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Abstract: Despite the superior working properties, GaN-based HEMTs and systems are still con-
fronted with the threat of a transient ESD event, especially for the vulnerable gate structure of the
p-GaN or MOS HEMTs. Therefore, there is still an urgent need for a bidirectional ESD protection diode
to improve the ESD robustness of a GaN power system. In this study, an AlGaN/GaN ESD protection
diode with bidirectional clamp capability was proposed and investigated. Through the combination
of two floating gate electrodes and two pF-grade capacitors connected in parallel between anode or
cathode electrodes and the adjacent floating gate electrodes (CGA (CGC)), the proposed diode could
be triggered by a required voltage and possesses a high secondary breakdown current (IS) in both
forward and reverse transient ESD events. Based on the experimental verification, it was found that
the bidirectional triggering voltages (Vtrig) and IS of the proposed diode were strongly related to CGA

(CGC). With CGA (CGC) increasing from 5 pF to 25 pF, Vtrig and IS decreased from ~18 V to ~7 V and
from ~7 A to ~3 A, respectively. The diode’s high performance demonstrated a good reference for the
ESD design of a GaN power system.

Keywords: electrostatic discharge; ESD protection diode; GaN HEMT; transmission line pulsing

1. Introduction

Currently, GaN-based high-electron-mobility transistors (HEMTs) have attracted a
great deal of research attention in high-power applications, owing to their low specific
on-resistance, high breakdown voltage, high switching frequency and, especially, the more
convenient integration (just as the GaN-based monolithic integrated circuits (MICs), which
are characterized with low parasitic parameters and high performance) [1–6]. Despite the
superior operation properties, the GaN-based HEMTs and MICs are still confronted with the
threat of failure caused by a transient electrostatic discharge (ESD) event, especially for the
vulnerable gate structure of the p-GaN HEMTs, metal–oxide–semiconductor (MOS) HEMTs
and Schottky-gated GaN-based HEMTs. In some reports [7–11], it was comprehensively
demonstrated that the Schottky-gated GaN-based HEMTs can withstand extremely high
transient ESD voltages in the drain-to-source, drain-to-gate and gate-to-source conditions.
However, things go differently for the p-GaN (or MOS) HEMTs. We comprehensively
investigated the ESD robustness of the p-GaN HEMTs in different conditions [12]. In
drain-to-source and drain-to-gate conditions, the equivalent human body model (HBM)
failure voltage (VHBM) of the p-GaN HEMTs can meet the industrial standard (2 kV) [13,14].
However, owing to the lack of discharge path in the gate electrode of the p-GaN HEMTs,
the devices exhibit poor ESD robustness in the gate-to-source condition, with an equivalent
VHBM of only 0.2~0.33 kV. E. Canato [15] and Yiqiang Chen [16,17] reported the gate-to-
source ESD failure and degradation mechanisms of p-GaN HEMTs, which mainly rely on
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the trapping effect and device geometry. To improve the gate-to-source ESD robustness
for the p-GaN HEMT, Xin et al. reported a unidirectional AlGaN/GaN ESD protection
diode based on a self-triggered discharging channel [14]. The diode can be triggered by a
required voltage and possesses a high secondary breakdown current in a forward transient
ESD event. However, in a reverse transient ESD event, the unidirectional AlGaN/GaN
ESD protection diode will be triggered by a very low voltage, which may be not suitable
for GaN-based MICs. In some applications, the ESD protection diode needs to be triggered
by a required voltage in both forward and reverse transient ESD events [18]. Therefore,
there is still a requirement for a bidirectional ESD protection diode to improve the ESD
robustness of a GaN power system.

In this study, a novel bidirectional AlGaN/GaN ESD protection diode (AlGaN/GaN
B-ESD-PD) was proposed and investigated. Through the combination of two floating
gate electrodes and two pF-grade capacitors connected in parallel between the anode or
cathode electrodes and the adjacent floating gate electrodes (CGA (CGC)), the proposed
AlGaN/GaN B-ESD-PD could be triggered by a required voltage and possesses a high
secondary breakdown current in both the forward and reverse transient ESD events. The
paper is organized as follows: the structure and mechanism of the proposed AlGaN/GaN
B-ESD-PD are presented in Section 2; the results of the bidirectional leakage current and
TLP current–voltage characteristics of the proposed AlGaN/GaN B-ESD-PD, as well as the
influence of (CGA (CGC)) and the capacitor connected in parallel between two floating gates
to the floating ohmic contact (CG1 (CG2)), are investigated in Section 3; the conclusions are
drawn in Section 4.

