,000 generations discarded as burnin. We
estimated Gelman’s R-statistic for each parameter, which
compares the within- to between-chain variance to
evaluate convergence (Gelman and Rubin 1992). Values
of R close to 1 indicate that the two chains are not
distinguishable, whereas high values (we used a cutoff
of R = 1.1) indicate nonstationarity of the chains.

We tested the performance of the method across a
range of parameter values varying a single parameter
at a time and using broad, weakly informative priors.
For the standard simulation we used a =3 (phylogenetic
half-life = 23.1% of the total tree height), > =3 (stationary
variance = 0.5), K=9 (10 selective optima including the
root) and a root value of 0. Shifts were randomly placed
on available branches at regular intervals separated by
0.1 units of tree height. At each shift, new optima were
drawn from a normal distribution with mean = 0 and
standard deviation (SD) = 3. Each parameter was varied

independently for a series of simulations while all others
were held constant at the above values. Parameters were
examined over the following ranges: Phylogenetic half-
life (In(2)/«a; in units of tree height) = (0.01, 0.05, 0.1, 0.2,
0.3,0.4,0.5,0.75, 1, 2, 10), 6> = (0.1,0.5, 1, 2, 3, 5, 10, 25,
50), clade size = (32, 64, 128, 256, 512, 1024), and K = (1,
5,7,8,9,10, 11, 13, 20, 50).

We used the simulation-based posterior quantile test
of Cook et al. (2006) to validate our implementation. This
powerful method relies on the distributional properties
of Bayesian posteriors when simulation parameters are
drawn from the prior distribution. Specifically, if the
software and model are correctly formulated, then
posterior quantiles should contain the true parameter
value in the corresponding percentage of simulations
(e.g., a 50% posterior quantile will contain the true
parameter value in 50% of the simulations). Although
validation using the posterior quantile test does not
guarantee that an implementation is correct, it is a highly
sensitive method of testing the null hypothesis that
the software is working correctly (Cook et al. 2006).
Parameters were simulated from the prior distribution,
which were set as follows: P(a)~ LogNormal(ln 1=0.25,
In 6=15); P(c?) ~ LogNormal(In p=0.25, In o=
0.1); P(6;) ~ Normal(j.=0, 6=3); P(K) ~ Conditional
Poisson(h =10, Kmax=32). Data were simulated for
each set of parameters on a simulated phylogeny
(following the same simulation parameters described
above) and posterior distributions were estimated. The
quantile of the true parameters are determined within
the estimated posterior distribution. If the posterior
distribution is estimated correctly, then the distribution
of these quantiles across simulations should follow a
uniform distribution (Cook et al. 2006). We tested each
of the parameters o, o2, K, and 8o (the root optimum)
for deviations from a uniform distribution using
a Kolmogorov-Smirinov test. Significant deviations
would indicate that the method incorrectly estimates the
posterior distribution.

We used these same simulations from the posterior
quantile test (in which simulation parameters were
drawn from the prior distribution) to evaluate the
performance of the method in assessing the location of
shifts and magnitude of shifts. Thus, we assessed the
power of the method to detect shifts across a broad
range of possible parameter combinations. Posterior
probabilities were calculated for each branch by counting
the proportion of posterior samples with a shift on that
branch, after excluding the burn-in phase. Consequently,
a posterior probability of 0.5 would indicate that half
the posterior sample contained that shift on a given
branch. We then plotted the posterior probability of
each branch against two values. The first we term
“regime divergence” and is defined as the log of the
ratio between the shift magnitude and the stationary
variance of the OU process. The second we term the
“scaled age” of the shift, which is the log of the ratio
between the age of the shift (in time units before present)
and the true phylogenetic half-life value. We expect a
relationship between these two ratios and our power
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to detect shifts because (1) higher values of regime
divergence indicate a more dramatic shift relative to the
variation within a selective regime and (2) the scaled
age is a measure of how recent the shift is relative to
the speed of the OU process. A very low-scaled age
value would indicate that very little time has elapsed
for the descendants of this shift to adapt to the new
regime, thus resulting in low power to detect the shift.
Conversely, high values would indicate that ample time
has elapsed for species to equilibrate on their new
adaptive optimum (so long as the regime survives to
the present, which is the case for all the scenarios we
examine). We estimated a contour plot of the posterior
probability values for all branches across simulation
against regime divergence and scaled age by kriging.
In addition to the above analyses, we conducted a
number of additional simulations to assess the power
of the method to accurately recover shift number,
magnitude, and location, including an extensive prior
sensitivity analysis for the prior on the number of
shifts. A detailed description of these simulations can
be found in the online Appendix III (available on Dryad;
http:/ /dx.doi.org/10.5061/dryad.t342m).

Testing specific biological interpretations of evolution

One of the strengths of OU models is that
the process and parameters describe the dynamics
of adaptive evolution in biologically interpretable
quantities. However, whether or not we can interpret
OU models fit to the deep timescales of phylogenetic
comparative data as—for example—stabilizing selection
and genetic drift, has generally been addressed with
only qualitative arguments. The utility (and in some
cases drawback) of the Bayesian approach is that it
allows/requires the use of priors on parameter values.
We use this feature in bayou to allow the specification of
informative priors on parameter values that correspond
to particular biological interpretations of the OU process.

For example, rather than specifying a prior on o and o2,
we may instead have prior information on phylogenetic
half-life or stationary variance. Reparameterization of
the model in this way would provide a useful way to
incorporate prior information on the width of niches,
adaptive peaks, adaptive zones or the rate of adaptation
toward a phenotypic optimum.

