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Abstract

Identification of potential viral-host protein interactions is a vital and useful approach towards development of new drugs
targeting those interactions. In recent days, computational tools are being utilized for predicting viral-host interactions.
Recently a database containing records of experimentally validated interactions between a set of HIV-1 proteins and a set of
human proteins has been published. The problem of predicting new interactions based on this database is usually posed as
a classification problem. However, posing the problem as a classification one suffers from the lack of biologically validated
negative interactions. Therefore it will be beneficial to use the existing database for predicting new viral-host interactions
without the need of negative samples. Motivated by this, in this article, the HIV-1–human protein interaction database has
been analyzed using association rule mining. The main objective is to identify a set of association rules both among the HIV-
1 proteins and among the human proteins, and use these rules for predicting new interactions. In this regard, a novel
association rule mining technique based on biclustering has been proposed for discovering frequent closed itemsets
followed by the association rules from the adjacency matrix of the HIV-1–human interaction network. Novel HIV-1–human
interactions have been predicted based on the discovered association rules and tested for biological significance. For
validation of the predicted new interactions, gene ontology-based and pathway-based studies have been performed. These
studies show that the human proteins which are predicted to interact with a particular viral protein share many common
biological activities. Moreover, literature survey has been used for validation purpose to identify some predicted interactions
that are already validated experimentally but not present in the database. Comparison with other prediction methods is also
discussed.
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Introduction

Interactions between proteins are important biochemical

reactions which determine different biological processes. Analysis

of the regulation between viral and host proteins in different

organisms is an important step to uncover the underlying

mechanism of various viral diseases. Human immunodeficiency

virus (HIV) is a lentivirus (a member of the retrovirus family with

long incubation period) that can lead to acquired immunodefi-

ciency syndrome (AIDS), a condition in humans in which the

immune system begins to fail, leading to life-threatening infections

[1]. HIV-1 is a species of the HIV virus that relies on human host

cell proteins in virtually every phase of its life cycle. One of the

main goals in research of Protein-Protein Interaction (PPI) is to

predict possible viral-host interactions. This is specifically aimed at

assisting drug developers targeting protein interactions for the

development of specially designed small molecules to inhibit

potential HIV-1–human PPIs. Targeting protein-protein interac-

tions has relatively recently been established to be a promising

alternative to the conventional approach to drug design [2,3].

There are several computational approaches for predicting

PPIs [4]. In [5], different data sources have been combined

using Bayes classifier for predicting PPIs in yeast. Different

classification methods have been compared in [6] and it has

been found that random forest classifier performs the best. In a

study by Yamanishi et al., new protein interactions have been

predicted using a variant of kernel canonical correlation analysis

[7]. In [8], a decision tree has been constructed to predict co-

complexed protein pairs by integration of genomic and

proteomic data. Afterwards, some kernel methods have also

been described for predicting novel PPIs [9]. An approach

called Mixture-of-Feature-Experts (mixture of classifiers) is

proposed in [10] to predict the set of interacting proteins in

yeast and human cells. In this approach the features are split

into roughly homogeneous sets of feature experts (classifiers).

Each of the individual experts uses logistic regression and finally

their scores are combined using another logistic regression.

Most of the above approaches are mainly used for determining

PPIs in a single organism, such as yeast, human etc. However,

determination of PPIs across multiple organisms such as between

viral proteins and the corresponding host proteins can contribute

to the development of new therapeutic approaches and design of

drugs for these viral diseases. There are some recent computa-

tional approaches in predicting and analyzing HIV-1-human PPIs.
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Tastan et al. [11] proposed a classification model based on

random forest classifier for predicting new HIV-1-human PPIs.

The authors extended their method by integrating a semi-

supervised approach for selecting positive interactions in [12].

Doolittle et al. recently proposed a structural similarity based

approach for predicting HIV-1–human protein interactions [13].

A support vector machine classifier based approach is presented in

[14]. In a recent study by MacPherson et al. [15], an analysis of

the HIV-1–human PPI network using a biclustering method has

been done to identify significant host-cellular subsystems. A similar

approach is adapted in [16] to find immunodeficiency gateway

proteins and their involvement in microRNA regulation. In [17], a

preliminary study on association rule mining based prediction of

HIV-human PPI has been reported.

The computational methods for predicting HIV-1–human PPIs

are mainly based on designing some classifiers which need both

positive and negative samples for PPIs. Although there are several

online resources that systematically store information about

experimentally validated interacting proteins, there is no such

resource for non-interacting proteins which should be used as the

ideal negative samples. Therefore in most of the works in this area,

negative samples are prepared by taking random protein pairs

which are not found in the interaction database. This is done with

the expectation that this random protein pairs are less likely to

interact physically, which may not be true always. The

performance of the classifier highly depends on the choice of the

negative samples.

With this observation, in this article we have proposed an

approach based on association rule mining (ARM) [18] that uses

information of positive samples of experimentally validated PPIs

only [19,20]. The PPI information among HIV-1 and human

proteins are organized as a binary matrix with rows representing

the human proteins and columns representing the HIV-1 proteins

or vice-versa. Thereafter, novel association rule mining technique

based on a biclustering method has been developed and the

proposed technique is used for discovering association rules among

the viral proteins as well as human proteins. Finally these rules

have been utilized to predict some new viral-host interactions and

their biological relevance has been studied.

Results and Discussion

In this section, the procedure for mining ARs from HIV-1–

human PPI network has been described. First we describe the

preparation of the input data set. Thereafter, how to apply the

proposed algorithm on the input data set to discover highly

confident rules and how these rules are used to predict new

interactions are discussed. Finally, the results of mining ARMs

from HIV-1-human PPI network are reported and discussed.

Preparation of the Input Data Set
The HIV-1–human PPI database [19] consists of total 2534

interactions between 19 HIV-1 proteins and 1432 human proteins.

We have constructed a binary matrix of human and viral proteins,

HV of size 1432|19 (File S1), and its transpose matrix VH of

size 19|1432 (File S2). An entry of 1 in the matrices denotes the

presence of interaction between the corresponding pair of human

and HIV-1 proteins, and an entry of 0 represents the absence of

any information regarding the interaction of the corresponding

human and viral proteins. Initially it is treated as non-interaction.

