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ABSTRACT K-Means clustering algorithm is a typical unsupervised learningmethod, and it has beenwidely

used in the field of fault diagnosis. However, the traditional serial K-Means clustering algorithm is difficult to

efficiently and accurately perform clustering analysis on the massive running-state monitoring data of rolling

bearing. Therefore, a novel fault diagnosis method of rolling bearing using Spark-based parallel ant colony

optimization (ACO)-K-Means clustering algorithm is proposed. Firstly, a Spark-based three-layer wavelet

packet decomposition approach is developed to efficiently preprocess the running-state monitoring data to

obtain eigenvectors, which are stored in Hadoop Distributed File System (HDFS) and served as the input

of ACO-K-Means clustering algorithm. Secondly, ACO-K-Means clustering algorithm suitable for rolling

bearing fault diagnosis is proposed to improve the diagnosis accuracy. ACO algorithm is adopted to obtain

the global optimal initial clustering centers of K-Means from all eigenvectors, and the K-Means clustering

algorithm based on weighted Euclidean distance is used to perform clustering analysis on all eigenvectors

to obtain a rolling bearing fault diagnosis model. Thirdly, the efficient parallelization of ACO-K-Means

clustering algorithm is implemented on a Spark platform, which canmake full use of the computing resources

of a cluster to efficiently process large-scale rolling bearing datasets in parallel. Extensive experiments are

conducted to verify the effectiveness of the proposed fault diagnosis method. Experimental results show that

the proposed method can not only achieve good fault diagnosis accuracy but also provide high model training

efficiency and fault diagnosis efficiency in a big data environment.

INDEX TERMS Ant colony optimization, fault diagnosis, K-Means clustering, rolling bearing, spark,

wavelet packet decomposition.

I. INTRODUCTION

Rolling bearing is one of the most commonly used and easily

damaged components of rotating machinery equipment, and

rolling bearing fault diagnosis is very important to ensure

the normal running of rotating machinery equipment [1].

In the field of rolling bearing fault diagnosis, the common

sensors are only used to collect vibration signals, and they

don’t have the ability to do rolling bearing fault diagno-

sis. Recently, some intelligent sensors with fault detection

function have emerged, they can employ some simple signal

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

processing technologies to detect the most simple and obvi-

ous fault signals of rolling bearing, but they don’t have the

ability to identify complex and illegible fault signals yet.

Typically, the working conditions of rolling bearing are com-

plex, the vibration signals collected by sensors are often non-

stationary, non-linear, and multi-component, thus the signal

processing technologies are difficult to be used to carry out

complex fault diagnosis of rolling bearing effectively and

accurately.

The data-driven intelligent fault diagnosis methods based

on machine learning or deep learning can fully dig the

underlying fault feature information from the massive and

complex vibration signals of rolling bearing, thus they are
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suitable for complex fault diagnosis of rolling bearing.

In recent years, more and more researches have focused

on the data-driven rolling bearing fault diagnosis, such as

random forest (RF) [2], k-nearest neighbor [3], support vector

machine [4], back propagation neural network [5], improved

LeNet-5 network [6], deep convolutional neural network

[7]–[9], deep recurrent neural network [10], deep residual

learning [11], deep auto-encoder [12], and stacked sparse

auto-encoder [13].

Most of existing data-driven fault diagnosis methods can

get a satisfactory diagnosis accuracy with sufficient super-

vised training samples, but the process of labeling large-scale

training samples is time-consuming and labor-intensive in

practical industrial production. Compared with the traditional

machine learning methods, the deep learning methods can

obtain a higher fault diagnosis accuracy, but its complex net-

work structurewill have a greater impact on the training speed

in the training of massive samples. Clustering algorithms are

typical unsupervised learning methods which do not require

labeling the training samples and have lower computational

complexity, thus they are suitable for rolling bearing fault

diagnosis in the big data environment.

Recently, fuzzy C-means (FCM) clustering algorithm and

K-Means clustering algorithm have been widely used in fault

diagnosis. Bai et al. [14] proposed a fault diagnosis method

based on empirical wavelet transform and FCM clustering

algorithm. In [15], [16], the empirical mode decomposition

and FCM clustering algorithm are combined and applied to

fault diagnosis. Ramos et al. [17] designed a fault diagnosis

system of steam generator using FCM clustering algorithm.

Liu et al. [18] proposed a fault diagnosis method based on

Gaussian kernel FCM clustering algorithm. Shi et al. [19]

developed a fault diagnosis method based on local mean

decomposition (LMD) and K-Means clustering algorithm,

LMD is used to decompose the vibration signals of rolling

bearing, the probability density function is utilized to opti-

mize the selection of initial clustering centers of K-Means,

and the optimized K-Means clustering algorithm is adopted

to effectively diagnose rolling bearing faults. Zhang et al. [20]

improved the choice method of initial clustering centers

of K-Means, and the results show that the fault diagno-

sis accuracy of rolling bearing obtained using the modified

K-Means clustering algorithm is increased by 7.5% than that

obtained using the traditional K-Means clustering algorithm.

Mjahed et al. [21] proposed an engine fault diagnosis method

based on genetic algorithm (GA) and K-Means cluster-

ing algorithm, and a novel engine fault diagnosis method

based on particle swarm optimization (PSO) algorithm and

K-Means clustering algorithm was devised in [22], which

can effectively identify different kinds of faults in engines.

In [21], [22], both GA and PSO algorithm are exploited

to improve the random initialization of K-Means cluster-

ing algorithm for engine fault diagnosis. Compared with

FCM clustering algorithm, K-Means clustering algorithm

has lower computational complexity and faster convergence

speed, thus it is more suitable for the clustering analysis of

big data.

With the increase of the complexity of mechanical equip-

ment and the expansion of industrial production scale, and

multiple sensors are used to monitor the running states of

mechanical equipment in real time, the running-state mon-

itoring data generated by a large number of mechanical

equipment are growing rapidly. It is a new challenge of

the field of fault diagnosis that how to diagnose mechan-

ical equipment faults accurately and quickly according to

the massive running-state monitoring data [23]. In the last

few years, the researches and applications of fault diagno-

sis based on big data technology are increasing gradually.

For example, Miao et al. [24] built a fault diagnosis model

of SF6 electrical equipment using back propagation neural

network based on MapReduce. Imani et al. [25] adopted RF

based on Spark to rapidly diagnose wind turbine gearbox

faults. Yu et al. [26] built a fault diagnosis platform of indus-

trial equipment using MapR-DB, Hive, MapReduce, Spark,

principal component analysis, and other technologies. Most

of the existing researches on fault diagnosis based on big data

technology apply the parallel machine learning algorithms

based on MapReduce or Spark to fault diagnosis, which

improve the performance of fault diagnosis. Compared with

MapReduce, Spark has faster processing speed and is more

suitable for machine learning algorithms that require a large

number of iterative computations.

In view of the obvious advantages of Spark and K-Means

clustering algorithm in industrial big data analysis, this

paper proposes a novel fault diagnosis method of rolling

bearing using Spark-based parallel ACO-K-Means clustering

algorithm, which can effectively diagnose rolling bearing

faults through rapid and accurate mining of fault information

from the massive running-state monitoring data of rolling

bearing.

The main contributions of the proposed approach are as

follows.

• A Spark-based three-layer wavelet packet decomposi-

tion approach is developed, which can efficiently pre-

process the massive running-state monitoring data of

rolling bearing to obtain eigenvectors as the input of

ACO-K-Means clustering algorithm.

• ACO-K-Means clustering algorithm suitable for rolling

bearing fault diagnosis is proposed to improve the diag-

nosis accuracy. ACO algorithm is used to get the global

optimal initial clustering centers of K-Means from all

eigenvectors, and the K-Means clustering algorithm

based on weighted Euclidean distance is used to perform

clustering analysis on all eigenvectors to obtain a rolling

bearing fault diagnosis model.

• The parallelization of ACO-K-Means clustering algo-

rithm for rolling bearing fault diagnosis is imple-

mented on a Spark platform, which can efficiently and

accurately perform clustering analysis on the massive

running-state monitoring data of rolling bearing.
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• The effectiveness of the proposed fault diagnosismethod

is verified and analyzed through a series of experiments,

the results show that it cannot only obtain a satisfactory

fault diagnosis accuracy, but also offer a higher model

training efficiency and fault diagnosis efficiency for

large-scale rolling bearing datasets.

The rest of the paper is organized as follows. Section II

outlines ACO algorithm, K-Means clustering algorithm,

and Spark computing framework. Section III describes

the proposed fault diagnosis method of rolling bearing

using Spark-based parallel ACO-K-Means clustering algo-

rithm. Section IV presents experimental results and analysis.

Section V gives the conclusion.