We use the quantitative genetic model of Lande (1976),
who showed that genetic drift around a stationary
Gaussian adaptive peak results in a OU process with
parameters:

2 2
7= —g Ve 9_z)+ hVp
w*+Vp N,

dw, 3)

where h? is the trait heritability, Vp is the phenotypic
variance, ®? is the width of the adaptive landscape,
and N, is the variance effective population size. We
allow specification of this model in bayou and use
informative priors on these parameters to constrain the

model to realistically reflect this particular biological
interpretation. Note that the branch lengths of the
phylogeny should be expressed in number of generations
to fit such a model. Furthermore, we assume that
all parameters are constant across the phylogeny, an
assumption that is likely to be violated.

To test the utility of this method, we compared
models fit using either an unconstrained standard OU
parameterization (OUpe) Or a quantitative genetic
Lande model parameterization (QG) with priors taken
from compilations of empirical estimates typical for
linear body size traits on the log scale [Table 1; similar
to the approach of Estes and Arnold (2007), but in an
explicitly Bayesian framework]. Although the priors for
the OUFpyee model were chosen to have a majority of the
prior density centered on values of parameters typical of
comparative data, effort was made to make them broad
enough to also have a some significant prior density
on the values generated under Lande model priors. As
before, we simulated 64-taxa trees, but scaled trees to
50 myr old and a generation time of 5 years. Simulated
data were drawn by drawing parameter values from
either the QG or OUFyee prior distributions. We included
normally distributed measurement error in both the
simulation and estimation of the data, with a error
variance of 62 =0.05.

To compare model fits to the simulated data, we
estimated marginal likelihoods under each model
using stepping-stone sampling of models fit to either
the OUpre or QG parameterizations (Fan et al
2011). These marginal likelihoods were then used
to compute Bayes Factors for model selection (Kass
and Raftery 1995). Briefly, the stepping-stone method
runs a sequence of MCMC simulations to estimate
“power posterior” distributions sequentially stepping
from a reference distribution (we used uncorrelated
multivariate distributions with parameters estimated
from the posterior distribution) to the posterior
distribution (Fan et al. 2011). Each power posterior is
used as an importance density to estimate a series of
ratios of normalizing constants, the product of which
provides the ratio of the known reference distribution
and the marginal likelihood (Xie et al. 2011). We used
a total of 12 steps along the path from the reference
distribution to the posterior for each stepping-stone
MCMC and ran each step for 500,000 generations. This
was done for 10 data sets simulated from the prior for
each model. Distributions of Bayes Factors were then
compared across model fits to evaluate the degree of
support for a specific biological interpretation of the
model under different simulation parameters.

Test case: Chelonian Carapace Evolution

The wide variation in body sizes across extant
chelonians (tortoises and turtles) has been hypothesized
to result from a number of causes, including gigantism
resulting from marine and island habitats that are
thought to remove evolutionary constraints on body size
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TaBLE 1. Prior distributions for OUpree and QG models used in simulation study modeling different biological processes.
Parameter Prior Quantiles (1%, 50%, 99%) Ref
Model: QG
2 ~Beta(a=15, b=20) (0.25; 0.43; 0.62) Mousseau and Roff 1987
Vp ~LogNorm(Inp = -5, Ino=0.8) (0.0322; 0.0822; 0.208%) Uyeda et al. 2011
u)z/Vp ~LogNorm(Inw =4, Inc=1.5) (1.67; 54.6; 1,790) Estes and Arnold 2007
e ~LogNorm(Inu =10, Inc=2) (210; 22,000; 2.31E6) Estes and Arnold 2007
Phy half-life (y) - (21.2; 459; 15,200)
[Vy+o? - (0.05; 0.05; 0.079)
Model: OUgyree
o ~LogNorm(lnp =—3, Ino=3) (4.6E-5; 5.0E-2; 53) Hansen 2012*
o2 ~LogNorm(Inu =0, Inoc=2) (9.5E-3; 1; 105)
Phy half-life (myr) - (0.013; 13.9; 1,487)

 Vy+o? -
Both models
~Norm(Inw=0, Inc=0.5)

o

~CondPoisson(\ =15, Kypx =32)

(0.069; 3.17; 210)

(-1.2;0; 1.2)
(7; 15; 25)

Note: Models are simulated and fit to the data from these priors, intended to reflect values typical for linear In(body size) related measurements
in a clade 50 myr old that spans two magnitudes in size. Measurement error (ME) is simulated and fit to be ~Norm(p =0,02 =0.05%). This prior
on a puts about ~20% of the probability density on a phylogenetic half-life less than the average youngest splits in the simulated phylogenies
(~1 myr, white noise-like evolution) and ~30% of the probability density above the tree height (50 myr, i.e., BM-like evolution).