The resulting binary matrices is treated as the input to the BiMax

biclustering algorithm [21].

Finding ARs from the PPI Data Set
As discussed above, the rows of the input binary matrix HV

represent the human proteins and the columns represent the viral

proteins. Here each row (human protein) has been considered as a

transaction and each column (viral protein) has been considered as

an item. Therefore, in each transaction, the items, for which the

corresponding value in the matrix is 1, are considered to be

purchased by the transaction. This means, with a human protein,

some of the viral proteins (for which corresponding entry in the

row is 1) interact. Thereafter, the proposed ARM algorithm is

applied on these transactions to find highly confident ARs. As an

example, a discovered AR may be of the form:

fVP1VP2VP3[VP4g:

Here VPis, i~1, . . . ,4, represent four HIV-1 proteins. In words,

the rule can be interpreted as follows: If the HIV-1 proteins VP1,

VP2 and VP3 interact with some human protein, the HIV-1

protein VP4 is also likely to interact with the same human protein.

Corresponding to each rule, there is an associated set of human

proteins for which the rule is true.

In a similar fashion, we also extract the ARs from the VH

matrix, where the viral proteins are in the rows and the human

proteins are in the columns. Hence from this matrix, the extracted

rules are of the following form:

fHP1HP2HP3[HP4g:

Here HPis, i~1, . . . ,4, represent four human proteins. In this

case also, there is an associated set of viral proteins for each such

rule.

Filtering extracted ARs. Here we have used a two-step

filtering process to obtain high-confident, non-redundant and most

general ARs. The two steps are as follows:

Step-1: Removing Less-confident rules. In this step, the

rules that have confidence less than the provided min conf value

are removed.

Step-2: Removing redundant rules. For removing the

redundant rules, the following filtration is adopted: Consider a

rule R1 : X[Y . We say that the rule R1 is redundant if there

exists another rule R2 : Z[Y with same consequent, and Z5X

while both R1 and R2 have confidence greater than or equal to

min conf . In this case the rule R2 is said to be more general than

rule R1. We remove the rules that are redundant.

The two steps of the filtering process are applied one by one on

the initially extracted rules to obtain high-confident, non-

redundant and most general rules for further use.

Prediction of new interactions from ARs. We have

utilized the filtered ARs to predict new viral-host interactions as

follows: Consider again the rule fVP1VP2VP3[VP4g obtained

from the HV matrix. Suppose in the frequent itemsets, the

antecedent of the rule is true for 8 human proteins

fHP1,HP2, . . . ,HP8g. Now without loss of generality, assume

that among these 8 human proteins, the consequent of the rule is

true for the first 6 human proteins fHP1,HP2, . . . ,HP6g.
Therefore the rule has a confidence of 75% (6 out of 8), which

can be thought as reasonably high. From this we can predict that

the viral protein VP4 is also likely to interact with the human

proteins HP7 and HP8 and the confidence of this prediction is

75%. Thus two new interactions are predicted (HP7<VP4 and

HP8<VP4. The same procedure can be applied on the rules

obtained among the human proteins for the VH matrix to predict

some new interactions with certain confidence levels. This way,

Biclustering for Predicting HIV-1–Human PPI
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from all the high-confident non-redundant rules, we predict some

new interactions with certain levels of confidence from both HV

and VH matrices and the union of these sets of predicted

interactions is used as the final predicted set of interactions. Fig. 1

shows the flow chart of the procedure used in this article for

predicting new interactions.

The following text describes the experimental results. Note that

we have two binary matrices in hand: HV and VH . As there are

19 HIV-1 proteins and 1432 human proteins, the sizes of the HV

and VH matrices are 1432|19 and 19|1432, respectively.

These two matrices are processed separately and finally the

predicted interactions are merged to get the final predictions.

Results on HV Matrix
As the HIV-1 proteins are in the columns of HV matrix, we

obtain the rules among HIV-1 proteins from this. Since the PPI

data set is very sparse, the minimum support value should be low

enough to obtain sufficient number of frequent closed itemsets.

After several experiments, the min sup value is set to 20 (,1.4%)

and the min conf value is set to 70%.

By applying the BiMax algorithm with the specified parameters

discussed above, we extracted 48 all-1 maximal biclusters, i.e., 48

frequent closed itemsets. From these frequent closed itemsets, 123

unique rules with single consequent are generated. Thereafter, we

apply the filters on the extracted rules. After applying the Step-1

Figure 1. Flowchart of the process of predicting new interactions.
doi:10.1371/journal.pone.0032289.g001
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and Step-2 of the filtration process, the number of rules reduces to

26 and 15, respectively. Fig. 2 shows the final set of 15 rules among

the viral proteins.

Subsequently we apply the proposed method to predict new

interactions. When the rules shown in Fig. 2 are applied on the

HV matrix, it generates a total of unique 140 new predicted

interactions with different confidence levels. As can be seen from

the Fig. 2, there are 4 different HIV-1 proteins (env_gp120 (5

rules), integrase (1 rule), Tat (8 rules) and Vif (1 rule)) in the

consequent parts of the rules, hence all the predicted interactions

involve only these HIV-1 proteins. The number of unique human

proteins involved in these interactions is 130.

Results on VH Matrix
For the VH matrix, there are large number of items (1432

human proteins) in the columns of the matrix, whereas the

number of rows of the matrix is only 19 (corresponding to 19 viral

proteins). Hence, in this case the minimum support value can be

much larger than that in case of HV matrix. Experimentally, we

set the min sup value to 5 (,26.32%) and the min conf value to

70%.

Application of BiMax algorithm with the above parameters

yields 74 all-1 maximal biclusters, which is equivalent to 74

frequent closed itemsets. Thereafter we extracted 361 unique rules

with single consequent from these frequent closed itemsets.

Subsequently, the extracted rules are filtered and the Step-1 and

Step-2 of the filtration process minimize the number of rules to 50

and 36, respectively. In Fig. 3, we have shown the final set of 36

rules among the human proteins.