II. BACKGROUND

A. OVERVIEW OF ACO ALGORITHM

The inspiration of ACO algorithm [27] comes from the

observation of foraging behavior of real ant colonies. During

the round trip from the food source to the ant nest, each

ant secretes a chemical substance called pheromone on its

path, and it can perceive the existence and intensity of

pheromones and move along the direction with higher inten-

sity pheromones. Thus the entire ant colony can find the

shortest path between the food source and the ant nest after a

period of time.

FIGURE 1. An example of ants finding the shortest path.

Suppose that an ant wants to move from point A to point B,

if there are no obstacles, it will move along path AB, as shown

in Fig. 1(a). If there are obstacles, it will randomly choose

a path between paths ACB and ADB, as shown in Fig. 1(b).

Since path ADB is shorter than path ACB and there are more

ants passing through point D between points A and B, result-

ing in the intensity of pheromones deposited on path ADB is

greater than that of pheromones deposited on path ACB, and

more ants choose path ADB, as shown in Fig. 1(c).

In the ACO algorithm,m ants can cooperate to perform the

foraging task, and the transition probability Pkij from point i

to point j for the k-th ant can be calculated by the pheromone

intensity τij(t) and visibility ηij(t) at time t , as in

Pkij(t) =
(τij(t))

α(ηij(t))
β

∑

s∈allowedk
(τis(t))α(ηis(t))β

, (1)

where α is the pheromone heuristic factor, β is the expected

heuristic factor, and allowedk is the next arrival point that the

FIGURE 2. Spark computing framework.

k-th ant can choose. The visibility ηij can be calculated by

ηij =
1

εij
, (2)

where εij represents the Euclidean distance between point i

and point j. The pheromone intensity τij at time t + n can be

calculated by

τij(t + n) = (1− ρ)τij(t)+

m
∑

k=1

1τ kij , (3)

where ρ is the pheromone volatilization factor (0<ρ<1), and

1τij represents the pheromone increment. 1τ kij denotes the

pheromone laid on path (i, j) by the k-th ant, which can be

calculated by

1τ kij =







1

lk
, if the k-th ant passes the path (i, j),

0, otherwise,

(4)

where lk represents the length of the path the k-th ant passes

between time t and time t + n.

B. OVERVIEW OF K-MEANS CLUSTERING ALGORITHM

K-Means clustering algorithm [28] is one of the most classic

clustering algorithms, which uses distance as the evaluation

index of similarity, that is, the closer the distance between

two objects is, the greater the similarity is. K-Means clus-

tering algorithm is an iterative clustering analysis method,

the distance between any two samples is calculated for a

given sample set, and the sample set is divided into k clusters

according to the distances between samples, mainly including

the following steps.

Step 1: Randomly select k samples from a given sample

set X = {x1, x2, . . . , xn} as the initial clustering centers M =

{µ1, µ2, . . . , µk}.

Step 2: Calculate the Euclidean distance between each

sample and each clustering center by

dij =
∥

∥xi − µj

∥

∥

2
, (5)

and each sample is classified into the nearest cluster.
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FIGURE 3. Flowchart of the proposed fault diagnosis method of rolling bearing using Spark-based parallel ACO-K-Means clustering
algorithm.

Step 3: Recalculate the centroids of k clusters by

µj =
1

∣

∣Cj
∣

∣

∑

xi∈Cj

xi, (6)

where Cj represents the j-th cluster.

Step 4: Calculate the total mean square error between all

samples and their corresponding clustering centers by

MSE =
1

n

k
∑

j=1

∑

xi∈Cj

∥

∥xi − µj

∥

∥

2

2
, (7)

if it reaches the convergence threshold or the maximum

number of iterations has reached, go to Step 5; otherwise,

go to Step 2.

Step 5: Output the clustering results.

C. OVERVIEW OF SPARK COMPUTING FRAMEWORK

Spark is one of the most commonly used big data computing

platforms, it is a parallel computing framework for big data

based on memory computing, which can be used to build

faster and more efficient big data analysis applications [29].

Fig. 2 depicts the Spark computing framework, which mainly

includes a cluster resource manager, a master node and mul-

tiple worker nodes that perform tasks. The cluster resource

manager can be the Spark’s own standalone cluster manager,

YARN [30], or other resource management frameworks.

When a Spark application is submitted, a SparkContext

object will be created on the master node, it reads data from

HDFS to create RDD objects, and it applies for resources

from the cluster resource manager. The cluster resource man-

ager allocates resources to one or more executor processes

of each worker node, and each worker node reports resource

usage and running states of tasks to the cluster resource

manager using a heartbeat mechanism. The SparkContext

object builds a directed acyclic graph (DAG) according to

the dependencies among multiple RDDs, and the DAG is

submitted to the DAG scheduler. The DAG scheduler parses

the DAG into multiple task sets, which are submitted to the

task scheduler. The task scheduler assigns tasks to executor

processes, after an executor process receives a task, a thread

will be taken from the thread pool of the executor process to

perform the task.

III. PROPOSED FAULT DIAGNOSIS METHOD OF

ROLLING BEARING

A. FAULT DIAGNOSIS PROCESS OF ROLLING BEARING

The proposed fault diagnosis method of rolling bearing using

Spark-based parallel ACO-K-Means clustering algorithm is

depicted in Fig. 3. Firstly, the raw vibration data of rolling

bearing collected by sensors in real time (i.e., the running-

state monitoring data of rolling bearing) are stored in HDFS.

Secondly, Spark-based three-layer wavelet packet decompo-

sition is adopted to preprocess the running-state monitoring

data to obtain eigenvectors, which are stored in HDFS and

served as the input of ACO-K-Means clustering algorithm.

Thirdly, the historical sample data composed of eigenvec-

tors are randomly divided into training set and test set, and

Spark-based parallel ACO-K-Means clustering algorithm is

performed to train and test the fault diagnosis model of rolling

bearing. Finally, the trained fault diagnosis model is used in

actual fault diagnosis, the clustering analysis is carried out on

the data to be diagnosed which are composed of eigenvectors

stored in HDFS, and the fault diagnosis results are output.

B. PROPOSED SPARK-BASED THREE-LAYER WAVELET

PACKET DECOMPOSITION APPROACH

In the preprocessing of the raw vibration data of rolling

bearing, the wavelet packet decomposition [31] is often used

to extract eigenvectors of rolling bearing. In order to effi-

ciently preprocess the massive vibration data of rolling bear-

ing, a Spark-based three-layer wavelet packet decomposition

approach is proposed. Fig. 4 presents the flowchart of the pro-

posed Spark-based three-layer wavelet packet decomposition

approach, which mainly includes the following steps.

Step 1: Read the raw vibration data of rolling bearing to

create an RDD. w pieces of raw vibration data of rolling

bearing are read from HDFS to create an RDD rawRDD

containing n partitions, and each RDD partition contains w/n

pieces of vibration data of rolling bearing.

Step 2: Divide samples. For the s-th RDD partition =

{R(s−1)w/n+1,R(s−1)w/n+2, . . . ,Rs∗w/n} of rawRDD, every l

pieces of continuous vibration data of rolling bearing are

divided into a sample, where 1 ≤ s ≤ n. The sample size l

should be more than the number of vibration signals collected
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FIGURE 4. Flowchart of the proposed Spark-based three-layer wavelet
packet decomposition approach.

in one rotation cycle of rolling bearing, but not more than

that collected in two rotation cycles of rolling bearing. A new

RDD sampleRDD containing w/l samples is obtained after

finishing the sample division.

Step 3: Normalize samples. For the s-th RDD parti-

tion = {S((s−1)w/n)/l+1, S((s−1)w/n)/l+2, . . . , S(s∗w/n)/l} of sam-

pleRDD, each piece of vibration data contained in the sample

S((s−1)w/n)/l+j is normalized by

x ′ =
x − xmin

xmax − xmin
, (8)

where 1 ≤ s ≤ n, 1 ≤ j ≤ (w/n)/l, x is one piece of vibration

data contained in the sample, xmax is the maximum value,

and xmin is the minimum value. A new RDD normalRDD is

obtained after all samples are normalized.

Step 4: Decompose samples. For the s-th RDD partition=

{N((s−1)w/n)/l+1,N((s−1)w/n)/l+2, . . . ,N(s∗w/n)/l} of normal-

RDD, the sample N((s−1)w/n)/l+j is decomposed by three-

layer wavelet packet decomposition to obtain wavelet packet

decomposition coefficients of eight frequency bands, where

1≤ s ≤ n and 1 ≤ j ≤ (w/n)/l. The energy proportion Ek of

the k-th frequency band can be calculated by

Ek =
(Wk)

T Wk
∑8

k=1 (Wk)
T Wk

, (9)

where Wk is the wavelet packet decomposition coefficient

of the k-th frequency band, for all 1 ≤ k ≤ 8. Since the

energy proportion of each frequency band obtained from the

decomposition of vibration data corresponding to different

running states of rolling bearing is different, each eigenvector

of rolling bearing can be constructed from energy proportions

of eight different frequency bands. Finally, w/l eigenvectors

are obtained after all samples are decomposed.

TABLE 1. Examples of eigenvectors of different running states of rolling
bearing.