2. Structure and Mechanism

Figure 1a,b shows the schematic structure and equivalent circuit of the proposed
AlGaN/GaN B-ESD-PD. The device features two floating gate electrodes (FG1 and FG2), a
floating ohmic contact (FO) between the floating gate electrodes, two ohmic contacts as the
anode/cathode electrodes (A/C) and two pF-grade capacitors parallelly connected between
the anode or cathode electrodes and the adjacent floating gate electrodes (called as CGA and
CGC). As it can be seen, the proposed AlGaN/GaN B-ESD-PD is similar to two E-mode
HEMTs connected in series with the sources tied together. Furthermore, the fabrication
process of the proposed AlGaN/GaN B-ESD-PD can be fully compatible with the traditional
E-mode p-GaN HEMTs (as shown in Figure 2). Therefore, the proposed AlGaN/GaN
B-ESD-PD can be easily implemented in state-of-art GaN technology, demonstrating a good
reference for the ESD design of the GaN power system. Moreover, the required CGA can be
easily integrated into the state-of-art GaN technology by changing the area of the capacitor’s
metal plate. For example, when the second SiN passivation layer is 100 nm, to obtain a 10 pF
capacitor, the required area of the capacitor’s metal plate is 0.0144 mm2 (120 µm × 120 µm),
which accounts for less than 0.1% of the total area of the traditional p-GaN HEMT in [19].
The working mechanism of the proposed AlGaN/GaN B-ESD-PD is given in Figure 3a,b.
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Figure 2. The possible fabrication process of (a) the proposed AlGaN/GaN B-ESD-PD and (b) tradi-
tional p-GaN HEMT. 

During a forward transient ESD event, a high dv/dt can induce a capacitive coupling 
current from the anode electrode to the cathode electrode (Figure 3a). The capacitive cou-
pling current will carry a certain amount of positive transition charges (Qtran1 and Qtran2) to 
FG1 and FG2, and the positive transition charges will be stored at FG1 and FG2 [12], which 
can pull down the energy band in the floating gate regions and force the electrons to 
gather under FG1 and FG2. When the gates’ potentials induced by the positive transition 
charges exceed the threshold voltage (Vth) of the 2DEG channel, the 2DEG channel under 
FG1 and FG2 will be turned on. Then, the large current can be passed through the 2DEG 
channel under FG1 and FG2. Consequently, in a transient ESD event, the proposed struc-
ture is similar to two series-connected lateral field-effect rectifiers (L-FER). Therefore, the 
ESD-event-induced accumulated electrostatic charges can be effectively released through 
the proposed AlGaN/GaN B-ESD-PD, which can effectively avoid damage to the GaN 
power system, thereby enhancing the system’s ESD robustness. Similarly, the proposed 