(Arnold 1979). Jaffe et al. (2011) explored the evolution
of the length of the carapace (i.e., the dorsal shell) in
a phylogeny of 226 extant chelonians using traditional
likelihood approaches by fitting multi-optima OU
models to the data using ouch (Butler and King 2004).
The best-fitting model in Jaffe et al. (2011) assigned four
separate regimes to freshwater, mainland-terrestrial,
island-terrestrial, and marine species of turtles (which
they called the “OU2” model; we will refer to the model
as the OUppitat model). This model was compared to
a limited set of alternative hypotheses, including BM, a
single-optimum OU model, and several models which
collapsed various combinations of the four regimes in
the OUpapitat model. From these results, Jaffe et al. (2011)
concluded that there was a strong signal in the data
supporting a shift to larger size optima in chelonians
in marine and island habitats. Parameter estimates
from the study suggest that body size evolves slowly
toward these new optima, with phylogenetic half lives
on the order of 15-20 myr (7-10% of tree height). This
same data set served as a test case for a reversible-
jump algorithm that explored the potential for shifts in
BM rate parameters (Eastman et al. 2011). The relaxed
BM model (rBM) uses a reversible-jump framework
to find shifts in evolutionary rates in a manner very
similar to bayou. For the Jaffe dataset, Eastman et al.
(2011) found shifts in evolutionary rates between several
groups of turtles and tortoises, including increased
rates in Testudinidae (tortoises) and Emydidae (pond
turtles). Note that we discovered an error in the
acceptance ratio of the rBM model in previous versions
of the R package auteur (Eastman et al. 2011). We
provide the corrected acceptance ratio for the rBM
model in online Appendix II (available on Dryad;
http:/ /dx.doi.org/10.5061/dryad.t342m), which has
been updated for the implementation of the rBM model

inthe R package geiger (version 2.0, Pennell et al. 2014).
Because the Eastman et al. (2011) model detects rate-
shifts not mean-shifts, it is not well suited for testing
hypotheses about directional adaptation in a clade to an
optimal state. We instead fit a related, recently developed
model of phenotypic shifts in a BM framework that
combines “jumps” or mean-shifts with a standard BM
(bm-jump model, Eastman et al. 2013). Note that this
model is distinct from the models implemented in
bayou, because mean-shifts under the bm-jump model
come from a distinct distribution and are best thought of
as temporary shifts to high rates of evolution. By contrast,
OU models use the same a parameter to control the rate
of adaptation to a new optimum before and after a shift,
and therefore cannot combine rapid jumps in mean with
BM-like evolution.

We use the Jaffe et al. (2011) data set to demonstrate
the utility of bayou, and to compare to existing
approaches. We analyzed the OUpapitay model in bayou
by constraining the location of shifts and regimes to be
the same as the model of (Jaffe et al. 2011), except we
allowed the location of the shift to move freely along
the branch (rather than constraining it to occur at the
nodes). We replicated maximum likelihood estimates
for the OUppitat model to obtain comparable estimates
of parameters using the R package OUwie (Beaulieu
et al. 2012). We then compared this to an unconstrained
bayou model that allows shifts to be assigned freely
among the various branches. Note that these models
are not nested, because in the OUp,pitat model regimes
are convergent, whereas in the unconstrained model,
each shift is given its own unique adaptive regime.
Priors on the parameters in all runs were assigned as
follows: P(a)~ LogNormal(In p=-5, In 6=2.5); P(c?)
~ LogNormal(In p =0,In 6=2); P(8;) ~ Normal(n=3.5,
0=1.5); P(K) ~ Conditional Poisson(A =15, Kpax =113).
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We compared these models by comparing the
posterior probabilities of shifts on each branch in
the bayou unconstrained run to the locations of the
shifts in the OUpgpitat hypothesis. Furthermore, we
evaluated overall model support for the constrained
vs. the unconstrained model by using stepping-stone
sampling using the method of Fan et al. (2011) to estimate
Bayes Factors. Note that Bayes Factors can be sensitive
to prior specification, especially when one model has
a very specific prior specification (e.g., the location
and number of shifts are fixed, as in the OUpapitat
model) and the alternative has a very vague prior
(as in the unconstrained bayou model). Specifically,
vague priors are expected to produce lower marginal
likelihoods than more specific priors, and thus these tests
favor constrained models. Furthermore, the OUpapitat
model has fewer parameters than the unconstrained
bayou model with the same number of shifts due to
evolutionary convergence.

In addition to comparing the unconstrained and
constrained model in a Bayesian framework, we
compared our method to the method of Ingram
and Mahler (2013) as implemented in the R package
SURFACE. Our unconstrained model is analogous to
the forward-addition procedure of SURFACE, and thus
we compare parameter estimates and shift locations in
both the forward and reverse steps of the SURFACE
algorithm independently. These two methods differ in
that the SURFACE algorithm of Ingram and Mahler (2013)
relies on stepwise-AlC rather than Bayesian reversible-
jump methods to find the location of shifts. Although
stepwise-AIC methods attempt to find the single, best-
fitting model, our method integrates over uncertainty
in regime placement and returns a posterior of shift
locations that well describe the data. Finally, we fit
the BM-jump model of auteur, which fits jumps to a
background of constant-rate BM (Eastman et al. 2013). As
we described above, this is similar to the bayou model,
but differs in that jumps are realized instantaneously
rather than approaching at a rate determined by a.
Thus, these two models may be expected to find similar
shift locations and have relatively comparable parameter
estimates. As with the bayou implementation, we place
a conditional Poisson prior on the number of shifts
(“jumps”) at A=15.