C. PROPOSED ACO-K-MEANS CLUSTERING ALGORITHM

1) K-MEANS CLUSTERING ALGORITHM BASED ON

WEIGHTED EUCLIDEAN DISTANCE

As described in Section III-B, each eigenvector of rolling

bearing is composed of energy proportions of eight differ-

ent frequency bands, and the examples of eigenvectors of

four different running states of rolling bearing are presented

in Table 1. As can be seen in Table 1, the energy propor-

tions of different frequency bands in eigenvectors of different

running states of rolling bearing are different. For example,

the energy distributions of the ball fault of rolling bearing

are mainly concentrated in the third and seventh frequency

bands. If the Euclidean distance measure shown in (5) is

adopted to calculate the distance between each eigenvector

and each clustering center, the differences of the energy

distributions of different running states of rolling bearing

are neglected, which may affect the fault diagnosis accu-

racy. Therefore, the K-Means clustering algorithm based on

weighted Euclidean distance is put forward.

For any two samples xi = {xi1, xi2, . . . , xip} and xj =

{xj1, xj2, . . . , xjp}, the weighted Euclidean distance between
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xi and xj can be calculated by

dij =

√

√

√

√

p
∑

k=1

(

xik − xjk

δk

)2

, (10)

where δk is the standard deviation of {xik , xjk}, for all

1 ≤ k ≤ p.

To compare the fault diagnosis accuracy of the K-Means

clustering algorithm using weighted Euclidean distance with

that of the K-Means clustering algorithm using Euclidean dis-

tance, the raw vibration data of rolling bearing [32] provided

by Case Western Reserve University (CWRU) are adopted,

and the three-layer wavelet packet decomposition is per-

formed to decompose the raw vibration data to obtain eigen-

vectors as the input of K-Means clustering algorithm. Table 2

presents the fault diagnosis accuracies of K-Means clustering

algorithms using different distance measure methods. It can

be seen from Table 2 that the fault diagnosis accuracy of

the K-Means clustering algorithm using weighted Euclidean

distance is 0.81% higher than that of the K-Means clustering

algorithm using Euclidean distance. Therefore, the weighted

Euclidean distance measure is adopted to calculate the dis-

tance between each eigenvector and each clustering center,

which can improve the fault diagnosis accuracy of K-Means

clustering algorithm to a certain extent.

TABLE 2. Fault diagnosis accuracies of K-Means clustering algorithms
using different distance measure methods.

2) ACO-K-MEANS CLUSTERING ALGORITHM

The traditional K-Means clustering algorithm does not guar-

antee that the global optimal solution can be obtained, and

the clustering effect depends on the selection of initial clus-

tering centers. Therefore, many studies [19]–[22], [33], [34]

have focused on optimizing the selection of initial clustering

centers of K-Means. In this paper, ACO algorithm is used to

get the global optimal initial clustering centers of K-Means.

The proposed ACO-K-Means clustering algorithm for rolling

bearing fault diagnosis is described in Algorithm 1, mainly

including the following steps.

Step 1: Randomly select the initial clustering centers. k

eigenvectors are randomly selected from all m eigenvectors

of rolling bearing and served as the initial clustering centers

M = {µ1, µ2, . . . , µk}.

Step 2: Calculate the transition probability. The visibility

ηij between the i-th eigenvector and the j-th initial cluster-

ing center is calculated by (2), the pheromone intensity τij
between the i-th eigenvector and the j-th initial clustering

center is calculated by (3), and the transition probability Piij
from the i-th eigenvector to the j-th initial clustering center

Algorithm 1 The ACO-K-Means Clustering Algorithm for

Rolling Bearing Fault Diagnosis

Input: m eigenvectors of rolling bearing, the number of

clusters k , the pheromone heuristic factor α, the expected

heuristic factor β, the pheromone volatilization factor ρ,

the maximum number of iterationsmaxNumIter, the con-

vergence thresholds λ and ϕ

Output: a rolling bearing fault diagnosis model

1: Randomly select k initial clustering centers M =

{µ1, µ2, . . . , µk};

2: do

3: t ← t + 1;

4: for i← 1 to m do

5: for j← 1 to k do

6: Calculate the visibility ηij by (2);

7: if t = 1 then

8: The pheromone intensity τij← 1;

9: else

10: Calculate the pheromone intensity τij by (3);

11: end if

12: Calculate the transition probability Piij by (1);

13: end for

14: Assign the i-th eigenvector to a cluster according to

the maximum transition probability max(Pii1,

Pii2, . . . ,P
i
ik );

15: end for

16: Update k initial clustering centers by (6);

17: Calculate the mean square errorMSE by (7);

18: while MSE ≤ λ

19: Output k global optimal initial clustering centers;

20: do

21: for i← 1 to m do

22: for j← 1 to k do

23: Calculate the weighted Euclidean distance dij by

(10);

24: end for

25: Classify the i-th eigenvector into the nearest cluster;

26: end for

27: Update k clustering centers by (6);

28: Calculate the mean square errorMSE by (7);

29: while MSE ≤ ϕ or ++numIter = maxNumIter

30: return a rolling bearing fault diagnosis model.

for the i-th ant is calculated by (1), where 1 ≤ i ≤ m and

1 ≤ j ≤ k .

Step 3: Assign m eigenvectors to k clusters. The i-th

eigenvector is assigned to the j-th cluster according to the

maximum transition probabilityPiij=max(Pii1,P
i
i2, . . . ,P

i
ik ),

where 1 ≤ i ≤ m and 1 ≤ j ≤ k .

Step 4: Update the initial clustering centers. k initial clus-

tering centers are recalculated by (6), which are regarded as

the new initial clustering centers.

Step 5: Determine whether the initial clustering centers

have converged. At first, the total mean square error MSE
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between all eigenvectors and their corresponding initial clus-

tering centers is calculated by (7). Then, determine whether

MSE is less than or equal to the convergence threshold, if yes,

the global optimal initial clustering centers are output and go

to Step 6; if not, go to Step 2.

Step 6: Classify each eigenvector into the nearest cluster.

The weighted Euclidean distance dij between the i-th eigen-

vector and the j-th clustering center is calculated by (10), and

the i-th eigenvector is classified into the nearest cluster, where

1 ≤ i ≤ m and 1 ≤ j ≤ k .

Step 7: Update the clustering centers. k clustering centers

are recalculated by (6), which are served as the new clustering

centers.

Step 8: Determine whether the termination conditions have

been met. At first, the total mean square error MSE between

all eigenvectors and their corresponding clustering centers

is calculated by (7). Then, determine whether MSE is less

than or equal to the convergence threshold or the maximum

number of iterations has reached, if yes, a rolling bearing fault

diagnosis model is obtained; if not, go to Step 6.

D. PROPOSED SPARK-BASED PARALLEL ACO-K-MEANS

CLUSTERING ALGORITHM

In order to efficiently and accurately perform clustering

analysis on the massive eigenvectors of rolling bearing,

a Spark-based parallel ACO-K-Means clustering algorithm

for rolling bearing fault diagnosis is proposed. Fig. 5 presents

the flowchart of the proposed Spark-based parallel ACO-

K-Means clustering algorithm, which mainly includes the

following steps.

Step 1: Read the eigenvectors of rolling bearing to create an

RDD. The training set withm eigenvectors is read fromHDFS

to create an RDD eigenvectorRDD containing n partitions,

each RDD partition contains m/n eigenvectors, and each

worker node will handle multiple RDD partitions.

Step 2: Randomly select the initial clustering centers.

k eigenvectors are randomly selected from eigenvectorRDD

as the initial clustering centers M = {µ1, µ2, . . . , µk},

which are broadcasted from the master node to each worker

node.

Step 3: Calculate the transition probability in parallel.

For the s-th RDD partition = {E(s−1)m/n+1,E(s−1)m/n+2, . . . ,

Es∗m/n} of eigenvectorRDD, the transition probability Piij
from the i-th eigenvector E(s−1)m/n+i to the j-th initial clus-

tering center µj for the i-th ant is calculated by (1), and

the i-th ant selects the t-th initial clustering center as an

access point V∀t∈[1,k] according to the maximum transition

probability Piit = max(Pii1,P
i
i2, . . . ,P

i
ik ), where 1 ≤ s ≤ n,

1 ≤ i ≤ m/n, 1 ≤ j ≤ k , and 1 ≤ t ≤ k . An eigenvector

and its corresponding access point are regarded as a value

and a key respectively, and a key-value pair RDD pathRDD is

obtained.

Step 4: Update the initial clustering centers in parallel.