Figure 1. (a) The schematic structure and (b) equivalent circuit of the proposed AlGaN/GaN B-ESD-
PD. (c) The equivalent structure configured using the chip capacitor and the commercially p-GaN
HEMT (EPC2036) from the EPC Corporation [20].
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Figure 2. The possible fabrication process of (a) the proposed AlGaN/GaN B-ESD-PD and (b)
traditional p-GaN HEMT.
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Figure 3. Working mechanism of the proposed AlGaN/GaN B-ESD-PD: (a) during a forward transient
ESD event, (b) during a reverse transient ESD event, and (c) the schematic structure for the ESD
measurement circuit.
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During a forward transient ESD event, a high dv/dt can induce a capacitive coupling
current from the anode electrode to the cathode electrode (Figure 3a). The capacitive coupling
current will carry a certain amount of positive transition charges (Qtran1 and Qtran2) to FG1
and FG2, and the positive transition charges will be stored at FG1 and FG2 [12], which can
pull down the energy band in the floating gate regions and force the electrons to gather under
FG1 and FG2. When the gates’ potentials induced by the positive transition charges exceed
the threshold voltage (Vth) of the 2DEG channel, the 2DEG channel under FG1 and FG2 will
be turned on. Then, the large current can be passed through the 2DEG channel under FG1 and
FG2. Consequently, in a transient ESD event, the proposed structure is similar to two series-
connected lateral field-effect rectifiers (L-FER). Therefore, the ESD-event-induced accumulated
electrostatic charges can be effectively released through the proposed AlGaN/GaN B-ESD-
PD, which can effectively avoid damage to the GaN power system, thereby enhancing the
system’s ESD robustness. Similarly, the proposed AlGaN/GaN B-ESD-PD can also effectively
avoid damage to the GaN power system during a reverse transient ESD event. Typically,
in a forward transient ESD event, the voltage needed to simultaneously turn on the 2DEG
channels under FG1 and FG2 (Vtrig_F) is positively correlated with Vth × C1/(Cga + CGA)
and Vth × (Cgc + CGC)/C2 [12], where C1 (C2) is the parasitic capacitance between FG1 (FG2)
and FO, and Cga (Cgc) is the parasitic capacitance between FG1 and the anode electrode (the
cathode electrode). A required Vtrig_F can be obtained by changing C1 (C2), Cga (Cgc) and CGA
(CGC). Similarly, in the reverse transient ESD event, the voltage needed to simultaneously turn
on the 2DEG channel under FG1 and FG2 (Vtrig_R) is positively correlated with Vth × C2/(Cgc
+ CGC) and Vth × (Cga + CGA)/C1. A required Vtrig_R can also be obtained by changing C1(C2),
Cga (Cgc) and CGA (CGC).

To reduce the cost of the validation experiment, an equivalent structure configured
using the chip capacitors and the commercially p-GaN HEMTs (EPC2036) [20] was used to
verify the operating principle of the proposed AlGaN/GaN B-ESD-PD, as shown in Figure 1c.
The area of EPC2036 and the required capacitor (as stated above) were only about 0.81 mm2

and 0.0144 mm2, respectively. Therefore, the total area of the proposed AlGaN/GaN B-
ESD-PD was about 1.85 mm2, which accounted for less than 5% of the total area of the
traditional p-GaN HEMT in [19]. As analyzed above, the ESD protection capability of the
proposed AlGaN/GaN B-ESD-PD are related to the continuous working current, threshold
voltage and parasitic capacitance between the gate electrode and the drain/source electrode
of the commercially p-GaN HEMTs, which were 1.7 A, 2 V and ~10 pF/75 pF, respectively.
Moreover, the parasitic capacitances caused in BOEL was less than 1 pF, which did not
significantly influence the ESD behavior of the proposed AlGaN/GaN B-ESD-PD. More
detailed device characteristics of the commercially p-GaN HEMTs can be found in the
datasheet of EPC2036 [20]. In this work, the transient ESD events were produced by our
self-developed transmission line pulsing (TLP) measurement system (Figure 3c). The pulse
width and rising time in the TLP tests were set to be 100 ns and 2 ns, respectively. To
capture the effective transient TLP voltage and current waveforms, the averaged values
over the time span from 70% to 90% of the TLP pulse width were extracted. Furthermore,
the bidirectional TLP current–voltage (I–V) characteristics of the proposed AlGaN/GaN
B-ESD-PD were extracted from two of the same devices. The reason for this is explained in
Section 3. Moreover, during the TLP test, the sudden obvious decrease in voltage between
the anode electrode and cathode electrode was used as a failure criterion.