RESULTS

Simulation Study

Under most simulation conditions, convergence was
reached within 500,000 generations (i.e., Gelman and
Rubin’s R reached below 1.1 for all parameter values).
When convergence failed to occur within this time
frame, it tended to be when shift magnitudes were large
relative to the stationary variance of the process (i.e.,
high regime divergence). This results in steep likelihood
peaks and a tendency to get trapped under nonoptimal
configurations of shifts. A potential solution to this issue,
besides running longer and more chains, would be to use

Metropolis-Coupled MCMC, which improves mixing
by implementing “heated” chains that explore the
likelihood surface more efficiently. Interestingly, these
instances in which mixing is poorest and convergence
is most problematic are the instances in which the
model finds the strongest support for regime shifts and
estimates their location most reliably (although it may
get caught in less parsimonious likelihood peaks than
the simulated model). Nonetheless, the model effectively
identifies the presence of adaptive peaks shifts, although
it may have difficulty determining the exact order of
shifts among branches in these instances.

Overall, simulations indicated that parameters are
estimated with reasonable accuracy. The diffusion

rate parameter o> tends to be slightly underestimated,
especially for low phylogenetic half-life values (i.e.,
values less than most of the splits in the tree) and
overestimated when phylogenetic half lives are much
longer than tree height (Fig. 1a,d). However, for half-life

values ranging from around 0.1-2 times tree height,

o2 is estimated reasonably with a slight bias toward

underestimation (Fig. 1d). Phylogenetic half-life tends
to be overestimated over most of this range as well
(Fig. 1b,e). These two effects balance out, however, and
produce reasonable estimates of stationary variance.
Increasing number of tips greatly improves estimates

of both 62 and o and reduces bias (Fig. 1j,k). For small
numbers of tips (e.g., 32), there is a tendency to fit
models with higher values of phylogenetic half-life
(more BM-like) models. This is likely because many
shifts occur on branches leading to singletons, resulting
in very little power to distinguish the effect of rate

parameters (a and 02) from shifts (6).

We show that inference becomes problematic when
the ratio of the number of tips to the number
of shifts decreases below 4, and recommend at a
minimum ~ 50 tips. The number of estimated shifts
seems particularly sensitive to the prior when using
the conditional Poisson as the prior, despite some
influence of the data on the estimation of the number
of shifts (Fig. 1cfil; online Appendix III, available
on Dryad; http://dx.doi.org/10.5061/dryad.t342m).
When the number of shifts is large, the method
generally result in wunderestimation of the true
number of shifts. This is particularly true when more
permissive priors are used (e.g., negative binomial
or discrete uniform, online Appendix III, available
on Dryad; http://dx.doi.org/10.5061/dryad.t342m).
However, even when the number of shifts is not
reliably estimated, parameter estimates for o, o2,
and branch-specific posterior probabilities were not
substantially affected until the number of shifts was
large (e.g., 20 shifts on a 64-128 taxa phylogeny,
Fig. 1g-i; online Appendix III, available on Dryad;
http:/ /dx.doi.org/10.5061 /dryad.t342m).

Inferences based on branch-specific posterior
probabilities were not affected by mis-estimation of
the total shift number, as long as the prior allowed
a sufficient number of shifts to explain the true
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Results of simulation study varying the parameters o2 (row 1, a—), phylogenetic half-life (/(2)/a; row 2, d—f), the number of shifts

on the phylogeny (K; row 3, g-i) and the number of tips in the phylogeny (row 4, j-1). Solid black points indicate the true value used to simulate
the data, dotted lines indicate the median posterior mode across simulations. Priors for parameters are as follows: a ~ LogNormal(In u = 0.25,
Ino=15),0% ~ LogNormal(In p =0, In o =5), 6 ~ Normal( = 0, o = 3), K ~ Conditional Poisson (A =9, Kmax = ntips/2).

model (online Appendix III, available on Dryad;
http:/ /dx.doi.org/10.5061/dryad.t342m). Rather than
producing a large number of strongly supported false-
positives, strong priors with a large number of expected
shifts (e.g. conditional Poisson with A =20) resulted
in diffusely elevated branch posterior probabilities
across all branches when no high magnitude shifts were
present. By contrast, when the prior allows only a few
shifts, complex models are poorly fit and the models
tend to collapse to BM-like models with mis-estimated
parameters. Thus, priors that favor complex models have
little effect on inference of shift location and magnitude,
whereas conservative priors tend only to fit models with
very few shifts, and severely mis-estimate parameters
for complex models (see online Appendix III, available
on Dryad; http://dx.doi.org/10.5061 /dryad.t342m).
Branches on which a shift was simulated have much
higher posterior probabilities than branches in which

no shift occurred in the true simulation model, even
when the number of shifts is over or under-estimated
(Fig. 2). This is particularly true for small o? and low
phylogenetic half-life (Fig. 2a,b). This is because low
values of o2 results in very little trait variation within
regimes relative to the divergence between regimes (high
regime divergence), and low values of phylogenetic half-
life result in rapid adaptation to regimes (high scaled
age) allowing sufficient time for taxa to reach the novel
optimum. As phylogenetic half-life approaches 1 (i.e., the
tree height), the power to detect shifts is reduced nearly
to 0 under the simulation parameters we examined. The
number of tips did not significantly affect the posterior
probability of correctly identifying a shift (Fig. 2d). This
is likely because the expected number of tips evolving
under a randomly placed adaptive regime increases
slowly with increasing number of tips, meaning that
adding tips does relatively little to improve estimates
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FIGURE2.  Estimation of branch posterior probabilities using the same simulations as in Figure 1 for varying values of a) 62, b) phylogenetic

half-life, ) number of shifts (K) and d) number of tips. For each plot, boxplots indicate the distribution of posterior probabilities of a shift
occurring on branches that either contain no shift in the true model (left side of each panel) or contain a shift (right side). Locations of shifts
were chosen randomly across the phylogeny, and magnitudes were determined by optima drawn randomly from a normal distribution.