For the s-th RDD partition = {< V∀t∈[1,k],E(s−1)m/n+1 >,

< V∀t∈[1,k], E(s−1)m/n+2 >, . . . , < V∀t∈[1,k],Es∗m/n >}

of pathRDD, all eigenvectors of the s-th RDD partition are

divided into k groups according to different access points,

and the average value Ēsj of all eigenvectors in the j-th group

is calculated by (6), where 1 ≤ s ≤ n and 1 ≤ j ≤ k .

k average values of each RDD partition of pathRDD are

gathered from each worker node to the master node, and µj

= 1
n

∑n
s=1 Ēsj(1 ≤ j ≤ k) is used as the j-th new initial

clustering center, and k updated initial clustering centers are

broadcasted from the master node to each worker node.

Step 5: Determine whether the initial clustering centers

have converged. Firstly, the mean square errorMSEs between

all eigenvectors of the s-th RDD partition of pathRDD and

their corresponding initial clustering centers is calculated by

(7), where 1 ≤ s ≤ n. Secondly, the mean square error

obtained from each RDD partition is gathered from each

worker node to the master node, and the total mean square

error MSE = 1
n

∑n
s=1MSEs is obtained. Finally, determine

whetherMSE is less than or equal to the convergence thresh-

old, if yes, the global optimal initial clustering centers are

output and go to Step 6; if not, go to Step 3.

Step 6: Classify each eigenvector into the nearest cluster

in parallel. For the s-th RDD partition of eigenvectorRDD,

the weighted Euclidean distance between each eigenvec-

tor and each clustering center is calculated by (10), and

each eigenvector is classified into the nearest cluster, where

1 ≤ s ≤ n. An eigenvector and the centroid of its correspond-

ing nearest cluster are regarded as a value and a key respec-

tively, and a key-value pair RDD clusterRDD is obtained.

Step 7: Update the clustering centers in parallel. For

the s-th RDD partition = {< µ∀j∈[1,k],E(s−1)m/n+1 >,

< µ∀j∈[1,k], E(s−1)m/n+2 >, . . . , < µ∀j∈[1,k],Es∗m/n >} of

clusterRDD, the centroids {µs1, µs2, . . . , µsk} of k clusters

of the s-th RDD partition are recalculated by (6), where 1 ≤

s ≤ n. The centroids of k clusters of each RDD partition

of clusterRDD are gathered from each worker node to the

master node, µj =
1
n

∑n
s=1 µsj(1 ≤ j ≤ k) is used as the

j-th new clustering center, and k updated clustering centers

are broadcasted from the master node to each worker node.

Step 8: Determine whether the clustering centers have

converged or the maximum number of iterations has reached.

Firstly, the mean square errorMSEs between all eigenvectors

of the s-th RDD partition of clusterRDD and their corre-

sponding clustering centers is calculated by (7). Secondly,

the mean square error obtained from each RDD partition is

gathered from each worker node to the master node, and the

total mean square error MSE = 1
n

∑n
s=1MSEs is obtained.

Finally, determine whether MSE is less than or equal to the

convergence threshold or the maximum number of iterations

has reached, if yes, the fault diagnosis model of rolling bear-

ing is output; if not, go to Step 6.

After a well-trained fault diagnosis model of rolling bear-

ing is obtained, the vibration data of rolling bearing can be

diagnosed practically. As shown in Fig. 3, firstly, the vibration

data of rolling bearing to be diagnosed are preprocessed

by Spark-based three-layer wavelet packet decomposition to

obtain eigenvectors, which are stored in HDFS. Secondly,

all eigenvectors are read from HDFS to create an RDD.
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FIGURE 5. Flowchart of the proposed Spark-based parallel ACO-K-Means clustering algorithm.

Thirdly, the weighted Euclidean distance between each eigen-

vector of the RDD and each clustering center provided by the

fault diagnosis model is calculated by (10) in parallel. Finally,

each eigenvector is classified into the nearest cluster, and the

fault diagnosis results are output.

IV. EXPERIMENT

A. EXPERIMENTAL SETUP

The rolling bearing dataset [32] provided by CWRU is used

to verify the effectiveness of the proposed fault diagnosis

method of rolling bearing using Spark-based parallel ACO-

K-Means clustering algorithm. This dataset contains plenty

of raw vibration data collected under different working con-

ditions, but the size of the eigenvectors obtained from the

three-layer wavelet packet decomposition for these data is

only 31.73 MB. It is difficult to make an effective evaluation

of the proposed fault diagnosis method for too little data, thus

the sliding window method [35] is adopted to enhance the

original vibration data, where the size and the offset of sliding

window are set to 4000 and 1 respectively. Three different size

of datasets (i.e., DataSet A, DataSet B, and DataSet C) are

obtained from the three-layer wavelet packet decomposition

for the enhanced vibration data of rolling bearing, as shown

in Table 3. Each dataset contains normal state data, ball fault

data, inner race fault data, and outer race fault data.

The experimental platform is a Spark cluster, which con-

sists of one master node and eight worker nodes, and whose

cluster resource manager is Spark’s own standalone cluster

manager. The hardware environment and software environ-

ment of this experimental platform are presented in Table 4
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TABLE 3. Description of the rolling bearing dataset.

TABLE 4. Hardware environment of the experimental platform.

TABLE 5. Software environment of the experimental platform.

TABLE 6. Parameter settings of the Spark cluster.

and Table 5 respectively, and the parameter settings of the

Spark cluster are listed in Table 6.

In the training of the proposed fault diagnosis model of

rolling bearing, the parameter settings of ACO-K-Means

clustering algorithm are listed in Table 7. Since the vibra-

tion data of rolling bearing include normal state data, ball

fault data, inner race fault data, and outer race fault data,

the number of clusters is set to 4. If the number of run-

ning states of rolling bearing contained in the dataset is

known, the number of clusters is determined by the number

of running states of rolling bearing. If the number of running

states of rolling bearing contained in the dataset is unknown,

the number of clusters can be dynamically determined by

elbow method [36] or silhouette coefficient method [37]. The

pheromone heuristic factor α indicates the relative impor-

tance of pheromone intensity, if the value of α is too large,

the random search ability of the algorithm is easily weakened.

If the value of α is too small, it is easy to fall into local opti-

mum. The expected heuristic factor β indicates the relative

importance of visibility, if the value of β is too large, it is

TABLE 7. Parameter settings of ACO-K-Means clustering algorithm.

also easy to fall into local optimum. If the value of β is too

small, it is easy to fall into pure random search, which makes

it difficult to find the global optimal solution. The pheromone

volatilization factor ρ indicates the disappearance level of

pheromone, if the value of ρ is too large, it is easy to affect the

randomness of search and the global optimality of solution.

If the value of ρ is too small, the convergence speed will be

decreased.

The parameter tuning process of ACO-K-Means clustering

algorithm is as follows. Firstly, the value ranges of three

key parameters are determined, i.e., α ∈ {1, 2, 3, 4, 5},

β ∈ {2, 3, 4, 5, 6}, and ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9}. Secondly, the fault diagnosis model is trained

and tested according to different combinations of the three

parameters, and the model training time and fault diagnosis

accuracy are observed. Finally, the combination of parame-

ters with the highest fault diagnosis accuracy and the shortest

model training time is regarded as the best combination of

parameters. The experimental results show that the best com-

bination of parameters is α = 2, β = 4, and ρ = 0.3.

In this paper, in order to accurately measure the diagnosis

accuracy, training time, and fault diagnosis time of a fault

diagnosis model, each experiment is repeated 30 times, and

the measurement results are averaged.

B. EVALUATION OF SPARK-BASED THREE-LAYER

WAVELET PACKET DECOMPOSITION APPROACH

To better evaluate the efficiency of using the proposed Spark-

based three-layer wavelet packet decomposition approach

to preprocess the massive vibration data of rolling bearing,

three different size of vibration data are preprocessed by the

proposed approach on two different Spark clusters, i.e., the

Spark cluster with a single worker node and the Spark cluster

with 8 worker nodes.

Fig. 6 presents the data preprocessing time obtained with

Spark-based three-layer wavelet packet decomposition for

three different size of vibration data on two different Spark

clusters. Compared with the Spark cluster with a single

worker node, the data preprocessing efficiency obtained by

the proposed approach on the Spark cluster with 8 worker

nodes is improved by 85.92%, 86.49%, and 86.84% for

1.59 TB, 3.34 TB, and 5.73 TB of vibration data, respec-

tively. The improvement of efficiency is mainly because more

worker nodes are used to perform the data preprocessing task

in parallel, and there is no communication overhead between
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FIGURE 6. Data preprocessing time obtained with Spark-based
three-layer wavelet packet decomposition for different size of vibration
data.

worker nodes in data preprocessing. The results demonstrate

that the proposed Spark-based three-layer wavelet packet

decomposition approach can fully utilize the computing

resources of multiple worker nodes to efficiently preprocess

the massive vibration data of rolling bearing.

C. ANALYSIS OF FAULT DIAGNOSIS ACCURACY

To better analyze the diagnosis accuracy of the proposed

fault diagnosis method of rolling bearing, the Spark-based

parallel K-Means clustering algorithm provided by Spark

MLlib [38] (Spark-K-Means) and the proposed Spark-based

parallel ACO-K-Means clustering algorithm (Spark-ACO-K-

Means) are used to train and test the fault diagnosis model

of rolling bearing on the Spark cluster with 8 worker nodes.