3. Results and Discussion

Figure 4 shows the bidirectional leakage current characteristics of the proposed Al-
GaN/GaN B-ESD-PD with different CGA (CGA), accompanied by that of the gate-floating
bidirectional GaN diode and GS-shorting bidirectional GaN diode. The gate-floating bidi-
rectional GaN diode is similar to two anti-series connected E-mode p-GaN HEMTs with
two gate electrodes floated, and the GS-shorting bidirectional GaN diode is similar to two
anti-series connected E-mode p-GaN HEMTs with two gate electrodes shortly connected to
the source electrodes. The proposed diodes exhibited a relatively low DC leakage current
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in different directions; therefore, after the proposed diodes were integrated into the GaN
power systems, the forward or reverse DC leakage current of the GaN power systems
was not markedly increased. Especially, under the conventional gate working voltage
of the traditional p-GaN HEMT (less than 5 V), the DC leakage current of the proposed
AlGaN/GaN B-ESD-PD was less than 1 µA. For now, the DC gate leakage current of the
traditional p-GaN HEMT was in the range from 20 µA to 320 µA [20]. Among them, the DC
gate leakage currents were 160 µA and 320 µA for the devices with static working currents
of 30 A and 60 A, respectively. Predictably, the device with higher static working current
possessed a higher gate leakage current. Therefore, integrating the proposed AlGaN/GaN
B-ESD-PD into the traditional p-GaN HEMT did not obviously increase the DC gate leak-
age current of the traditional high-current p-GaN HEMT. In addition, as stated above, the
fabrication process of the proposed AlGaN/GaN B-ESD-PD can be fully compatible with
the traditional E-mode p-GaN HEMTs, making the ESD design more convenient. Although
the gate-floating and GS-shorting bidirectional GaN diodes also exhibited a relatively low
leakage current in different directions, the diodes were not suitable as the ESD protection
diode due to their high triggering voltage (Vtrig) and low secondary breakdown current,
which is described later.
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Figure 4. The static bidirectional leakage current characteristics of the proposed AlGaN/GaN B-
ESD-PD with different CGA (CGC) values, accompanied by that of the gate-floating and GS-shorting
bidirectional GaN diodes.

Figure 5 gives the bidirectional TLP current–voltage (I–V) characteristics of the pro-
posed AlGaN/GaN B-ESD-PD, with those of the gate-floating and GS-shorting bidirectional
GaN diodes shown as references. In both the positive and negative TLP tests, the proposed
AlGaN/GaN B-ESD-PD with a CGA (CGA) of 5 pF could be triggered by a voltage of ~18 V
and possessed a high secondary breakdown current (IS) of ~7 A, demonstrating that the
proposed diode could effectively release the accumulated electrostatic charges and clamp
the potential of the key position to be a required value in both forward and reverse tran-
sient ESD events. Therefore, the proposed AlGaN/GaN B-ESD-PD could effectively avoid
the ESD damage and enhance the ESD robustness for the GaN power system with the
proposed diode integrated. Meanwhile, for the gate-floating and GS-shorting bidirectional
GaN diodes, the devices’ triggering voltages (Vtrig_F and Vtrig_R) reached about 300 V, and
the secondary breakdown currents were as low as 0.01 A. Therefore, in the transient ESD
event, the gate-floating and GS-shorting bidirectional GaN diodes could not effectively
clamp the potential to be a required value for the key position of the GaN power system,
and the low positive secondary breakdown current could not effectively release the accu-
mulated electrostatic charges in the transient ESD event. In other words, the gate-floating
and GS-shorting bidirectional GaN diodes may be not suitable as ESD protection diodes
to enhance a system’s ESD robustness and to protect the GaN power system from being
damaged in a transient ESD event.
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Figure 5. The bidirectional TLP I–V characteristics of the proposed AlGaN/GaN B-ESD-PD with
different CGA (CGC) values (a), and the gate-floating and GS-shorting bidirectional GaN diodes (b).

As stated in Section 2, the bidirectional TLP I–V characteristics of the proposed Al-
GaN/GaN B-ESD-PD were extracted from two of the same devices. The reason for that can
be explained in Figure 6 in which the bidirectional leakage current characteristics and TLP
I–V characteristics before and after the occurrence of the forward ESD breakdown (FB) are
exhibited. It can be seen that, after the occurrence of the forward ESD breakdown, there was
an obvious change in the bidirectional leakage current and TLP I–V characteristics for the pro-
posed AlGaN/GaN B-ESD-PD. However, to capture the bidirectional secondary breakdown
current of the proposed AlGaN/GaN B-ESD-PD, the device was always tested until the oc-
currence of an ESD breakdown. Therefore, to obtain the bidirectional TLP I–V characteristics
of the proposed AlGaN/GaN B-ESD-PD, two of the same devices were needed.
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Figure 6. The bidirectional leakage current characteristics on a log-scale (a) and TLP I–V characteris-
tics (b) before and after the forward ESD breakdown. The CGA (CGC) of the proposed AlGaN/GaN
B-ESD-PD was 10 pF.