Next, the proposed method is applied to predict new

interactions. The rules shown in Fig. 3 in turn predict 43 new

interactions from the VH matrix. As is evident from Fig. 3, there

are 16 different human proteins (ACTB (2 rules), ACTG1 (6 rules),

BCL2 (1 rule), BCL2L1 (1 rule), CASP3 (3 rules), CCL3 (1 rule),

CD4 (3 rules), CYCS (1 rules), HSPA5 (1 rule), IFNG (5 rules),

IL10 (1 rule), MAPK1 (4 rules), MAPK3 (1 rule), NFKB1 (1 rule),

NFKBIA (2 rules), PRKCA(3 rules)) in the consequent parts of the

rules. Therefore all the predicted interactions from VH matrix

involve these human proteins. On the other hand, the number of

unique HIV-1 proteins in these interactions is 15 (capsid,

env_gp120, env_gp160, env_gp41, Gag_Pr55, matrix, Nef,

nucleocapsid, p6, retropepsin, Rev, RT, Vif, Vpr, Vpr).

Predicted Interactions
The predicted interactions from HV matrix (140 interactions)

and VH matrix (43 interactions) are merged together by taking

union. Only three interactions have been found to be common in

both the sets (env_gp120<ACTB, env_gp120<ACTG1 and

env_gp120<BCL2L1). Hence it is evident that the predictions

from HV and VH matrices are mostly different from each other.

This indicates that both forms of the adjacency matrix are equally

important in predicting new interactions. Taking the union of the

two predicted sets, the final set of predictions containing 180

unique interactions are formed. We studied the distribution of the

confidence levels of the interactions. In this regard, Fig. 4 shows

the histogram of the distribution of the number of predicted

interactions at different confidence level. It can noted from the

figure that at confidence level 78%–80%, there are the maximum

number (40) of predicted interactions. There are also many

interactions with high confidence value (w80%).

This final set of 180 predicted interactions involves 17 unique

HIV-1 proteins (capsid, env_gp120, env_gp160, env_gp41, Tat,

integrase, Gag_Pr55, matrix, Nef, nucleocapsid, p6, retropepsin,

Rev, RT, Vif, Vpr, Vpu) and 140 human proteins. It is stated in

[20] that some HIV-1 proteins interact with multiple proteins

belonging to specific protein complex or cellular pathway, which

represent specific cellular activities. Conversely, 37% of the host

proteins in the database interacts with more than one HIV-1

protein. In the predicted set, we found that some HIV-1 proteins

interact with multiple human proteins and biological relevance

study based on gene ontology reveals that the human proteins

interacting with a single viral protein share common biological

activities and participate in common cellular pathways. Moreover,

it is also observed that in the predicted interactions, many human

proteins (14.29%) interact with more than one HIV-1 proteins

similar to the observation reported in [20].

For the purpose of illustration, the predicted bipartite network

has been shown in Fig. 5. It appears from the figure that there are

Figure 2. Final Set of 15 Association Rules among HIV-1 Proteins Generated from HV Matrix.
doi:10.1371/journal.pone.0032289.g002
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Figure 3. Final Set of 36 Association Rules among HIV-1 Proteins Generated from VH Matrix.
doi:10.1371/journal.pone.0032289.g003

Figure 4. Distribution of the number of predicted interactions at different confidence levels.
doi:10.1371/journal.pone.0032289.g004
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mainly two viral hub proteins, env_gp120 and Tat that interact

with 64 (35.56%) and 59 (32.78%) human proteins, respectively.

Interestingly, in the original interaction database it is found that

env_gp120 and Tat interact with 33% and 30% host proteins [20].

Hence these percentages are very near to those in the predicted

interaction data set. The HIV-1 protein env_gp120 is embedded

in the HIV envelop which helps the virus to attach to and fuse with

the target cell, whereas Tat mainly plays the role of increasing the

rate of transcription in the host cell. So both of them play

important role in viral life cycle and are expected to interact with

many proteins in the host cell for possible infection. The next

HIV-1 hub protein in the predicted network is Vif, which is

predicted to interact with 15 human proteins. Vif protein is known

to be responsible for disruption of antiviral activities of human cells

and expectedly interacts with many human proteins for this

purpose. The degrees of other viral proteins in the predicted

network are as follows: capsid - 3, env_gp160 - 5, env_gp41 - 4,

integrase - 6, Gag_Pr55 - 3, matrix - 2, Nef - 2, nucleocapsid - 3,

p6 - 2, retropepsin - 2, Rev - 3, RT - 2, Vpr - 3, and Vpu - 2.

Interestingly, Nef is predicted to interact with two human proteins

CYCS and HSPA5, with which, no the viral protein is found to

interact in the predicted set. The complete set of predicted

interactions is given in the additional File S3 along with the

predictions from both HV and VH matrices separately.

Biological Relevance of Predicted Interactions
In this section, we examine the properties of human proteins

that interact with each HIV-1 proteins based on gene ontology

based study. The results of these experiments are reported below.
Interactions with env_gp120. As stated above, 64 human

proteins have been predicted to interact with the viral protein

env_gp120. Here we attempt to study the biological relationships

among these 64 human proteins. First, we conducted a gene

ontology (GO) based study to find whether there are any

significant GO terms in the three categories of GO using

DAVID functional annotation tool (http://david.abcc.ncifcrf.

gov). To obtain the significant non-redundant GO terms, we

have utilized a recently developed web server REVIGO (http://

revigo.irb.hr/) [22] which takes as input a list of GO terms along

with p-values and a GO-based semantic similarity measure, and

outputs the set of non-redundant terms along with Dispensability

values for each term. Lower value of Dispensability indicates lesser

redundancy of the corresponding term [22]. We have used the

default parameter setting of REVIGO as provided in the web

server. Tables 1, 2 and 3 show the significant and non-redundant

GO terms for certain thresholds of p-value and dispensability (as

shown in the respective captions) under Biological Process,

Cellular Component and Molecular Function Categories, respec-

tively. It is evident from the tables that the group of human

proteins that are predicted to interact with env_gp120 are

biologically related and possess common biological activities. It is

interesting to note from Table 1 that 21.67% of these human

proteins are involved in biological process membrane organization.