Moreover, in order to analyze the impact of the size of dataset

on the fault diagnosis accuracy, three different size of datasets

listed in Table 3 are used for the training and testing of

fault diagnosis model, and all eigenvectors contained in each

dataset are randomly divided into training set and test set

according to the ratio of 7:3.

Fig. 7 presents the fault diagnosis accuracies obtained with

two different fault diagnosis methods for three different size

of datasets on the Spark cluster with 8 worker nodes. It can

be seen from Fig. 7 that the proposed Spark-ACO-K-Means

achieves a satisfactory diagnosis accuracy, and the fault diag-

nosis accuracies reach up to 97.73%, 97.87%, and 97.99%

for DataSet A, DataSet B, and DataSet C, respectively. Com-

pared with Spark-K-Means, Spark-ACO-K-Means achieves

better fault diagnosis results, and the fault diagnosis accuracy

is increased by 4.92% on average.

To compare the fault diagnosis effect of Spark-K-Means

and that of Spark-ACO-K-Means more intuitively, the prin-

cipal component analysis (PCA) [39] is used to reduce the

dimensions of each clustering center and each eigenvector

contained in the fault diagnosis results from 8 to 2, and the

fault diagnosis results are visualized in 2-dimensional space.

FIGURE 7. Fault diagnosis accuracies obtained with different fault
diagnosis methods for different size of datasets.

FIGURE 8. Clustering effect of Spark-K-Means.

Figs. 8 and 9 demonstrate the clustering effects of Spark-

K-Means and Spark-ACO-K-Means, respectively. As shown

in Fig. 8, the clustering effects of normal state and inner race

fault of rolling bearing are obvious, whereas the clustering

effects of ball fault and outer race fault are not satisfactory.

This is because the eigenvectors of ball fault and that of

outer race fault are similar, and Spark-K-Means is easy to

fall into local optimum, which results in the ball fault and

outer race fault are easy to be misdiagnosed. As can be seen

from Fig. 9, compared with Spark-K-Means, Spark-ACO-K-

Means achieves better clustering effect, and especially the

clustering effects of ball fault and outer race fault are changed

obviously. This is because Spark-ACO-K-Means obtains the

global optimal initial clustering centers, and the weighted

Euclidean distance measure is utilized to improve the cal-

culation of the distance between each eigenvector and each

clustering center to enhance the clustering ability of K-Means

clustering algorithm to a certain extent. Thus, the proposed

Spark-ACO-K-Means can obtain more stable and higher fault

diagnosis accuracy.
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FIGURE 9. Clustering effect of Spark-ACO-K-Means.

As shown in Fig. 7, the size of dataset can affect the

fault diagnosis accuracy of rolling bearing, as the size of

dataset increases, the fault diagnosis accuracies obtained

using Spark-K-Means and Spark-ACO-K-Means are gradu-

ally increased respectively. For example, for Spark-ACO-K-

Means, the fault diagnosis accuracy obtained with DataSet C

is 0.26% and 0.12% higher than that obtained with DataSet

A and DataSet B, respectively. Generally speaking, the larger

the rolling bearing dataset, the more the monitoring data of

various running states of rolling bearing contained in the

dataset, and the increase of the number and diversity of train-

ing samples is helpful to train a better fault diagnosis model

of rolling bearing, which can improve the fault diagnosis

accuracy of rolling bearing.

D. ANALYSIS OF TRAINING EFFICIENCY AND DIAGNOSIS

EFFICIENCY OF FAULT DIAGNOSIS MODEL

To effectively analyze the training efficiency and diagnosis

efficiency of the fault diagnosis model built in this paper, for

DataSet A, DataSet B, and DataSet C, the proposed Spark-

ACO-K-Means is used to train the fault diagnosis model of

rolling bearing on the Spark clusters with different number

of worker nodes, and the well-trained model is used for fault

diagnosis, where 70% and 100% data of each dataset are used

formodel training and fault diagnosis respectively. In the fault

diagnosis, the reason to use all the data in each dataset is

to better evaluate the diagnosis efficiency of fault diagnosis

model for a large-scale dataset.

Tables 8 and 9 present the model training time and fault

diagnosis time obtained with different size of datasets and

different number of worker nodes respectively, where the

model training time refers to the running time of the Spark

application for the training of fault diagnosis model, and

the fault diagnosis time refers to the running time of the

Spark application for fault diagnosis. As can be seen from

Tables 8 and 9, for three different size of datasets, with the

increase of the number of worker nodes in a Spark clus-

ter, both the model training time and fault diagnosis time

TABLE 8. Model training time obtained with different size of datasets
and different number of worker nodes.

TABLE 9. Fault diagnosis time obtained with different size of datasets
and different number of worker nodes.

gradually decrease. For DataSet A, DataSet B, and DataSet

C, the training time of fault diagnosis model obtained with

8 worker nodes is 82.51%, 84.64%, and 85.87% less than

that obtained with a single worker node respectively, and the

fault diagnosis time obtained with 8 worker nodes is 86.67%,

86.83%, and 87.18% less than that obtained with a single

worker node respectively. The results demonstrate that with

the increase of the size of dataset, both the model train-

ing efficiency and fault diagnosis efficiency are gradually

improved. Therefore, the proposed fault diagnosis method

is more suitable for processing large-scale rolling bearing

datasets.

As shown in Tables 8 and 9, compared with a single worker

node, the model training time of three datasets obtained with

2, 4, 6, and 8 worker nodes are reduced by 44.80%, 71.83%,

80.68%, and 84.97% on average respectively, the fault diag-

nosis time of three datasets obtained with 2, 4, 6, and 8worker

nodes are reduced by 47.55%, 72.59%, 82.79%, and 87.00%

on average respectively. The results show that with the expan-

sion of the scale of Spark cluster, both the model training

efficiency and fault diagnosis efficiency are also gradually

improved. It is not difficult to see from Tables 8 and 9 that

with the increase of the number of worker nodes, the reduc-

tion trends of both model training time and fault diagnosis

time gradually tend to be flat. Therefore, when the proposed

fault diagnosis method is applied, the performance of both

model training and fault diagnosis can be improved by appro-

priately enlarging the scale of Spark cluster.

Seeing that the speedup and parallel efficiency are two

important indexes to evaluate the performance of parallel

processing, the speedup and parallel efficiency are used to

evaluate the performance of fault diagnosis model training in

addition to the model training time in this paper. The speedup

can be calculated by

Sn =
T

Tn
, (11)
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where Sn denotes the relative speedup obtained in the training

of fault diagnosis model by Spark-ACO-K-Means on the

Spark cluster with n worker nodes, T represents the model

training time obtained with a single worker node, and Tn
refers to the model training time obtained with n worker

nodes. Note that the speedup is obtained by comparing the

model training time when using a single worker node con-

taining 8 CPU cores and 8 worker nodes containing 64 CPU

cores both reach the same accuracy. The parallel efficiency

can be calculated by

En =
Sn

n
× 100%, (12)

where En represents the parallel efficiency obtained in the

training of fault diagnosis model by Spark-ACO-K-Means

on the Spark cluster with n worker nodes, which can reflect

the effective utilization degree of computing resources of all

worker nodes that participate in the training of fault diagnosis

model on the Spark cluster.

FIGURE 10. Speedups of fault diagnosis model training.

Fig. 10 presents the speedups obtained in the training

of fault diagnosis model with different size of datasets and

different number of worker nodes. As shown in Fig. 10, as the

number of worker nodes increases, the obtained speedup is

gradually increased. When the number of worker nodes is

increased from 1 to 8, the average speedup obtained in the

training of fault diagnosis model with three different size of

datasets increases from 1.00× to 6.43×, which shows that

Spark-ACO-K-Means has good parallelism. As can be seen

from Fig. 10, the speedup approaches linear growth, but it

does not reach its theoretical value, because the communi-

cation cost and task scheduling cost caused by the increase

of the number of worker nodes reduce the performance of

model training to a certain extent. It can also be seen from

Fig. 10 that the speedups of 5.72×, 6.5×, and 7.08× are

respectively obtained in the training of fault diagnosis model

with DataSet A, DataSet B, and DataSet C when the number

of worker nodes is 8. The results show that a higher speedup

can be obtained in the training of fault diagnosis model with

a larger dataset when the number of worker nodes is fixed.

Therefore, a larger dataset is more helpful to play the advan-

tage of parallel computing of the proposed fault diagnosis

method.

FIGURE 11. Parallel efficiency of fault diagnosis model training.