TABLE 2. Posterior quantiles for parameter values and p-values
from a Komolgorov-Smirnov test.

N 25% 25% 50% 75% 975% p-value

Log Likelihood 938 0.03 026 053 076 0.98 017

Log Prior 938 0.02 030 057 080 0.98 0.00
o 938 0.02 026 054 078 0.99 0.01
o? 938 0.02 026 052 074 098 0.78
K 938 0.03 027 051 076 099 0.42
Root 6p 938 0.02 022 051 076 098 0.29

Note: Runs that did not converge were removed from the analysis.

of shift parameters (i.e., assuming equiprobable shift
locations among branches—regardless of the phylogeny
size—results in ~50% of randomly placed shifts being
placed on terminal branches that contain only one
descendant, Ho and Ané 2013). Furthermore, as the
number of tips increased, the prior probability of a
given branch having a shift decreased. When errors were
made and branches with a true shift were assigned low
posterior probabilities, this was generally because the
shift was assigned with high posterior probability to a
neighboring branch.

Simulation of parameters from the prior distribution
and subsequent simulation was carried out for 1118
simulations run for 200,000 generations to evaluate
posterior quantiles of the simulated parameter values
(Cook et al. 2006). A total of 938 of the simulation
runs resulted in Gelman’s R statistics less than 1.1 and
were used in subsequent analyses. Posterior quantiles
of the simulated parameter values for the root (8y),
the number of shifts (K), and o2 were not significantly
different from a uniform distribution, as expected if
these parameters are estimated accurately and without
bias. Posterior quantiles for the a parameter deviated

Scaled Age

0 0.1 1 10 50
Regime Divergence

FIGURE 3. Relationship between regime divergence ((62—
61)//Vy), the scaled age of the shift (shift age/phylogenetic half-life) and
the posterior probability of detecting a shift. All simulated regimes
survived to the present. All branches from each 64-taxon tree were
plotted to estimate this surface using ordinary kriging to visualize
the relationship. Prior probability of a branch being selected is 0.0827.
Branches without shifts were given a small divergence value (log(0.01))
and correspond to the left-most data in the plot.

significantly from a uniform distribution (P=0.01,
Table 2), tending to be slightly under-estimated (~54%
of true parameter values were estimated to be in
the upper 50% quantile of the posterior distribution).
This significant deviation may have been affected by
issues with convergence rather than implementation
error, as o tended to converge slower than other
parameters and runs that failed to converge (~16.1%
of simulation runs) had significantly larger values
of a (P <0.05), suggesting that systematic removal of
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Cumulative distribution plots for posterior quantiles for selected parameters. If posteriors are estimated accurately, then the

quantiles of true values of the parameters across simulated datasets should be uniformly distributed (Cook et al. 2006) and follow the dotted
lines, which indicate the expected cumulative distribution function for a uniform distribution. Each MCMC was run for 200,000 generations and
the first 30% of the samples were discarded as burnin. Runs in which Gelman'’s R failed to reach below 1.1 at the end of the run were removed.
A total of 938 simulations were used after removing runs that did not reach convergence.

nonconvergent runs could affect the distribution of
posterior quantiles. Regardless, the distribution for o
was nonetheless qualitatively quite similar to a uniform
(Fig. 4). Overall, the method appears to perform quite
well at recovering accurate posterior distributions for the
estimated parameters.

Branches with shifts tend to have high posterior
probabilities if the shift magnitude is high relative to
the stationary variance and when the age of the shift
is much older than the phylogenetic half-life (Fig. 3).
Specifically, a shift that is 1 phylogenetic half-life old
and 1 SD from the stationary distribution away from
the previous optimum will have an estimated posterior
probability of having a shift of around 0.2, or slightly
more than twice the prior probability of a branch having
a shift (Fig. 3).

Modeling Biological Interpretations

Models simulated under Lande model (QG) priors
were decisively favored under a QG parameterization
as opposed to an OUFyee in 9 out of 10 simulations, with
exceedingly high Bayes Factors (Fig. 5, mean = 4746.5,
SD = 6166.4). Around half of these simulations failed to
converge across chains (Gelman and Rubin’s R > 1.1)
after 500,000 generations, and therefore a total of 20
simulations were required to obtain 10 well-estimated
Bayes factors. Models simulated under OUfyee priors
typical of comparative data also resulted in decisive
support in all 10 simulations against the Lande model,
but Bayes Factors were not nearly as high as those
simulated under the Lande model (Fig. 5, mean = 46.6,
SD = 15.7). The asymmetry results from the known
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FIGURE 5. Model comparison for biological interpretations of OU

models. Models were simulated either under diffuse priors typical of
comparative data (OUpyee, left) or under realistic priors for the Lande
model (QG, right). Both OUpree and QG models were then fit to the
data, and marginal likelihoods were estimated using stepping-stone
modeling to obtain Bayes Factors (BF). 2 In BF are shown, with values
above 0 (dotted gray line) indicating that the true model was favored. A
total of 10 simulations were run under each model (see text for details).

effect of vague priors on Bayes Factors (Kass 1993) when
compared to highly specific models. Even so, we observe
that we can easily reject certain parameterizations and
prior sets over alternatives.