Also Table 2 shows that many of these proteins are component of

coated membrane (20%). This is an important observation because as

stated earlier env_gp120 is embedded in the HIV envelop which

helps the virus to attach to and fuse with the target cell. In this

process it needs to interact with many membrane proteins and our

predicted human proteins seem to be largely related with

membrane activities, and there is high chance that env_gp120

interacts with these proteins. From Table 1, it can also be found

that some of these human proteins are involved in the biological

process of death (18.33%) and regulation of defense response to virus by

virus (8.33%), which are important for promoting antiviral immune

response mechanism and thereby limiting viral replication. When

env_gp120 possibly interacts with these human proteins they affect

their activities and as a result the immune response system may

fail. This indicates that interaction of env_gp120 with these human

proteins may lead to cell death.

Interactions with Tat. Tat has the second most highest

degree (59) in the predicted interactions, and thus needs special

attention. For Tat also we have conducted similar GO study and

the results are shown in Tables 4, 5, and 6. It is evident that in this

case also, the human proteins have many significant terms in each

Figure 5. The predicted bipartite network involving 17 HIV-1 proteins and 140 human proteins. HIV-1 proteins are represented by large
red circles and human proteins are represented by small blue circles. The interactions predicted from VH matrix are represented by black lines and
the interactions predicted from HV matrix are represented by green lines. Line widths are proportional to the confidence of the predictions.
doi:10.1371/journal.pone.0032289.g005
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of the three categories of GO, however, the significant terms are

sufficiently different from that in the case of env_gp120. It appears

from Table 4 that many of these human proteins are involved in

defense response, positive regulation of apoptosis and response to virus. These

are vital observations since Tat is known to vastly increase the level

of transcription of HIV dsRNA, thus allowing HIV an explosive

response once certain amount of Tat is produced. This endangers

the immune activities inside the cell. Therefore it is expected that

Tat interacts with the human proteins that are involved in immune

and defense activities to make them inactive. Moreover Tat has

been found to act as toxin producing cell death via apoptosis in

uninfected T cells, which assists in progression towards AIDS.

Furthermore, it appears from Table 6 that 9.09% proteins are

associated with the molecular function protein transporter activity,

which means these proteins may be highly involved in transporting

infection signal to different parts of a cell or between cells. Hence

the predicted human proteins interacting with Tat are quite

intuitive since they share many biological properties related to

HIV infection and progression.

Interactions with Vif. The other less-dense HIV-1 hub

protein found in the predicted interactions is Vif, the virion

infectivity factor. This protein is known to interfere with the

immune system’s defences and increases the infectivity of the HIV

particle. The 15 human proteins that are predicted to be

interacting partners of Vif are found to share many common

significant GO terms as depicted in Tables 7, 8, and 9. The

proteins are mainly involved in nuclear and protein import

activities. Also, a large number of proteins (more than 50%) are

found to be involved in regulation of apoptosis. This indicates that

these human proteins may also be in the viral infection pathway

leading to cell death through apoptosis. Interestingly, we found

that out of these 15 human proteins, 5 of them are involved in

pathways in cancer (KEGG: hsa05200) suggesting that possible

viral infection may lead to some type of cancer.

Interactions with other HIV-1 proteins. The other HIV-1

proteins have smaller degrees in the predicted network. We also

studied the relationships among the human proteins that are

predicted to interact with some common HIV-1 protein through

GO and KEGG pathway enrichment test using DAVID. The

HIV-1 protein capsid interacts with ACTG1, MAPK1 and

PRKCA. Interestingly, these three proteins interact with each

other as found in the STRING database (http://string-db.org).

Another envelop protein env_gp160 is predicted to interact with 5

human partners ACTB, ACTG1, CASP3, CCL3, and IL10.

These five partners have significant involvement in cell motion,

regulation of B-cell activation/proliferation, and regulation of T-cell

activation/proliferation. Thus these proteins are involved in humoral

and cell-mediated immune response and viral infection affects

these immune activities. The env_gp141 is predicted to interact

with BCL2, MAPK1, NFKB1 and NFKBIA, which are found to

be significantly involved in the B-cell/T-cell signaling pathway,

apoptosis and programmed cell death. Moreover all of them are

involved in the signaling pathway of prostate cancer. This is interesting

since it suggests that HIV-1 infection through env_gp41 may

indirectly cause prostate cancer. The Gag_Pr55 is predicted to

interact with CD4, IFNG, MAPK1 and all these three proteins

take part in the positive regulation of immune system process. The proteins

are also found in the T-cell receptor signaling pathway. Thus they are

responsible for the immunity of the host. The human proteins

CD4, IFNA1, MAPK1, MAPK3, SAT1, and TCEB2 are

predicted to interact with integrase. Out of these six human

proteins three (MAPK1, MAPK3 and TCEB2) are found to be in

the T-cell receptor signaling pathway and the pathway leading to renal

cell carcinoma. The human proteins IL10, NFKBIA are predicted to

interact with the viral protein matrix. Both of these human

proteins actively participate in maintenance of protein locations in cell

and regulation of transcription factor activity. The viral protein Nef is

predicted to interact with CYCS and HSPA5. Expression of Nef

Table 1. Significant non-redundant GO terms (p-valuev1E-03, Dispensabilityv0.05) under Biological Process category found in
the human proteins that are predicted to interact with HIV-1 protein env_gp120.

Sl. No. GO-id Term p-value % of Proteins Dispensability

1 GO:0007568 aging 8.91E-05 10.00 0.00

2 GO:0016192 vesicle-mediated transport 8.11E-10 28.33 0.00

3 GO:0016265 death 6.87E-04 18.33 0.00

4 GO:0050690 regulation of defense response to virus by virus 1.82E-08 8.33 0.00

5 GO:0030029 actin filament-based process 4.63E-04 11.67 0.04

6 GO:0016044 membrane organization 3.82E-08 21.67 0.04

7 GO:0006928 cell motion 7.03E-04 15.00 0.04

doi:10.1371/journal.pone.0032289.t001

Table 2. Significant non-redundant GO terms (p-valuev1E-08, Dispensabilityv0.05) under Cellular Component category found in
the human proteins that are predicted to interact with HIV-1 protein env_gp120.