Fig. 11 shows the parallel efficiency obtained in the train-

ing of fault diagnosis model with different size of datasets

and different number of worker nodes. As shown in Fig. 11,

when the numbers of worker nodes that participate in model

training are 2, 4, 6, and 8 respectively, the average parallel

efficiency obtained in the training of fault diagnosis model

with three different size of datasets reaches up to 89.03%,

86.76%, 83.96%, and 80.43% respectively, which shows that

Spark-ACO-K-Means has good parallel efficiency, that is,

the computing resources of the Spark cluster are effectively

utilized. However, the increase of the number of worker

nodes will affect the parallel efficiency to a certain extent,

because the additional overhead brought by the expansion

of the scale of Spark cluster partly offsets the improvement

of computing performance brought by it. Also can be seen

from Fig. 11, when the number of worker nodes is fixed,

as the size of the dataset becomes larger, the obtained par-

allel efficiency is gradually increased. For example, when

the number of worker nodes is 8, the parallel efficiency

obtained with DataSet C is 17.01% and 7.12% higher than

that obtained with DataSet A and DataSet B respectively.

Therefore, the proposed fault diagnosis method can make full

use of the computing resources of a Spark cluster to effi-

ciently process large-scale rolling bearing datasets in parallel.

To better evaluate the performance of model training

and fault diagnosis obtained using Spark-ACO-K-Means,

the serial ACO-K-Means clustering algorithm (Serial-ACO-

K-Means) is also used to train and test the fault diag-

nosis model of rolling bearing for three different size

of datasets. Serial-ACO-K-Means is performed on one

CPU core of a single node, and Spark-ACO-K-Means is

carried out on the Spark cluster with 8 worker nodes.

Fig. 12 shows the speedups of Spark-ACO-K-Means over
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FIGURE 12. Speedups of Spark-ACO-K-Means over Serial-ACO-K-Means.

Serial-ACO-K-Means for model training and fault diagnosis

on three different size of datasets, where the training speedup

is obtained by comparing the model training time when

Serial-ACO-K-Means and Spark-ACO-K-Means both reach

the same accuracy. As shown in Fig. 12, the performance

of Spark-ACO-K-Means is greatly improved than that of

Serial-ACO-K-Means. For example, compared with Serial-

ACO-K-Means, Spark-ACO-K-Means obtains the speedups

of 39.25× and 51.71× in model training and fault diagnosis

for DataSet C, respectively. This is mainly because Spark-

ACO-K-Means can efficiently utilize many CPU cores of

multiple worker nodes to perform model training and fault

diagnosis in parallel on the Spark cluster for large-scale

rolling bearing datasets. Moreover, when Serial-ACO-K-

Means is used to perform model training and fault diagnosis

for large-scale rolling bearing datasets, due to the limited

memory space of a single node, a part of data will be spilled

onto disk, which will greatly affect the performance of model

training and fault diagnosis.

E. ANALYSIS OF THE IMPACT OF ACO AND WEIGHTED

EUCLIDEAN DISTANCE MEASURE ON PERFORMANCE

To analyze the impact of ACO and weighted Euclidean dis-

tance measure adopted in Spark-ACO-K-Means on the model

training efficiency and fault diagnosis efficiency, Spark-K-

Means and Spark-ACO-K-Means are used to train the fault

diagnosis model of rolling bearing on the Spark cluster with

8 worker nodes for three different size of datasets, and the

well-trained model is used for fault diagnosis.

Fig. 13 presents the model training time of Spark-K-Means

and Spark-ACO-K-Means for three different size of datasets.

Themodel training time of Spark-ACO-K-Means is increased

by 27.69% on average than that of Spark-K-Means for three

different size of datasets. The initial clustering centers are

randomly selected in Spark-K-Means, whereas the global

optimal initial clustering centers are selected by ACO algo-

rithm in Spark-ACO-K-Means, which is the main reason for

FIGURE 13. Model training time of Spark-K-Means and
Spark-ACO-K-Means.

FIGURE 14. Fault diagnosis time of Spark-K-Means and
Spark-ACO-K-Means.

the increase of model training time of Spark-ACO-K-Means.

Although a lot of time is spent on optimizing the selection of

initial clustering centers in Spark-ACO-K-Means, after get-

ting the global optimal initial clustering centers, the clustering

centers of Spark-ACO-K-Means can converge in a shorter

time compared with Spark-K-Means. In addition, compared

with the Euclidean distance measure adopted in Spark-K-

Means, the weighted Euclidean distance measure adopted in

Spark-ACO-K-Means also increases the model training time

to a certain extent.

Fig. 14 presents the fault diagnosis time of Spark-K-Means

and Spark-ACO-K-Means for three different size of datasets.

The fault diagnosis time of Spark-ACO-K-Means is increased

by 4.62% on average than that of Spark-K-Means for three

different size of datasets. In the fault diagnosis of rolling

bearing, the distance between each eigenvector and each

clustering center only needs to be calculated once, and all the

clustering centers are provided by the trained fault diagnosis

model of rolling bearing. Therefore, the reason for the slight
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increase of fault diagnosis time of Spark-ACO-K-Means is

that the computational cost of weighted Euclidean distance

measure is slightly higher than that of Euclidean distance

measure. In addition, ACO algorithm only participates in the

training of fault diagnosis model, thus it is not related to the

fault diagnosis efficiency of Spark-ACO-K-Means.

In a word, ACO algorithm only affects the model training

time, and the weighted Euclidean distance measure has a

little impact on the model training time and fault diagno-

sis time, but they can improve the fault diagnosis accuracy

(see Section IV-C).

F. COMPARISON WITH OTHER SWARM INTELLIGENCE

OPTIMIZATION ALGORITHMS

To better evaluate the effectiveness of the proposed ACO-K-

Means clustering algorithm, the other two different swarm

intelligence optimization algorithms including GA [21] and

PSO algorithm [22] are also used for optimizing the selec-

tion of initial clustering centers of K-Means. Similar to

Spark-ACO-K-Means, Spark-based parallel GA-K-Means

clustering algorithm (Spark-GA-K-Means) and Spark-based

parallel PSO-K-Means clustering algorithm (Spark-PSO-

K-Means) are implemented, and the weighted Euclidean

distance measure is also used in Spark-GA-K-Means and

Spark-PSO-K-Means. In this experiment, Spark-GA-K-

Means, Spark-PSO-K-Means, and Spark-ACO-K-Means are

used to train and test the fault diagnosis model of rolling

bearing on the Spark cluster with 8 worker nodes for DataSet

C. The parameter settings of GA and PSO algorithm are as

follows.

• GA: The population size is set to 100, the crossover

probability is set to 0.5, the mutation probability is set

to 0.025, and the maximum number of iterations is set

to 600.

• PSO: The swarm size is set to 100, the inertia weight is

set to 0.6, all the acceleration constants are set to 2.0,

and the maximum number of iterations is set to 600.

Table 10 gives the fault diagnosis accuracies, model train-

ing time, and fault diagnosis time of fault diagnosis meth-

ods optimized by different swarm intelligence optimization

algorithms. As can be seen from Table 10, the fault diagnosis

accuracy of Spark-ACO-K-Means is 0.11% lower than that

of Spark-GA-K-Means and is 0.32% higher than that of

Spark-PSO-K-Means. For Spark-GA-K-Means, the method

of searching for the optimal solution based on probability is

adopted in GA, which can search the slightly better initial

clustering centers compared with ACO algorithm. For Spark-

PSO-K-Means, with the increase of the number of iterations

of PSO algorithm, the velocities of a very few particles may

become low or zero before searching for the global optimal

initial clustering centers, which results in these particles have

not enough power to jump out of the local optimum.

It can be seen from Table 10 that the model training

time of Spark-ACO-K-Means is 28.88% and 12.08% lower

than that of Spark-GA-K-Means and Spark-PSO-K-Means

respectively. The reasons for the increases of model training

TABLE 10. Comparison of fault diagnosis methods optimized by different
swarm intelligence optimization algorithms.

time of Spark-GA-K-Means and Spark-PSO-K-Means are

that GA and PSO algorithm respectively need to spend more

time to obtain the global optimal initial clustering centers

than ACO algorithm. It can also be seen from Table 10 that

the fault diagnosis time of the three fault diagnosis methods

are almost the same. This is because the difference of fault

diagnosis time among Spark-GA-K-Means, Spark-PSO-K-

Means, and Spark-ACO-K-Means depends on the calculation

method of the distance between the eigenvector and the clus-

tering center, and it is not related to GA, PSO algorithm, and

ACO algorithm used in the training of fault diagnosis model.

The reason why the fault diagnosis time of Spark-GA-K-

Means, Spark-PSO-K-Means, and Spark-ACO-K-Means are

almost the same is that they all use the weighted Euclidean

distance measure in fault diagnosis.