Chelonia Carapace Evolution

The unconstrained bayou model identified a number
of highly supported shifts in the posterior distribution
(Fig. 6). In particular, strong shifts were detected
for increased carapace length in the clades that
include softshell turtles (family Trionychidae), sea turtles
(superfamily Chelonioidea), the genus Batagur, the
Malaysian giant turtle (Orlitia borneensis), and two clades
of tortoises (Fig. 6). Decreases in size were found in
the clade leading to tortoises and most modern turtles,
as well as a few moderately supported shifts across
the tree, such as the tortoise clade including Geochelone
elegans and Geochelone platynota. Posterior distributions
of parameter values were much narrower than the prior
distributions, and indicate substantial information in
the data driving the estimation of these parameters.
Phylogenetic half lives were relatively short compared
to the height of the tree (posterior median = 3.94 myr)
indicating that after accounting for adaptive regimes,
very little phylogenetic covariance remained among
species in the phylogeny. This is in contrast to the
OUpapitat model, which estimated significantly higher

values of phylogenetic half-life and lower values of o2
(Fig. 7).

Support for the unconstrained bayou model over
the Bayesian OUpgpitat model was very strong, with
a 2 In Bayes Factor (BF) = 15.24 (Kass and Raftery
1995, ; Table 3). Only one shift (leading to sea turtles)
identified in the OUjpapitar model was identified as
strongly supported in the posterior of the unconstrained
bayoumodel (Fig. 6), while SURFACE and auteur’sbm-
jump model found more comparable shift locations. We
conclude that while the OUj,gpiia¢ model is better than
many models, it is not a representative model from the
posterior distribution obtained from bayou. Instead, the
hypothesis proposed by Jaffe et al. (2011) captures only
a few of the relevant statistical features of the data. The
OUpapitat model also had higher estimates for both the
phylogenetic half-life and for stationary variance, likely
because multiple adaptive regimes were combined into
single adaptive regimes, resulting in inference of broader
adaptive zones, and a weaker rate of adaptation.

SURFACE runs identified most of the same shifts that
were found in bayou, as well as considerable amounts
of convergence. However, more shifts were identified,
likely due to the prior on the number of shifts (SURFACE
identified 33 shifts, while the prior on the number of
shifts in the bayou runs was only 15). Estimates of
adaptive optima, 6, were extremely distant in the best-
fitting SURFACE models, and estimates of phylogenetic
half-life were correspondingly considerably larger than
the estimates from bayou (Table 3).

Discussion

Bayesian Inference of Adaptive Regimes

In this study, we have shown how Bayesian inference
of adaptive regimes fit to multi-optima OU models
provides a flexible framework for testing evolutionary
hypotheses. Bayesian OU models have had limited
application to trait evolutionary studies (but see
Reitan et al. 2012, for layered OU models applied to
fossil timeseries data), but offer a number of distinct
advantages over existing methods.

First, our method integrates over uncertainty in
regime placement and allows inference of the location,
magnitude, and number of adaptive shifts. Based on
our simulation results we find that inference on the
number of shifts is more difficult as estimation of this
parameter tends to heavily influenced by the prior
distribution. However, other parameters in the model
are well estimated and the method correctly identifies
the location of most shifts in the phylogeny so long as the
number of shiftsisnotlarge (K > 25% the number of tips).
The probability of correctly identifying a shift increases
with the magnitude and age of adaptive regimes.
Because low magnitude, recent shifts of little effect can
always be added to the model, inference should focus on
the branch posterior probabilities themselves rather than
the total shift number (see online Appendix III, available
on Dryad; http:/ /dx.doi.org/10.5061 /dryad.t342m).
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FIGURE 6. Model fits of multi-optima OU models using different methods. The diameter of the circles at the nodes in a) and c) is proportional
to the posterior probability of shift locations from the reversible-jump model implemented in bayou, with the larger phenotypic values for
optima being indicated by yellow and smaller optima indicated by red. Circles in b) and d) are proportional to the posterior probability of a shift
in a constant-rate BM model with jumps fit using the bm-jump model in auteur. Branch painting in a) and b) is the OUgpitr model (which
corresponds to the OU2 model of Jaffe et al. 2011). Regime paintings in c) and d) correspond to the best fitting model from SURFACE using

forward stepwise addition (Ingram and Mahler 2013).

Second, the great advantage of OU models is
their compatibility with our understanding of the
evolutionary process (Hansen 1997; Hansen et al. 2008).
On the other hand, many of the statistical properties
of OU models can complicate inference resulting from

inconsistent estimators and lack of identifiability (which
has been shown for the case when the root state is drawn
from a stationary distribution, see Ho and Ané 2013).
We show how Bayesian implementation of these models
allows a full exploitation of the biological realism of
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FIGURE 7.  Posterior distributions for parameters estimated using bayou under a reversiblejump and fixed OUpapitat models to the Chelonia
carapace data. Parameters estimated include a) phylogenetic half-life b) 6 and c) the distribution of phenotypic optima (8). The distribution of
phenotypes in the data is indicated in c) by the dashes at the top of the plot.

TaBLE3.  Comparison of model fits to Chelonia carapace length data (Jaffe et al. 2011).