Sl. No. GO-id Term p-value % of Proteins Dispensability

1 GO:0030131 clathrin adaptor complex 1.61E-19 20.00 0.00

2 GO:0031982 vesicle 3.54E-11 33.33 0.00

3 GO:0012505 endomembrane system 3.83E-09 31.67 0.00

4 GO:0048475 coated membrane 2.54E-15 20.00 0.04

doi:10.1371/journal.pone.0032289.t002

Biclustering for Predicting HIV-1–Human PPI

PLoS ONE | www.plosone.org 7 April 2012 | Volume 7 | Issue 4 | e32289



causes T-cell activation and it also promotes the survival of

infected cells by downmodulating the expression of several surface

molecules important in host immune function. Interestingly, these

two human proteins have involvement in apoptosis and programmed

cell death. The HIV-1 protein nucleocapsid is found to interact with

CASP3, IFNG and PRKCA, and importantly, these three human

proteins are significantly involved in negative regulation of cell

proliferation, positive regulation of apoptosis and programmed cell death.

Moreover they are involved in the KEGG pathway of natural killer

cell mediated cytotoxicity (hsa04650). The human proteins predicted to

interact with the HIV-1 proteins p6, retropepsin, Rev, RT, Vpr

and Vpu also share many biological activities related to immune

response, apoptosis and programmed cell death.

Evidences from Recent Literature
To establish that the predicted interactions have potentials to

exist in reality, we have extensively searched PUBMED to find

recent reports on interactions between HIV-1 and human proteins

which are not included in the interaction database considered

here. We have found some of the predicted interactions which are

experimentally validated and reported in recent literature. For

example, we have predicted the interaction between env_gp120

and CASP8 with confidence 83.33% (File S3). In [23] it has been

found that env_gp120 expression induces CASP8 activation and

apoptosis. Also our prediction between env_gp120 and CD86

(confidence 83.33%) has been supported in [24], which found that

env_gp120 infection causes upregulation of CD86. The human

protein NOS3 is also predicted to interact with env_gp120 with

confidence level 74.67% by our method. It has been shown in [25]

that env_gp120 and TNF-alpha synergistically reduce NOS3

expression in both mRNA and protein level. Two other human

proteins, SOD2 and SRC are predicted to interact with

env_gp120 with confidence levels 88.89% and 78%, respectively.

These interactions are also supported by the works in [26] and

[27], respectively. Differential regulation of SOD2 in neurons and

astroglia is affected by env_gp120 [26]. It is reported in [27] that

soluble env_gp120 activates multiple protein kinases in primary

human monocyte-derived macrophages, including the SRC family

kinase. In [28], it is established that env_gp41 peptide 6358

activates the CD74-mediated ERK/MAPK pathway and signif-

icantly enhanced HIV-1 infection. It is interesting that our

prediction includes the interaction between env_gp41 and

MAPK1 with confidence level 77.78%. We have also predicted

interaction of MAPK1 with the viral protein Gag_Pr55 with

71.43% confidence. In [29], the authors have shown that MAPK/

ERK-2 interacts with the poly-proline motif present in the capsid

region of Gag_Pr55. In [30], it is reported that HIV-1 Tat protein

enhances RANKL (TNFSF)-mediated osteoclast differentiation.

We have predicted the interaction of Tat with TNFSF with

confidence level 86.30%. These evidences establish that many of

our predicted interactions, which are not in the HIV-1–human

interaction database, have already been reported and exist in

reality. This demonstrates the utility of the proposed method.

Overlaps with Existing Predictions
We have compared our predictions with that of Tastan et al.

[11] and Doolittle et al. [13]. Tastan et al. used a random forest

classifier based technique and predicted 3372 interactions. Each

prediction has an associated interaction score. Out of these, 2084

interactions are predicted to be novel interactions (not in the

database). The interaction scores of these interactions vary from 0

to 4.11 with a mean value of 0.5284. In [13], a structural similarity

based method have been proposed for predicting protein

interactions between HIV-1 and human and a total of 884 unique

interactions are predicted. Fig. 6 gives the Venn diagram showing

the overlaps among the three prediction studies. It is evident that

the predictions from these three methods have reasonably low

overlaps. This is not quite unexpected because even large-scale

experimental protein interaction studies do not typically show high

degree of overlaps among them. Moreover, these three prediction

Table 3. Significant non-redundant GO terms (p-valuev1E-02, Dispensabilityv0.05) under Molecular Function category found in
the human proteins that are predicted to interact with HIV-1 protein env_gp120.

Sl. No. GO-id Term p-value % of Proteins Dispensability

1 GO:0008565 protein transporter activity 7.43E-08 13.33 0.00

2 GO:0008454 alpha-1,3-mannosylglycoprotein 4-beta-N-
acetylglucosaminyltransferase activity

5.27E-05 5.00 0.00

3 GO:0042802 identical protein binding 1.35E-03 16.67 0.00

doi:10.1371/journal.pone.0032289.t003

Table 4. Significant non-redundant GO terms (p-valuev1E-03, Dispensabilityv0.15) under Biological Process category found in
the human proteins that are predicted to interact with HIV-1 protein Tat.

Sl. No. GO-id Term p-value % of Proteins Dispensability

1 GO:0006897 endocytosis 2.23E-05 14.55 0.00

2 GO:0006952 defense response 6.46E-08 27.27 0.00

3 GO:0070661 leukocyte proliferation 6.71E-04 7.27 0.00

5 GO:0001775 cell activation 1.20E-04 14.55 0.03

6 GO:0043065 positive regulation of
apoptosis

2.47E-04 16.36 0.03

7 GO:0009615 response to virus 8.62E-04 9.09 0.10

doi:10.1371/journal.pone.0032289.t004

Biclustering for Predicting HIV-1–Human PPI

PLoS ONE | www.plosone.org 8 April 2012 | Volume 7 | Issue 4 | e32289



studies use completely different methodologies and predict

different number of interactions. From Fig. 6 it can be noticed

that the predictions from the present study have overlap of 80

interactions with that of Tastan et al., whereas the number of

overlaps between our method and Doolittle’s method is only 5. We

have reported the common predictions between the studies in this

paper and Tastan et al. in File S4. These 80 common predictions

may be closely observed and are interesting candidates for

further studies. Note that among these common interactions,

4 interactions (env_gp120<CASP8, env_gp120<SRC, en-

v_gp41<MAPK1, and Gag_Pr55<MAPK1) are already estab-

lish by experimental validation as discussed in the previous section.

The 5 common interactions between our study and that of

Doolittle et al. are capsid<MAPK1, env_gp41<NFKB1, en-

v_gp41<MAPK1, integrase<CD4, and integrase<MAPK1.