G. COMPARISON WITH OTHER FAULT

DIAGNOSIS METHODS

To better evaluate the effectiveness of the proposed fault diag-

nosis method of rolling bearing, the other widely used clas-

sification algorithms including RF [31], AlexNet [40], and

ResNet [41] are also used to build the fault diagnosis model

of rolling bearing. Similar to Spark-ACO-K-Means, Spark-

based parallel AlexNet (Spark-AlexNet) and Spark-based

parallel ResNet (Spark-ResNet) are implemented, whereas

Spark-based parallel RF (Spark-RF) is provided by Spark

MLlib [38]. In this experiment, Spark-RF, Spark-AlexNet,

Spark-ResNet, and Spark-ACO-K-Means are used to train

and test the fault diagnosis model of rolling bearing on the

Spark cluster with 8 worker nodes. For Spark-RF and Spark-

ACO-K-Means, all 119.80 GB of eigenvectors contained in

DataSet C are randomly divided into training set and test

set according to the ratio of 7:3. For Spark-AlexNet and

Spark-ResNet, the 119.80 GB of enhanced vibration data

of rolling bearing are transformed into 2-D gray images

of 64 pixels× 64 pixels, and the dataset composed of gray

images is also randomly divided into the training set and test

set according to the ratio of 7:3. In the training of fault diagno-

sis model, the number of sub-trees of Spark-RF is set to 100,

and the settings of network structure and hyper-parameters

of Spark-AlexNet and that of Spark-ResNet can be found

in [40] and [41] respectively, where the batch size is set to

1024 and the model training is terminated after 30 epochs.

Considering the model training efficiency and fault diagno-

sis efficiency of Spark-ResNet, ResNet-18 which has fewer

network layers than ResNet-50 is adopted in Spark-ResNet.
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TABLE 11. Comparison of different fault diagnosis methods.

Table 11 shows the diagnosis accuracies, training time

and diagnosis time of fault diagnosis models obtained

using four different fault diagnosis methods, where the

fault diagnosis time is the time it takes to diagnose all

the data in the dataset using the trained model. As shown

in Table 11, the fault diagnosis accuracy of Spark-ACO-

K-Means is 0.33%, 1.86%, and 1.94% lower than that of

Spark-RF, Spark-AlexNet, and Spark-ResNet, respectively.

However, the model training speed of Spark-ACO-K-Means

is 3.58×, 17.51×, and 47.94× faster than that of Spark-

RF, Spark-AlexNet, and Spark-ResNet respectively, and the

fault diagnosis speed of Spark-ACO-K-Means is 30.57×,

50.57×, and 82.30× faster than that of Spark-RF, Spark-

AlexNet, and Spark-ResNet respectively. Compared with

Spark-RF, Spark-AlexNet, and Spark-ResNet, the proposed

Spark-ACO-K-Means has lower computational complexity,

and therefore it can get higher model training efficiency and

fault diagnosis efficiency. Besides, before the fault diagno-

sis model is to be trained, Spark-RF, Spark-AlexNet, and

Spark-ResNet all need considerable time to label the dataset,

whereas Spark-ACO-K-Means does not require labeling the

dataset. Thus, the proposed fault diagnosis method can not

only efficiently process large-scale rolling bearing datasets

but also achieve a satisfactory fault diagnosis accuracy.

V. CONCLUSION

Facing the massive running-state monitoring data of rolling

bearing, a fault diagnosis method of rolling bearing using

Spark-based parallel ACO-K-Means clustering algorithm is

proposed to achieve efficient and accurate fault diagnosis

of rolling bearing. Spark-based three-layer wavelet packet

decomposition can efficiently extract eigenvectors from the

massive running-state monitoring data of rolling bearing.

ACO-K-Means clustering algorithm can not only obtain the

global optimal initial clustering centers of K-Means from all

eigenvectors, but also optimize the calculation method of dis-

tance between the eigenvector and the clustering center using

the weighted Euclidean distance measure, which improves

the fault diagnosis accuracy. By parallelizing ACO-K-Means

clustering algorithm on the Spark platform, the large-scale

eigenvectors of rolling bearing can be processed in parallel

with multiple worker nodes, which effectively improves the

training efficiency and fault diagnosis efficiency of fault diag-

nosis model of rolling bearing in the big data environment.

On the Spark clusters with different number of worker nodes,

different size of datasets are used to verify the diagnosis accu-

racy, model training efficiency, and fault diagnosis efficiency

of the proposed method. The results show that the proposed

method can fully utilize the computing resources of a Spark

cluster to achieve efficient and accurate fault diagnosis for a

large-scale rolling bearing dataset. Facing a rolling bearing

dataset containing 119.80 GB of eigenvectors, the model

training time and fault diagnosis time obtained using the

proposed method on the Spark cluster with 8 worker nodes

are 85.87% and 87.18% less than that obtained using the

proposed method on the Spark cluster with a single worker

node respectively, and the fault diagnosis accuracy obtained

using the proposedmethod on the Spark cluster with 8 worker

nodes reaches up to 97.99%.

In the practical production, the running-state monitoring

data of rolling bearing become more and more and contain

a variety of fault information. In the next step, an improved

clustering algorithm will be developed to further improve the

fault diagnosis accuracy, model training efficiency and fault

diagnosis efficiency on the GPU-accelerated Spark platform.

REFERENCES

[1] R. Liu, B. Yang, E. Zio, and X. Chen, ‘‘Artificial intelligence for fault

diagnosis of rotating machinery: A review,’’ Mech. Syst. Signal Process.,

vol. 108, pp. 33–47, Aug. 2018.

[2] Y. Chen, T. Zhang, W. Zhao, Z. Luo, and K. Sun, ‘‘Fault diagnosis of

rolling bearing using multiscale amplitude-aware permutation entropy and

random forest,’’ Algorithms, vol. 12, no. 9, p. 184, Sep. 2019.

[3] D. K. Appana, M. R. Islam, and J.-M. Kim, ‘‘Reliable fault diagnosis of

bearings using distance and density similarity on an enhanced k-NN,’’ in

Proc. 3rd Australas. Conf. Artif. Life Comput. Intell. (ACALCI), Jan. 2017,

pp. 193–203.

[4] X. Yan and M. Jia, ‘‘A novel optimized SVM classification algorithm

with multi-domain feature and its application to fault diagnosis of rolling

bearing,’’ Neurocomputing, vol. 313, pp. 47–64, Nov. 2018.

[5] L. Wan, H. Li, Y. Chen, and C. Li, ‘‘Rolling bearing fault prediction

method based onQPSO-BP neural network andDempster–Shafer evidence

theory,’’ Energies, vol. 13, no. 5, p. 1094, Mar. 2020.

[6] L. Wan, Y. Chen, H. Li, and C. Li, ‘‘Rolling-element bearing fault diag-

nosis using improved LeNet-5 network,’’ Sensors, vol. 20, no. 6, p. 1693,

Mar. 2020.

[7] L.Wen, X. Li, L. Gao, andY. Zhang, ‘‘A new convolutional neural network-

based data-driven fault diagnosis method,’’ IEEE Trans. Ind. Electron.,

vol. 65, no. 7, pp. 5990–5998, Jul. 2018.

[8] J. Wang, Z. Mo, H. Zhang, and Q. Miao, ‘‘A deep learning method for

bearing fault diagnosis based on time-frequency image,’’ IEEE Access,

vol. 7, pp. 42373–42383, 2019.

[9] L. Wen, X. Li, and L. Gao, ‘‘A transfer convolutional neural network

for fault diagnosis based on ResNet-50,’’ Neural Comput. Appl., vol. 32,

no. 10, pp. 6111–6124, May 2020.

[10] H. Jiang, X. Li, H. Shao, andK. Zhao, ‘‘Intelligent fault diagnosis of rolling

bearings using an improved deep recurrent neural network,’’ Meas. Sci.

Technol., vol. 29, no. 6, Jun. 2018, Art. no. 065107.

[11] W. Zhang, X. Li, and Q. Ding, ‘‘Deep residual learning-based fault diag-

nosis method for rotating machinery,’’ ISA Trans., vol. 95, pp. 295–305,

Dec. 2019.

[12] H. Shao, H. Jiang, H. Zhao, and F. Wang, ‘‘A novel deep autoencoder

feature learning method for rotating machinery fault diagnosis,’’ Mech.

Syst. Signal Process., vol. 95, pp. 187–204, Oct. 2017.

[13] J. Sun, C. Yan, and J. Wen, ‘‘Intelligent bearing fault diagnosis method

combining compressed data acquisition and deep learning,’’ IEEE Trans.

Instrum. Meas., vol. 67, no. 1, pp. 185–195, Jan. 2018.

[14] L. Bai, C. Zhu, Z. Ye, and M. Hui, ‘‘Rolling bearings fault diagnosis

method based on EWT approximate entropy and FCM clustering,’’ in

Proc. 4th Int. Conf. Electr. Inf. Technol. Rail Trans. (EITRT), Oct. 2019,

pp. 67–78.

[15] R. Zeng, S. Zhang, R. Zeng, H. Shen, and L. Zhang, ‘‘A method of fault

detection on diesel engine based on EMD-fractal dimension and fuzzy

C-mean clustering algorithm,’’ in Proc. 29th Chin. Control Decis. Conf.

(CCDC), May 2017, pp. 7679–7683.