Variable bayou OUhabitat (ML) OUpabitat (bayou) SURFACE Fwd SURFACE Bwd bm-jump
No. of shifts 16* 16 16* 33 33 16*
No. of 6 17* 4 4% 33 13 -
InL —90.9* —137.8 —1371* 34.3 30.7 —97.3%
Marginal InL —143.6 - —151.2 - - -
In2/0 (myr) 3.94* 17.6 16.7* 92.6 85.2 —
o? (per myr) 0.0568* 0.0285 0.0298* 0.00325 0.00341 0.00381*

y 0.16% 0.36 0.36* 0.21 0.22 -
Range of 0 (2.08,5.12) (3.1, 4.82) (3.23,5.19) (—422.6, 111.2) (—387.9,102.5) -

Note: The range of 6 values are taken from either the posterior distribution (for Bayesian analyses) or from the range of estimates for individual

optima from the ML analyses.
*Median of posterior distribution.

OU models by allowing the use of informative priors
that constrain the model to biologically realistic values
while simultaneously alleviating some of the statistical
issues of OU model fitting, such as the existence of
likelihood ridges that extend into regions of unrealistic
parameter space. Furthermore, we demonstrate how the
model can be used to explicitly test alternative biological
interpretations by testing alternative parameterizations
of the models. Note that no method, however, will
retrieve an automatic determination of whether a
model is correct or not, only whether the correlative
pattern and model is consistent with a given biological
interpretation. The discretion of the researcher is needed
to adequately interpret the reasonableness of the results
produced by bayou.

Just as a clear understanding of the mechanisms
behind molecular evolution have revolutionized
methods of phylogenetic inference (Kimura 1980, 1984;
Felsenstein 1981), additional sources of data can trigger
effective, and informative, methods of inference for
phenotypic traits (Pennell and Harmon 2013). Our
results demonstrate how models consistent with a
quantitative genetic interpretation can be identified
statistically from other interpretations of OU models.
Our comparisons of simulated OUFpree vs. QG models
are somewhat contrived in that parameters were drawn
directly using informative priors that were subsequently
used as priors for model fitting—an optimal scenario

that is unrealistic when fitting real data. Furthermore,
priors for the QG model were set to correspond to
parameters estimated for body size data, a trait known
to be unlikely to follow the QG model over million-
year timescales (Lynch 1990; Hansen 1997; Butler
and King 2004; Uyeda et al. 2011). Consequently, it is
unsurprising we can obtain such dramatic support for
the generating model when comparing QG and OUFyee
parameterizations. Nevertheless, the QG model may be
appropriate to apply to traits that are known to be more
constrained, have lower additive genetic variances, if
selection is known to be quite weak or if the underlying
dynamics of adaptive landscapes are well described
by the model of peak movement. The potential for
incorporating prior information is not limited to QG
data. OU models have been effectively implemented
to fit to fossil timeseries on timescales intermediate
between microevolutionary, and phylogenetic scales
(Hunt 2007, 2008, 2013; Reitan et al. 2012). The possibility
of uniting these different data sources using either a
single, phylogeny-based modeling framework, or by
using the results of models fit to fossil data to inform
the priors for comparative data (e.g.,) provides rich
avenue for unification of microevolutionary, fossil, and
macroevolutionary data.

Some may view the reversiblejump framework
proposed in this study to be a data mining tool that will
lead to overfitting of nonbiologically relevant statistical
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noise. We agree that biologically informed a priori
hypotheses should not be thrown out in any analysis
and should be preferred to a posteriori, nonbiologically
based statistical models. However, we demonstrate
one way to unite these approaches by comparing
biologically informed a priori hypotheses to the posterior
distribution of the unconstrained model. We tested the
best-fitting model of a previous study (Jaffe et al. 2011)
to demonstrate how a priori hypotheses can be compared
to a posteriori hypotheses obtained in the reversible-
jump framework. We find that the best-fitting model
of chelonian carapace length evolution found in Jaffe
et al. (2011) captures only one of the highly supported
optima shifts in the posterior distribution (Fig. 6).
The posterior obtained via reversible-jump inference
is much more strongly supported based on Bayes
Factors even given the high penalty assigned to models
with vague priors (Kass 1993). Comparing biologically
informed hypotheses to the posterior distribution of
statistically supported hypotheses provides a useful
metric for determining the adequacy of our model
in explaining the data. Furthermore, we can generate
additional hypotheses based on the inadequacy of the
a priori hypotheses to explain the existence of distinct
adaptive regimes for certain clades. For example, in
the Chelonia data set we examine here we find that
there is a strongly supported adaptive shift in the
softshell turtles (Trionychidae) that is not captured by
the OUyapitat model of Jaffe et al. (2011). Based on this
observation, we can conclude that the simple freshwater
marine dichotomy does not capture the underlying
causal forces behind carapace length evolution. Instead,
optimal body size may be better explained by other
factors. For example, a shift to a larger phenotypic
optimum may be accompanied by shifts to more aquatic
lifestyles (irrespective of salinity) by releasing species
from constraints imposed by the physical environment.
Furthermore, it has been hypothesized that larger body
sizes in chelonians may require higher environmental
temperatures to enable high enough mass-specific
metabolic rates to sustain growth (Makarieva et al. 2005;
Head et al. 2009). Thus, a combination of an aquatic
lifestyle and warm temperatures may favor shifts toward
larger body sizes.