There are 4 interactions which are predicted by all three methods.

These interactions are capsid<MAPK1, env_gp41<MAPK1,

integrase<CD4, and integrase<MAPK1. As these 4 interactions

are common to all methods, these might be important candidates

for further investigations. Among these, as discussed in the

previous section, env_gp41<MAPK1 already has evidence in

literature [28]. In summary we can say that little overlaps among

the predicted interactions from different methods suggest that

these methods might be complementary to each other for

identifying novel interactions between HIV-1 and human proteins.

Summary and Discussion
In this article we have posed the problem of predicting new

HIV-1–human protein interactions based on the existing PPI

database as an association rule mining problem. This is motivated

by the difficulty in posing the problem as a classification one due to

lack of proper negative PPI samples. In this regard, a novel

association rule mining approach based on BiMax biclustering

method has been proposed. The proposed technique has been

used to mine the frequent closed itemsets from the HIV-1–human

PPI database organized as a binary matrix. The non-redundant

association rules of high confidence have been generated and a

novel method for predicting new interactions from the generated

rules has been proposed. The proposed method has been shown to

predict new viral-host interactions with certain confidence levels.

For validation of the predicted new interactions, gene ontology-

based and pathway-based study have been performed. Ptak et al.

[20] noticed that some HIV-1 proteins interact with multiple

proteins belonging to specific protein complex or cellular pathway,

which represent specific cellular activities. Similar trend is noticed

for the predicted interactions as well. The GO and pathway

studies reveal that the human proteins that are predicted to

interact with a particular viral protein share many common

biological activities that are mainly related to immune response,

apoptosis and programmed cell death. Moreover, in some of the

cases, we found that the group of human proteins interacting with

a viral protein are involved in the pathway of some type of cancer

suggesting that HIV-1 infection may lead to several types of cancer

through its infection pathway. Moreover, we have shown some

evidences from recent literature which demonstrate that some of

our predicted interactions are already established through

experimental validation. Finally we have discussed the overlaps

of our predicted interactions with that by two other existing

methods for HIV-1–human PPI prediction.

One possible criticism of the proposed technique might be that

it can only predict new interactions involving the human proteins

present in the HIV-1–human database. However, if some viral

protein is predicted to interact with a human protein, the human

proteins that are structurally similar to the target human protein or

that have same domains as in the target human protein, are also

likely to interact with the concerned viral protein [13]. Hence it is

evident that although our method does not directly predict

interactions involving human proteins not present in the

interaction database, it can predict the possibility of interactions

of HIV-1 proteins with new cellular factors that are structurally

similar with the human proteins involved in predicted interactions.

In this work, we have used a simple model that does not

differentiate among the different types of interactions present in

the interaction database. The main interest of this study is to

Table 5. Significant non-redundant GO terms (p-valuev1E-02, Dispensabilityv0.15) under Cellular Component category found in
the human proteins that are predicted to interact with HIV-1 protein Tat.

Sl. No. GO-id Term p-value % of Proteins Dispensability

1 GO:0005829 cytosol 2.30E-10 43.64 0.00

2 GO:0031982 vesicle 5.27E-05 21.82 0.00

3 GO:0048475 coated membrane 1.13E-04 9.09 0.00

4 GO:0031226 intrinsic to plasma
membrane

2.47E-03 23.64 0.06

doi:10.1371/journal.pone.0032289.t005

Table 6. Significant non-redundant GO terms (p-valuev1E-02, Dispensabilityv0.15) under Molecular Function category found in
the human proteins that are predicted to interact with HIV-1 protein Tat.

Sl. No. GO-id Term p-value % of Proteins Dispensability

1 GO:0008565 protein transporter activity 3.17E-04 9.09 0.00

2 GO:0016814 hydrolase activity, acting on carbon-nitrogen
(but not peptide) bonds, in cyclic amidines

6.05E-03 5.45 0.00

3 GO:0051219 phosphoprotein binding 1.39E-04 7.27 0.00

doi:10.1371/journal.pone.0032289.t006
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propose a novel idea of utilizing a biclustering algorithm to derive

association rules and using the derived rules to predict new

interactions. Hence it is not straightforward to annotate the

predicted interactions. Although GO-based study gives us some

insights into the sub-cellular locations of predicted interactions

(GO cellular components), a more detailed study is needed and

initial assumptions are to be revised for more clear overview of the

viral replication process. Our future plan is to consider all possible

types of interactions present in the database initially to build the

interaction matrix (matrix will no longer be a binary one), and also

to consider the directions of interactions (virus-to-host, host-to-

virus or undirected). Starting with this, the derived rules will then

be able to predict the annotated interactions along with their

directions. This is expected to more clearly explain the process of

HIV-1 replications by predicting interactions in different stages of

viral life cycle with possible sub-cellular compartments where the

interactions are taking place. The authors are now working in

these directions.

Materials and Methods

HIV-1–Human PPI Data Set
The interaction information reported between HIV-1 and

human proteins has been prepared based on a recently published

PPI interaction data set [19] (http://www.ncbi.nlm.nih.gov/

RefSeq/HIVInteractions/). The database was accessed in March

2011 to prepare the PPI data set for the present study. There are

total 2534 interactions between 19 HIV-1 proteins and 1432

human proteins. The interaction information in the database is

derived from small scale protein interactions curated from

published materials. The PPIs reported in the database are

specifically annotated according to the nature of the interactions

including over 68 interaction types such as ‘‘binds to’’, ‘‘interacts

with’’, ‘‘upregulates’’ and ‘‘phosphorylates’’. The types of

interactions can be broadly classified into direct physical

interactions (e.g., ‘‘binds to’’), that comprise of 32% of the

interactions and indirect interactions (e.g., ‘‘upregulates’’) that

comprise of 68% of the interactions. Both direct and indirect

interactions are considered in our study since indirect interactions

also contain valuable information about the characteristics of the

interacting proteins. Including the information, at the beginning of

the analysis is expected to be beneficial for predicting novel

interactions, both direct as well as indirect. Moreover, the natures

of interactions are also not considered separately. We have

constructed a binary matrix of human and viral proteins, HV of

size 1432|19, and its transpose matrix VH of size 19|1432. An

entry of 1 in the matrices denotes the presence of interaction

between the corresponding pair of human and HIV-1 proteins,

and an entry of 0 represents the absence of any information

regarding the interaction of the corresponding human and viral

proteins. Initially it is treated as non-interaction.