It can also be seen from Figure 5 that the change in CGA (CGC) had an obvious impact
on the bidirectional TLP I–V characteristics of the proposed AlGaN/GaN B-ESD-PD. The
slope of the snapback region showed a gradual decrease with the increase in capacitor
values; this was because increasing the capacitor values decreased the charging rate of the
capacitor, which reduced the opening speed of the floating gate structure, subsequently
increasing the transient load resistance of the TLP load-line. Furthermore, the influences of
CGA (CGC) on the triggering voltage and the secondary breakdown current are summarized
in Figure 7. As analyzed above, in the TLP test, the triggering voltages (Vtrig_F and Vtrig_R)
of the proposed AlGaN/GaN B-ESD-PD were decreased with the increase in CGA (CGC).
With CGA (CGC) increasing from 5 pF to 25 pF, the triggering voltages (Vtrig_F and Vtrig_R)
decreased from 18 V to 7 V. Therefore, through changing CGA (CGC), the desirable triggering
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voltages (Vtrig_F and Vtrig_R) could be obtained for the proposed AlGaN/GaN B-ESD-PD.
Similarly, the secondary breakdown currents of the proposed AlGaN/GaN B-ESD-PD were
also decreased with the increase in CGA (CGC). With CGA (CGC) increasing from 5 pF to
25 pF, the secondary breakdown currents decreased from 7 A to 3 A. Correspondingly,
the equivalent HBM failure voltages (VHBM = IS × 1500 Ω) of the proposed AlGaN/GaN
B-ESD-PD decreased from 10.5 kV to 4.5 kV. The dependence of the secondary breakdown
current on the capacitance could have been mainly related to the charging speed of the
capacitor. For the proposed AlGaN/GaN B-ESD-PD with a small capacitor, the charging
speed of the small capacitor was fast, then the floating gate structure could be opened
quickly, and the accumulated electrostatic charges could be quickly released through the
proposed AlGaN/GaN B-ESD-PD. As a result, the proposed AlGaN/GaN B-ESD-PD with
a small capacitor could release more electrostatic charges and withstand a higher secondary
breakdown current. In other words, although changing the CGA (CGC) could regulate the
triggering voltages (Vtrig_F and Vtrig_R) of the proposed AlGaN/GaN B-ESD-PD, it also
weakened the device’s protection capability. Fortunately, even with a high CGA (CGC) of
25 pF, the equivalent HBM failure voltage of the proposed AlGaN/GaN B-ESD-PD could
meet the industrial standard (2 kV). Therefore, the proposed AlGaN/GaN B-ESD-PD could
serve as an effective ESD protection diode to enhance the system’s ESD robustness and to
protect the GaN power system from being damaged in a transient ESD event.
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Figure 7. IS, Vtrig and VHBM of the proposed AlGaN/GaN B-ESD-PD with CGA (CGC) increasing
from 5 pF to 25 pF.

As stated above, through changing CGA (CGC), the desirable triggering voltages
(Vtrig_F and Vtrig_R) could be obtained for the proposed AlGaN/GaN B-ESD-PD. To make
the dependence of the triggering voltage on CGA and CGC clear, the bidirectional TLP
I–V characteristics of the unidirectional AlGaN/GaN ESD protection diode with different
CGA values were studied, as shown in Figure 8. The change in CGA only had an obvious
impact on the positive TLP I–V characteristics of the unidirectional AlGaN/GaN ESD
protection diode and had no effect on its reverse TLP I–V characteristics. In other words,
only the forward triggering voltage of the unidirectional AlGaN/GaN ESD protection diode
depended on CGA, and the reverse triggering voltage was not related to CGA. Because the
proposed bidirectional AlGaN/GaN ESD protection diode was similar to two anti-series
connected unidirectional AlGaN/GaN ESD protection diodes, it can be inferred that the
forward triggering voltage of the proposed bidirectional AlGaN/GaN ESD protection
diode is related to CGA and not related to CGC, and its reverse triggering voltage is related
to CGC and not related to CGA.
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Figure 8. The schematic structure, equivalent circuit (a) and bidirectional TLP I–V characteristics (b)
of the unidirectional AlGaN/GaN ESD protection diode.