An important implication of our analysis is that
the biological interpretation of a model may change
the posterior distribution of model fits. For example,
species of turtles may cluster broadly into adaptive zones
defined based on aquatic or nonaquatic habits, and
such transitions may be rare enough that OU model
with a handful of shifts and weak parameters for o

and o2 could adequately describe evolutionary patterns.
However, support for such a pattern does not exclude
the possibility that at shorter timescales, species evolve
according to a pulsed pattern of shifts in adaptive optima
separate by million-year periods of phenotypic stasis
[i.e., the pattern of stasis that lead to Eldredge and
Gould'’s (1972) proposal of punctuated equilibrium, but
see Pennell et al. 2013]. If such a stasis model were
enforced through informative priors, we would expect

high values for a and o, as well as more numerous shifts.
Both evolution within these broad adaptive zones and
intervals of stasis may be occurring simultaneously, and
there may be statistical signals for both processes that
are detectable in phylogenetic comparative data. bayou
provides a flexible means of fitting these biological
interpretations, and testing for specific processes and
patterns of interest.

Our method helps alleviate many of the challenges
inherent to fitting OU models to phylogenetic
comparative data. Inference of OU models is often
challenging due to ridges in likelihood space, which
result in poor convergence and difficult to interpret
parameter estimates. We emphasize the importance
of examining the full posterior distribution, rather
than point estimates, when interpreting model fits
and the statistical signal of adaptive evolution in
comparative data. For example, Ingram and Mahler’s
2013 SURFACE method, as in bayou, searches for an
optimal arrangement of adaptive regimes across the
phylogeny. However, because of ridges in likelihood
space in the Chelonia dataset we examined, SURFACE
gave highly unrealistic estimates of the values of the
adaptive optima. This is because there are a range
of correlated values of a, o2 and (01,...,0x) that give
essentially the same likelihood. Thus, the ML estimate
in SURFACE combines extremely distant optima
(ranging from —422.6 to 111.2; Table 3) with much
weaker estimates of o (phylogenetic half-life of 92.6
vs. 3.94 in bayou) to obtain very high log-likelihoods
relative to other methods (Table 3, Fig. 6). bayou
avoids these difficult to interpret results by using
informative prior information to exclude biologically
unreasonable models. Although this introduces some
subjectivity, most biologists would agree that we can
reasonably reject the idea that any extant species
of chelonians are adapting to an optimal carapace

length of e12=1.96x10*3 km long (i.e., larger than the
diameter of the observable universe). Since fitted model
parameters are correlated, unreasonable estimates of
adaptive optima also affect estimation of a, 62, and the
location of shifts. By simply setting a reasonable prior on
this one set of parameters (01,...,0x), we show that the
estimation of o and o collapses from a ridge to a narrow
peak of values (Fig. 7). Thus, while both methods can
infer the location of shifts in adaptive optima without
a priori specification, bayou allows for the inclusion of
informative priors and returns a full posterior of credible
models; while SURFACE allows for convergent regimes
(the “backwards” selection step) which is currently
not implemented in the reversible-jump framework of
bayou.

Our analysis of simulations results gives considerable
insight into best practices in fitting OU models to
phylogenetic comparative data. Although bayou does
not estimate the number of shifts with much power,
it is nonetheless possible to distinguish models with
little statistical support for adaptive peak shifts vs.
models with strong evidence of optima shifts. For
example, as the true model approaches BM (i.e., high
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phylogenetic half lives) or the number of shifts goes
to 0, the posterior support for any particular branch
greatly decreases, eventually reaching the probability
of a random branch having a shift given the prior
density (Fig. 1; online Appendix III, available on
Dryad; http:/ /dx.doi.org/10.5061/dryad.t342m). Thus,
if no branch has high posterior support relative
to the prior density, we conclude there is little
evidence for an adaptive shift (regardless of the mean
number of shifts inferred in the posterior distribution).
In fact, there is relatively little cost to placing a
high prior on the number of shifts for inference

of phylogenetic half-life, 0?>, and the location and
magnitude of optima shifts, whereas conservative
priors will often result in mis-estimation of these
parameters if the true model is complex. Therefore, we
recommend using priors that favor a moderate to large
number of shifts rather than using more conservative
priors (see online Appendix III, available on Dryad;
http:/ /dx.doi.org/10.5061/dryad.t342m). Furthermore,
if the posterior for phylogenetic half-life includes values
higher than the phylogenetic tree height, this indicates
that the model is very BM-like and it is unlikely that
shifts will be estimated. This is because optima shifts
are expected to only weakly affect the distribution of
the data. As a simple heuristic, we obtained reasonable
estimates of parameters when the phylogenetic half-
life is between the youngest split in the phylogeny and
the total tree height. Half-life values substantially less
than the youngest split in the phylogeny indicate that
after accounting for optima shifts, residual variation
within regimes is not phylogenetically correlated (white
noise). By contrast, phylogenetic half lives much higher
than tree height indicate strong phylogenetic signal even
after accounting for shared adaptive optima, which is
suggestive of BM-like evolution.

A number of extensions are possible within our
proposed method, and is a first step toward a much more
expansive suite of models. Using likelihood approaches,
OU models have been expanded to include randomly
evolving continuous predictors (Hansen et al. 2008),
multivariate evolution of correlated traits (Bartoszek
et al. 2012), varying a and o> parameters across the
tree (Beaulieu et al. 2012; Lapiedra et al. 2013) and
identification of convergent regimes (Ingram and Mahler
2013; Mahler et al. 2013). Expanding these models to
a Bayesian framework would carry many of the same
advantages we describe in this study. Furthermore,
we emphasize the importance of developing models
that describe the dynamics of adaptive landscapes
themselves, and suggest anchoring these models in
empirical data sets through the use of informative
priors will greatly improve our understanding of
macroevolutionary dynamics.

SOFTWARE AVAILABILITY

Software for implementing the models described
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code for the package is available at https://github.
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