Association Rule Mining
The principle of association rule mining (ARM) lies in the

market basket or transaction data analysis. Much information is

hidden in the day to day transactions taking place in supermarkets.

For example a customer who is buying nappy also likes to

purchase baby food in the same time. Association analysis is the

discovery of rules showing attribute–value associations that occur

frequently [31]. Let I~fi1,i2, . . . ,ing be a set of n items and Xmi

be an itemset where X5I . A k-itemset is a set of k items. Let

T~f(t1,X1),(t2,X2), . . . ,(tm,Xm)g be a set of m transactions,

where ti and Xi, i~1,2, . . . ,m, are the transaction identifier and

the associated itemset respectively. The cover of an itemset X in T

is defined as follows:

cover(X ,T)~ftij(ti,Xi)[T ,X5Xig: ð1Þ

The support of an itemset X in T is

support(X ,T)~jcover(X ,T)j ð2Þ

and the frequency of an itemset is

Table 7. Significant non-redundant GO terms (p-value ,1E-04, Dispensability ,0.15) under Biological Process category found in
the human proteins that are predicted to interact with HIV-1 protein Vif.

Sl. No. GO-id Term p-value % of Proteins Dispensability

1 GO:0000060 protein import into nucleus,
translocation

2.34E-08 35.00 0.00

2 GO:0006259 DNA metabolic process 3.65E-06 50.00 0.03

3 GO:0033554 cellular response to stress 6.97E-06 50.00 0.04

4 GO:0042981 regulation of apoptosis 5.17E-05 50.00 0.04

doi:10.1371/journal.pone.0032289.t007

Table 8. Significant non-redundant GO terms (p-valuev1E-02, Dispensabilityv0.15) under Cellular Component category found in
the human proteins that are predicted to interact with HIV-1 protein Vif.

Sl. No. GO-id Term p-value % of Proteins Dispensability

1 GO:0005654 nucleoplasm 8.64E-06 57.14 0.00

2 GO:0031974 membrane-enclosed lumen 1.03E-03 57.14 0.00

3 GO:0005829 cytosol 7.62E-03 42.86 0.12

doi:10.1371/journal.pone.0032289.t008
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frequency(X ,T)~
support(X ,T)

jT j
: ð3Þ

Thus support of an itemset X is the number of transactions where

all the items in X appear in each transaction. The frequency of an

itemset is the probability of its occurrence in a transaction in T. An

itemset is called frequent if its support in T is greater than some

threshold min sup: The collection of frequent itemsets with respect

to a minimum support min sup in T , denoted by F (T ,min sup) is

defined as

F (T ,min sup)~fX5I ,support(X ,T)wmin supg: ð4Þ

The objective of ARM is to find all rules of the form X[Y ,

X\Y~1 with probability c%, indicating that if itemset X

occurs in a transaction, the itemset Y also occurs with probability

c%. X and Y are called the antecedent and consequent of the rule

respectively. Support of a rule denotes the percentage of

transactions in T that contains both X and Y . This is taken to

be the probability P(X|Y ). An association rule (AR) is called

frequent if its support exceeds a minimum value min sup:

The confidence of a rule X[Y in T denotes the percentage of

the transactions in T containing X that also contains Y : It is taken

to be the conditional probability P(X jY ): In other words,

confidence(X[Y ,T)~
support(X|Y ,T)

support(X ,T)
: ð5Þ

A rule is called confident if its confidence value exceeds a threshold

min conf . Formally the ARM problem can be defined as follows:

Find the set of all rules R of the form X[Y such that

R~fX[Y jX ,Y5I ,X\Y~1,

X|Y(F (T ,min sup),

confidence(X[Y ,T)wmin conf g: ð6Þ

Generally the ARM process consists of the following two steps

[32,33]:

1. Find all frequent itemsets.

2. Generate strong ARs from the frequent itemsets.

The number of itemsets grows exponentially with the number of

items jI j. A commonly used algorithm for generating frequent

itemsets is the Apriori algorithm [18,34]. This is based on the

concept of downward closure property which states that if even

one subset of an itemset X is not frequent, then X cannot be

frequent. It starts from all itemsets of size one, and proceeds in a

recursive fashion. If any itemset X is not frequent then that branch

of the tree is pruned, since any possible superset of X can never be

frequent.

Although Apriori is a popular algorithm, its computational

complexity becomes intractable for very low value of min sup and

when the number of items is very large. It is because low min sup

value generates very large number of frequent itemsets and

generation of such a large number of frequent itemsets takes huge

time. Moreover, it is necessary to ignore the redundant

information in the frequent itemsets. In this context, the concept

of closed itemsets [35,36] is important. An itemset is called closed

itemset if none of its proper supersets have the same support value.

It is beneficial to search for the closed itemsets in order to avoid

any redundancy. Moreover, frequent closed itemsets are con-

densed representation of frequent itemsets without loss of any

information. There is no provision in Apriori or similar algorithms

to directly search for the closed itemsets. In this article, we have

proposed a novel approach that utilizes a biclustering method [37]

for identifying the frequent closed itemsets directly.

Table 9. Significant non-redundant GO terms (p-value ,1.5E-02, Dispensability ,0.15) under Molecular Function category found
in the human proteins that are predicted to interact with HIV-1 protein Vif.

Sl. No. GO-id Term p-value % of Proteins Dispensability

1 GO:0008139 nuclear localization sequence
binding

1.94E-05 21.42 0.00

2 GO:0008134 transcription factor binding 1.30E-02 28.57 0.02

doi:10.1371/journal.pone.0032289.t009

Figure 6. Venn diagram showing the overlaps of predicted
interactions provided by the proposed method, by Tastan
et al. and by Doolittle et al.
doi:10.1371/journal.pone.0032289.g006
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The PPI data set considered in this article is very sparse (only

2534 interacting pairs among 27208 possible protein pairs:

9.31%). Therefore it is required to use low min sup value for

generating frequent itemsets. Moreover when the PPI matrix is

arranged in a form in which the human proteins are considered as

the items, the computational time required to execute the Apriori
method is huge since the number of human proteins is 1432 in the

data set considered here. This is because the number of possible

itemsets to explore is in the order of 21432: Furthermore, it is also

important to find the frequent closed itemsets only to avoid

redundant information. Therefore, it is difficult to use Apriori

algorithm for this data set. Hence, we have proposed a new

association rule mining approach based on a biclustering method

that efficiently mines the frequent closed itemsets from sparse data

sets having low min sup value and large number of items. The

following section describes the proposed technique.