In order to make a comprehensive comparison, the TLP I–V characteristics of the
proposed AlGaN/GaN B-ESD-PD with different CG1 (CG2) values were also investigated.
First, the leakage current and TLP I–V characteristics of the two reverse-series connected
E-mode p-GaN HEMTs with two gate electrodes connected to the floating ohmic electrode
through CG1 and CG2 are presented in Figure 9. The device is called diode 1 in the following
work, and its equivalent circuit is shown in the inset of Figure 9a. As indicated in Figure 8,
although diode 1 exhibited a relatively low static leakage current in different directions,
the device possessed a high triggering voltage over 200 V and an extremely low positive
secondary breakdown current of 0.01 A. In addition, the triggering voltages of diode 1 were
increased with the increase in CG1. Therefore, diode 1 could not effectively clamp the
potential to be a required value for the key position of the GaN power system. Moreover,
that high triggering voltage is much higher than the safe gate working voltage of the
traditional p-GaN HEMT, which will damage the p-GaN gate of the traditional p-GaN
HEMT. Furthermore, that low positive secondary breakdown current cannot effectively
release the accumulated electrostatic charges in the transient ESD event. On the whole,
diode 1 may be not suitable as the ESD protection diode to enhance a system’s ESD
robustness and to protect the GaN power system from being damaged in a transient
ESD event.
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Figure 9. The leakage current characteristics (a) and TLP I–V characteristics (b) of diode 1 with
different CG1 (CG2) values. The inset of Figure 9a is the equivalent circuit of diode 1.

Figures 10 and 11 give the bidirectional leakage current characteristics and TLP I–V
characteristics of the proposed AlGaN/GaN B-ESD-PD with a CGA (CGC) of 5 pF or 10 pF
and different CG1 (CG2) values. For simplicity, the diode with a CGA (CGC) of 5 pF was called
diode 2, shown in the inset of Figure 10a, and the diode with a CGA (CGC) of 10 pF was
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called diode 3, shown in the inset of Figure 11a. It is shown in Figure 10 that the triggering
voltages and secondary breakdown currents of diode 2 were related to CG1 (CG2). With CG1
(CG2) increasing from 10 pF to 100 pF, the triggering voltages of diode 2 decreased from
18 V to 36 V, and the secondary breakdown currents slightly decreased from 7 A to 6.5 A.
Correspondingly, the equivalent HBM failure voltages of diode 2 decreased from 10.5 kV to
9.75 kV, as summarized in Figure 12a. Therefore, through changing CG1 (CG2), the desirable
triggering voltages (Vtrig_F and Vtrig_R) could also be obtained for diode 2. Meanwhile, for
diode 3, the change in CG1 (CG2) had nearly no effect on the secondary breakdown currents,
only leading to a slight increase in the triggering voltages. Therefore, to obtain desirable
triggering voltages (Vtrig_F and Vtrig_R) for diode 3, the way of changing CG1 (CG2) was
not particularly effective. Moreover, compared with diode 2 and diode 3, the proposed
AlGaN/GaN B-ESD-PD may be more desired. This is because when using a traditional GaN
HEMT, increasing the capacitance should be avoided as much as possible.
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Figure 10. The bidirectional leakage current characteristics (a) and TLP I–V characteristics (b) of
diode 2 with different CG1 (CG2) values. The inset of Figure 10a is the equivalent circuit of diode 2.
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Figure 11. The bidirectional leakage current characteristics (a) and TLP I–V characteristics (b) of
diode 3 with different CG1 (CG2) values. The inset of Figure 11a is the equivalent circuit of diode 3.
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Figure 12. IS, Vtrig and VHBM of diode 2 (a) and diode 3 (b) with different CG1 and CG2 values.

4. Conclusions

In conclusion, a novel AlGaN/GaN B-ESD-PD featuring two floating gate electrodes
and two pF-grade capacitors was proposed for enhancing the ESD robustness of a GaN
power system. Through the TLP tests, it was demonstrated that the proposed AlGaN/GaN
B-ESD-PD could be triggered by a required voltage (~10 V) and possessed a high secondary
breakdown current in both forward and reverse transient ESD events. Furthermore, it was
also found that the required triggering voltages and secondary breakdown currents of the
proposed AlGaN/GaN B-ESD-PD were strongly related to CGA (CGC). With CGA (CGC)
increasing from 5 pF to 25 pF, the positive triggering voltages decreased from 18 V to 7 V,
and the positive secondary breakdown currents decreased from ~7 A to ~3 A. In addition,
the fabrication process of the proposed AlGaN/GaN B-ESD-PD can be fully compatible
with the traditional GaN HEMT, demonstrating a good reference for the ESD design of
GaN monolithic integrated circuits.
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