VOLUME 9, 2021 28767



L. Wan et al.: Novel Bearing Fault Diagnosis Method Using Spark-Based Parallel ACO-K-Means Clustering Algorithm

[16] Y. Hu, S. Zhang, A. Jiang, L. Zhang, W. Jiang, and J. Li, ‘‘A new method

of wind turbine bearing fault diagnosis based on multi-masking empirical

mode decomposition and fuzzy C-means clustering,’’ Chin. J. Mech. Eng.,

vol. 32, no. 1, p. 46, Dec. 2019.

[17] A. R. Ramos, R. D. García, J. L. V. Galdeano, and O. L. Santiago, ‘‘Fault

diagnosis in a steam generator applying fuzzy clustering techniques,’’ in

Soft Computing for Sustainability Science. Cham, Switzerland: Springer,

2017, pp. 217–234.

[18] S. Liu, L. Dong, X. Liao, X. Cao, and X. Wang, ‘‘Photovoltaic array fault

diagnosis based on Gaussian kernel fuzzy C-means clustering algorithm,’’

Sensors, vol. 19, no. 7, p. 1520, Mar. 2019.

[19] Z. Shi, W. Song, and S. Taheri, ‘‘Improved LMD, permutation entropy and

optimized K-means to fault diagnosis for roller bearings,’’Entropy, vol. 18,

no. 3, p. 70, Feb. 2016.

[20] X. Zhang, X. Ni, J. Zhao, F. Sun, and Z. Du, ‘‘Rolling bearing fault

diagnosis using modified K-means cluster analysis,’’ Vibroeng. Procedia,

vol. 10, pp. 155–160, Dec. 2016.

[21] S. Mjahed, S. El Hadaj, K. Bouzaachane, and S. Raghay, ‘‘Engine fault

signals diagnosis using genetic algorithm and K-means based clustering,’’

in Proc. Int. Conf. Learn. Optim. Algorithms, Theory Appl. (LOPAL),

May 2018, pp. 1–6.

[22] S. Mjahed, S. El Hadaj, K. Bouzaachane, and S. Raghay, ‘‘Improved PSO

based K-means clustering applied to fault signals diagnosis,’’ in Proc. Int.

Conf. Control, Automat. Diagnosis (ICCAD), Mar. 2018, pp. 1–6.

[23] Y. Xu, Y. Sun, J. Wan, X. Liu, and Z. Song, ‘‘Industrial big data for

fault diagnosis: Taxonomy, review, and applications,’’ IEEE Access, vol. 5,

pp. 17368–17380, 2017.

[24] H. Miao, H. Zhang, M. Chen, B. Qi, and J. Li, ‘‘Two-level fault diagnosis

of SF6 electrical equipment based on big data analysis,’’ Big Data Cognit.

Comput., vol. 3, no. 1, p. 4, Jan. 2019.

[25] M. B. Imani, M. Heydarzadeh, L. Khan, and M. Nourani, ‘‘A scalable

spark-based fault diagnosis platform for gearbox fault diagnosis in wind

farms,’’ in Proc. IEEE Int. Conf. Inf. Reuse Integr. (IRI), Aug. 2017,

pp. 100–107.

[26] W. Yu, T. Dillon, F. Mostafa, W. Rahayu, and Y. Liu, ‘‘A global manufac-

turing big data ecosystem for fault detection in predictive maintenance,’’

IEEE Trans. Ind. Informat., vol. 16, no. 1, pp. 183–192, Jan. 2020.

[27] M. Dorigo, M. Birattari, and T. Stutzle, ‘‘Ant colony optimization,’’ IEEE

Comput. Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov. 2006.

[28] S. Na, L. Xumin, andG.Yong, ‘‘Research on k-means clustering algorithm:

An improved k-means clustering algorithm,’’ in Proc. 3rd Int. Symp. Intell.

Inf. Technol. Secur. Informat., Apr. 2010, pp. 63–67.

[29] S. Tang, B. He, C. Yu, Y. Li, and K. Li, ‘‘A survey on spark ecosys-

tem: Big data processing infrastructure, machine learning, and applica-

tions,’’ IEEE Trans. Knowl. Data Eng., early access, Feb. 24, 2020, doi:

10.1109/tkde.2020.2975652.

[30] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,

R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,

O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, ‘‘Apache Hadoop

YARN: Yet another resource negotiator,’’ in Proc. 4th Annu. Symp. Cloud

Comput., Oct. 2013, pp. 1–16.

[31] Z. Wang, Q. Zhang, J. Xiong, M. Xiao, G. Sun, and J. He, ‘‘Fault diagnosis

of a rolling bearing using wavelet packet denoising and random forests,’’

IEEE Sensors J., vol. 17, no. 17, pp. 5581–5588, Sep. 2017.

[32] CWRU Bearing Data Center. CWRU Rolling Bearing Dataset.

Accessed: Jan. 10, 2020. [Online]. Available: http://csegroups.case.edu/

bearingdatacenter/home

[33] T. Wu, X. Chen, L. Xie, and Z. Qiu, ‘‘An optimized K-means clus-

tering algorithm based on BC-QPSO for remote sensing image,’’ in

Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2017,

pp. 4766–4769.

[34] G. Zhang, C. Zhang, and H. Zhang, ‘‘Improved K-means algorithm

based on density canopy,’’ Knowl.-Based Syst., vol. 145, pp. 289–297,

Apr. 2018.

[35] U. Yun, G. Lee, and E. Yoon, ‘‘Advanced approach of slidingwindow based

erasable pattern mining with list structure of industrial fields,’’ Inf. Sci.,

vol. 494, pp. 37–59, Aug. 2019.

[36] M. Syakur, B. Khotimah, E. Rochman, and B. Satoto, ‘‘Integration

K-means clustering method and elbow method for identification of the

best customer profile cluster,’’ IOP Conf. Ser., Mater. Sci. Eng., vol. 336,

pp. 12–17, Apr. 2018.

[37] D.-T. Dinh, T. Fujinami, andV.-N.Huynh, ‘‘Estimating the optimal number

of clusters in categorical data clustering by silhouette coefficient,’’ in Proc.

Int. Symp. Knowl. Syst. Sci. (KSS), Nov. 2019, pp. 1–17.

[38] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,

J. Freeman, T. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin,

R. Zadeh, M. Zaharia, and A. Talwalkar, ‘‘MLlib: Machine learning in

Apache spark,’’ J. Mach. Learn. Res., vol. 17, no. 1, pp. 1235–1241, 2016.

[39] S. Mishra, U. Sarkar, S. Taraphder, S. Datta, D. Swain, R. Saikhom,

S. Panda, and M. Laishram, ‘‘Multivariate statistical data analysis-

principal component analysis (PCA),’’ Int. J. Livestock Res., vol. 7, no. 5,

pp. 60–78, 2017.

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification

with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,

pp. 84–90, May 2017.

[41] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image

recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),

Jun. 2016, pp. 770–778.

LANJUN WAN was born in Hunan, China,

in 1982. He received the B.S. and M.S. degrees

in computer science and technology from the

Hunan University of Technology, Zhuzhou, China,

in 2005 and 2009 respectively, and the Ph.D.

degree in circuits and systems fromHunan Univer-

sity, Changsha, China, in 2016. He is currently an

Assistant Professor with the School of Computer

Science, Hunan University of Technology. He has

published many research articles in international

conferences and journals, such as JPDC, CCPE, Parallel Computing, and

Sensors. His research interests include industrial big data analysis, industrial

equipment fault diagnosis, high-performance computing, and parallel com-

puting. He serves as a Reviewer for the JPDC and CCPE.

GEN ZHANG was born in Anhui, China, in 1995.

He received the B.S. degree in network engineer-

ing from West Anhui University, Luan, China,

in 2019. He is currently pursuing the M.S. degree

in computer science and technology with the

Hunan University of Technology, Zhuzhou, China.

His research interests include industrial big data

analysis and industrial equipment fault diagnosis.

HONGYANG LI was born in Heilongjiang, China,
in 1995. He received the B.S. degree in electronic

science and technology from the Tianjin Univer-

sity of Technology, Tianjin, China, in 2017. He is

currently pursuing the M.S. degree in computer

science and technology with the Hunan Univer-

sity of Technology, Zhuzhou, China. His research

interests include industrial big data analysis and

industrial equipment fault diagnosis.

CHANGYUN LI was born in Hunan, China,

in 1972. He received the Ph.D. degree in computer

science and technology from Zhejiang University,

Hangzhou, China, in 2007. He is currently a Full

Professor of computer science and the Dean of

the Graduate School, Hunan University of Tech-

nology, Zhuzhou, China. He has published many

research articles in international conferences and

journals, such as JICT, JSW, and JCP. His major

research interests include industrial big data anal-

ysis, industrial equipment fault diagnosis, intelligent information percep-

tion and processing technology, the Internet of Things, and software

methodology.

28768 VOLUME 9, 2021

http://dx.doi.org/10.1109/tkde.2020.2975652