Association Rule Mining based on Biclustering
In this section, we first introduce the concept of biclustering and

thereafter, the proposed rule mining technique is described.
Biclustering. Biclustering technique, usually used in

microarray gene expression data, aims to identify a subset of

genes that are similarly expressed in a subset of experimental

conditions [37,38,39]. Given a g|c microarray data matrix

A(G,C) consisting of a set of g genes G~fI1,I2, . . . ,Igg and a set

of c conditions C~fJ1,J2, . . . ,Jcg, a bicluster can be defined as a

submatrix M(I ,J)~½mij �, i[I ,j[J, of matrix A(G,C), where

I(G and J(C, and the subset of genes in the bicluster are

similarly expressed over the subset of conditions and vice versa.

Biclustering algorithms have been mainly developed to overcome

the shortcoming of standard clustering algorithms that fail to

detect similarity of genes over a subset of experimental conditions

[40,41,42].

Although biclustering algorithms are in general applied for

microarray gene expression data sets, they can be used in any data

matrix to discover submatrices with similar values. There are

different kinds of biclusters available, viz., constant, row-constant,

column-constant, additive pattern, multiplicative pattern, and

combination of both additive and multiplicative patterns [37].

Constant biclusters are of special interest where all the elements of

the biclusters have the same value. In case of a binary data set

where all values are either 0 or 1, a constant bicluster can be

thought as a submatrix, all the elements of which have value 1,

while 0 is considered as the background value. Thus for binary

data sets, identifying constant biclusters is equivalent to identifying

all-1 submatrices from the data set.
ARM from All-1 Biclusters. Suppose a transaction data set

is given that contains m transactions and n items. The data set can

be represented as a binary matrix with rows representing

transactions and columns representing items. If an element

tij~1, it implies that the item j is purchased in transaction i,

and if tij~0, then the transaction i does not purchase the item i:

Given this binary matrix, if we can find an all-1 bicluster that has

at least min sup number of rows (transactions), then the set of

columns (items) of that bicluster can be considered as a frequent

itemset. Hence each all-1 bicluster that satisfies the min sup

condition will provide a frequent itemset. Thus finding the set of

frequent itemsets is equivalent to find a set of all-1 biclusters each

having at least min sup number of rows.

Among the various biclustering techniques available in

literature, we have used Binary inclusion-Maximal (BiMax)

biclustering algorithm [21] that identifies all biclusters in the

input binary matrix. Based on this binary matrix, BiMax identifies

all maximal biclusters where a bicluster is defined as a submatrix E

containing all 1s. An inclusion-maximal bicluster means that this

bicluster is not completely contained in any other bicluster. Note

that the columns of a maximal bicluster constitute a closed itemset.

Hence the set of all-1 biclusters that satisfies the min sup condition

actually provides the set of frequent closed itemsets.

BiMax uses an incremental algorithm to find the inclusion-

maximal biclusters exploiting the fact that the matrix E induces a

biclique. An advantage of BiMax is that it does not need a priori
specification of the number of biclusters to be found.

Therefore, to find the possible association rules, we use the

following steps:

1. Given a min sup and a binary transaction matrix, apply BiMax

algorithm with parameters minimum number of rows =min sup

and minimum number of columns = 2 to find all frequent closed

itemsets.

2. From each frequent closed k-itemset, k rules are generated by

moving one of the items at a time to the consequent part while

keeping the remaining items in the antecedent part of the rule.

Note that for generating the frequent closed itemsets, we ignore

the 1-itemsets as they can not produce any association rule. This is

done by fixing the minimum number of columns of the biclusters

to 2. Moreover, we consider only the rules having single

consequent to avoid redundant information, as our primary

objective is to predict new PPIs.
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32. Hipp J, Güntzer U, Nakhaeizadeh G (2000) Algorithms for association rule
mining – a general survey and comparison. SIGKDD Explorations 2: 58–64.

33. Goethals B (2002) Efficient Frequent Pattern Mining. Ph.D. thesis, University of
Limburg, Belgium.

34. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large
databases. In: Proc. 20th International Conference on Very Large Data Bases.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 487–499.

35. Pasquier N, Bastide Y, Taouil R, Lakhal L (1999) Discovering frequent closed
itemsets for association rules. In: Proc 7th International Conference on Database
Theory (ICDT-99). pp 398–416.

36. Zaki MJ, Hsiao CJ (2005) Efficient algorithms for mining closed itemsets and
their lattice structure. IEEE Transactions on Knowledge and Data Engineering
17: 462–478.

37. Mukhopadhyay A, Maulik U, Bandyopadhyay S (2010) On biclustering of gene
expression data. Current Bioinformatics 5: 204–216.

38. Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data
analysis: A survey. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 1: 24–45.

39. Maulik U, Mukhopadhyay A, Bandyopadhyay S (2009) Finding multiple
coherent biclusters in microarray data using variable string length multiobjective
genetic algorithm. IEEE Transactions on Information Technology in BioMed-
icine 13: 969–975.

40. Maulik U, Bandyopadhyay S, Mukhopadhyay A (2011) Multiobjective Genetic
Algorithms for Clustering: Applications in Data Mining and Bioinformatics.
Springer.

41. Maulik U, Mukhopadhyay A, Bandyopadhyay S (2009) Combining Pareto-
optimal clusters using supervised learning for identifying co-expressed genes.
BMC Bioinformatics 10.

42. Mukhopadhyay A, Bandyopadhyay S, Maulik U (2010) Multi-class clustering of
cancer subtypes through SVM based ensemble of Pareto-optimal solutions for
gene marker identification. PLoS One 5.

Biclustering for Predicting HIV-1–Human PPI

PLoS ONE | www.plosone.org 13 April 2012 | Volume 7 | Issue 4 | e32289


